Using PROGRES for graph-based program
refactoring

Erhard Weinell

RWTH Aachen University of Technology
Department of Computer Science 3 (Software Engineering)
Ahornstrafie 55, D-52074 Aachen, Germany
Weinell@cs.rwth—aachen.de
http://se.rwth-aachen.de

1 Introduction

Applying the graph rewriting language PROGRES [1] to model program refac-
toring is a a natural choice, as it already been successfully applied for re-
engineering. In [2], complex legacy telecommunication systems were analyzed
and re-designed using the PROGRES toolchain. Similarly, we combine PRO-
GRES’ high-level language features such as visual graph transformation rules,
functional expressions, and means for rule composition to yield an executable
prototypical refactoring tool. The source code generated from this specification
is combined with a framework for visual prototyping, which allows direct in-
spection of the basic graph structure. Furthermore, the prototype extends the
framework’s functionality to provide GXL import/export functionality according
to the predefined schema.

This paper is structured as follows: The created specification is introduced
in Section 2, followed by a short presentation of the generated refactoring tool
in Section 3. Section 4 discusses experiences made during solving the tool con-
test task in response to the case studies’ authors. In the appendix, Section A
provides informations how to retrieve and evaluate the refactoring tool and the
PROGRES specification. For the reader’s convenience, Section B holds the entire
PROGRES specification relevant to the case study solution.

2 Specification

The developed PROGRES specification is roughly composed of four parts, i.e.
sections of the specification: First, the program graph meta-model is reproduced
in form of a PROGRES graph schema. Second, additional helper functionality is
added, e.g. commonly used path expressions. Third, refactoring rules are mod-
eled using several transformation rules, with an “outer rule” to control their
respective execution. Fourth, rules to allow users to build up or modify program
graphs are provided for testing purposes. In the following, observations that were
made during the development of the respective parts are discussed.

Meta-model: The meta-model of the given case study could be mapped to PRO-
GRES in an almost direct way. One disadvantaged we encountered is the fact
that PROGRES requires edge type identifiers to be unique. Therefore, numerous
associations of the meta-model were renamed, e.g. belongsTo between Variable and
Class to vBelongsToClass. However, it could be argued whether massive overload-
ing of identifiers leads to an easily understandable meta-model. Furthermore,
PROGRES does not support ordered edge types in general, so we simulated
this feature simply by adding an integer attribute to the association’s respective
target class.

Helper functionality mainly comprises path expressions which are re-used in the
refactoring rules. Among others, paths expressions are provided to determine the
Class where an Expression is defined in, or to determine a MethodBody’s references
to this.

Encapsulate Field Refactoring. This refactoring is implemented by a total of
five rules, i.e. to declare getters and setters, replace accesses and updates of
the encapsulated fields, and a single controller rule. The latter also checks for
previously existing getters and setters, creating new ones if none can be found.
In the generated prototype, the controller rule is made available to the user

Move Method Refactoring. To implement this refactoring, seventeen transforma-
tion rules were required. This refactoring is inherently complex as it requires the
selection of an appropriate increment to move the selected method body along,
i.e. either a Variable or a Parameter. As this selection is not part of the given
interface, and non-deterministic choice can hardly be considered a good solu-
tion, transformation processing has to allow user interaction. Basically, graph
transformation rules modeled in PROGRES can access native code to add such
functionality, Java in this case. However, requiring the developer to add UI
code manually, and to embed this code into the transformation rules can hardly
be considered as model-based development. We therefore followed a different
approach by adding special marker nodes to the host graph in order to sug-
gest possible continuations of the refactoring. From the seventeen rules, two are
therefore required to find appropriate points of application and to add corre-
sponding marker elements. Among the rest, there is again one controller rule,
three rules to construct delegate methods, five to handle this references in the
moved methods (including parameter addition and invocation-rewrite), two for
call-rewriting in the non-delegation case, and some minor clean-up rules.

Pull-up Method Refactoring. This comparatively simple refactoring case is com-
posed of eight rules. Again, a controller rule is added for checking precondi-
tions and invoking sub-rules. The latter are responsible for moving the pulled-up
method body, removing other bodies of the same operation, adding stub meth-
ods and abstract declarations of the pulled-up method. This refactoring case
does not require any user interaction.

Constructive rules allow user-interactive manipulation of program graphs. Whilst
PROGRES ensures schema-conformant results of all rule applications, users can
nevertheless violate constraints which are not encoded in the schema, e.g. dis-
jointness of a Variable’s belongsTo edges.

Ezample rule. Figure 1 depicts a moderately complex transformation rule, whilst
making use of some more “advanced” PROGRES functionality. Its intention is
to rewrite calls to a method being moved along one of its parameters, given that
the call has no explicitly stated receiver. A previously invoked transformation
rule will already have rewritten the call’s receiver for being passed as actual
parameter, if required by the moved method’s body.

The transformation rule’s header defines two formal parameters, expecting
the method declaration, and the parameter being moved along. The rule is ap-
plied for all matches in pseudo-parallel mode, as indicated by the star.

As defined by the rule’s left-hand side (LHS), values of the formal param-
eters are bound to nodes ‘1 and ‘2, respectively. Furthermore, a Call ('3)
to the moved method is retrieved from the host graph, as well as the actual
parameter (‘4) with the same ordering index as the passed parameter, stated
by the attribute condition below. The chain of expression edges emerging
from the actual parameter is traversed as long as possible, until the end of this
chain is reached in node ‘6. Considering the case where an actual parameter
comprises only a single node, the folding clause allows non-isomorphic binding
of rule nodes. Finally, the LHS ensures that no “expression parent” exists for
the given call by referring to the exprParent path expression and a negated
target node ‘5. This prohibits the existence of a receiver for this call (e.g. calls
and accesses), though it does not deny the existence of other expression elements
such as blocks.

If any occurrence of the rule’s LHS is found, the matched sub-graph is trans-
formed according to the right-hand side (RHS), and the textual transformation
descriptions. According to the RHS, the cActualParameter edge between ‘3
and ‘4 is removed, whereas an expression edge is added between 6’ and 3”.
Therefore, the call is now the final element of the expression chain belonging
to the previous actual parameter. Furthermore, the beginning of this expression
chain is embedded into the unknown parts of the host graph by redirecting in-
coming edges from the call node 3’ . Finally, the order attribute is transfered
from 3’ to 4, to keep ordered relations to the call node intact.

3 Prototype

Figure 2 show the prototypical editing tool. The main part of the view window
is taken up by the graph viewer (D. On the left, attribute values of the cur-
rently selected node is depicted (2). Transformation rules can either be invoked
by selection from the menubar, or directly from the toolbar (3. In case of the
EncapsulateField rule, the Ul framework queries parameters of the transformation
rule, either using the toolbar as well, or through a detached window (9. Here, the

transformation - mm_rewriteCall_alongParam_noReceiver
(op : Operation ; par : Parameter) x =

parameter

‘2 = par

cActualParameter

} ‘4 : Expression ‘

I
I
I
I
I
I
I
I
I
I
I
|
I

{ —expression->)<> !
I
I
I
I
I
I
I
I
I
I
I
I

‘6 : Expression ‘

exprParent

*5

: Expression

! I
3 parameter
| 27 = 2 !
! I
! I
! 1
1 :
| 4 = 4 !
! I
1 :
| 6/ = 6 !
! I
! 1
! 1
! I

folding ‘4, ‘6 ;

condition ‘2.order = ‘4.order;

embedding
redirect <-expression-, <-cActualParameter- from ‘3 to 4';

transfer 4’ .order := ‘3.order;

end;

Fig. 1. PROGRES transformation rule for rewriting method calls

user can input parameter values in a convenient way, e.g. using checkboxes for
boolean values. To pass nodes as parameter values, the user simply selects nodes
from the graph view. If a transformation rule requires multiple node-valued pa-
rameters, selected nodes are assigned in the order they were selected to those
parameters they match. In case of ambiguities, the user may also enter node
identifiers directly. For better navigation, (5 shows an overview window on the
entire host graph.

Most of the prototype’s functionality is generated from the underlying PRO-
GRES specification, i.e. all transformation rules for refactoring. The behavior

X aBaTs graph vies

File View Options Layout Refactorings Manipulation Add Sample Data Unmatched

- | Encapsulate Field | Move Method 3
Refactorings Generic | Transaction
=

‘harameter =
String

= type |Variable
[false

Class

[false
dastination
520

N B
alse 5
alse . /
[Visibilit rivata \
v \

wectar |/

getterhame Class

setterliame

setDestinationT o

useAccessorsAlnays
e T

Package j

| 1l] Lo]

L4

Fig. 2. Prototypical refactoring tool

of transformation selection, as discussed above, is also configured automatically
from the information provided by the PROGRES specification. Some additional
effort was made to provide a nicer display of graph elements, e.g. colors and icons
as shown in the graph view, whilst hiding elements of lesser interest to the user.
Furthermore, transformation rules are grouped into menus. This fine-tuning of
the user interface can be achieved through configuration only. The only program-
ming effort required is for importing and exporting GXL documents according to
the provided schema, as the PROGRES-internal graph schema slightly diverges
due to naming requirements.

4 Discussion

Language features. PROGRES, as a language for programmed graph rewriting,
showed to be very much feasible to model the case studie’s task. Whilst basic
graph transformation rules allow visual and declarative modeling, these rules
can be combined in an imperative manner including parameterization. This way,
PROGRES allows e.g. to conditionally branch transformation execution, iterate
over all matches, and the like. All transformations are conducted in a transaction-
like atomic way - either successfully executing all transformations in a sequence,
or none. For the refactoring tool contest, we can conclude that imperative control
structures allow re-use and composition of elementary transformation rules.
Besides simple graph patterns comprising pattern nodes and edges, PRO-
GRES provides a set of valuable additional language constructs. Firstly, path
expressions allow convenient reasoning on connectivity structures, including se-
quences, alternatives, and conjunctions. Path expressions also allow to reason on
the reached nodes regarding their type and attribute values. Paths of unknown
length can be expressed by transitive closure of edge traversals and loop expres-
sions, where the latter only retrieve the set of nodes from which no continuation
exists. As shown in Figure 1, path expressions can be directly added to a rule’s
LHS (between ‘4 and ‘6), or refer to externally defined expressions by an iden-

tifier (between ‘3 and ‘5). The latter choice is a valuable element for re-using
functionality. Externally defined path expressions, which may also be attributed
by scalar and node values, can be defined in a textual or visual way.

Another valuable language construct is embedding of nodes into an unknown
context. This not only allows to conveniently redirect edges from one node to
another, but also to copy edges, revert their direction, or to remove them. Al-
though this behavior can be achieved by set-valued nodes as well, one set-valued
node would be required for each edge type considered in an embedding directive,
making an LHS considerably hard to read.

As for genericity, PROGRES provides a two-level type system for nodes,
which allows to reason on types of modes, and to specify transformation rules
in a generic way. However, this is not provided for edges, as inheritance on
edges comes with some nasty semantical effects [3]. The two level type system,
nevertheless, has already been applied to build syntax-directed editors in the
IPSEN project [4]. A set of language-independent editing rules, e.g. to add an
increment to the abstract syntax tree (AST), is complemented by language-
specific node types, which define the allowed AST children by means of meta-
attributes. Such an approach could be followed to build generic refactoring tools
as well, although this would require a sufficiently powerful generic meta model.

Development environment. PROGRES provides a sophisticated, though by mod-
ern standards difficult getting used to, development environment. Developers are
aided by numerous checks considering static semantics, e.g. whether a edges in a
graph pattern and their adjacent nodes match the corresponding type definition.
More sophisticated checks support proper use of non-determinism, e.g. whether
an expressions always delivers exactly, at most, or at least one result.

However, PROGRES does not perform checks considering rule overlapping
or the like. As control flow is specified explicitly be the developer, there would
be very few occasions where such an analysis could reveal programming er-
rors, though. That said, PROGRES cannot in any way guarantee correctness
of a specification w.r.t. its intended semantics, such as behavior preservation of
transformation rules. It is up to the developer to specify refactoring rules to
check decidable preconditions, and undecidable ones to an appropriately simpli-
fied extend.

Generated refactoring tool. The current status of the generated tool is clearly
prototypical, as almost no customization of this tool have been carried out so far.
Therefore, refactoring rules can be accessed by the standard Ul including menus
and toolbars. One could also move refactoring rules directly to the context menu
of a node, simply by redefining existing transformation rules as methods of the
respective node types.

Customized user interaction is probably the most pressing requirement for
the current tool, e.g. to interactively query the user’s choice for a specific element.
Currently this is achieved by marker elements which are added to the host graph,
although this surely isn’t the most understandable approach. Furthermore, the
marker approach could be extended to guide users in finding “bad smells”, if

supplied with queries that determine nasty language constructs, e.g. write access
to fields across class borders.

References

1. Schiirr, A., Winter, A.J., Ziindorf, A.: The PROGRES approach: Language and
environment. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Hand-
book on Graph Grammars and Computing by Graph Transformation: Applications,
Languages, and Tools. Vol. 2. 1°* edn. World Scientific, Singapore (1999) 487-550

2. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication Sys-
tems. PhD thesis, RWTH Aachen University (2005)

3. Schiirr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssyste-
men. Dissertation, RWTH Aachen University (1991)

4. Schiirr, A.: Specification of logical documents and tools. In Nagl, M., ed.: Building
Tightly Integrated Software Development Environments: The IPSEN Approach.
Vol. 1170 of Lect. Notes in Comp. Sci. Springer-Verlag (1996) 297-323

A Getting & using the prototype

This section gives basic information on how to get and run the prototypical
editor. It is intended as reference for the reviewers, but is not part of the paper
contribution. In case of having trouble with the prototype, please contact the
authors.

A.1 Getting

— Our prototype is available for download at (case sensitive):
http://se.rwth-aachen.de/files/progres/GraBaTs08_Refactoring PROGRES.tgz
The filesize is approximately 14 megabytes.

A.2 Starting the prototype

— The downloaded archive should be extracted somewhere.

— Make sure a Java SE 5 or 6 runtime environment is installed, and the
JAVA_HOME environment variable is set.

The prototype is started using Refactoring. sh (Linux) or Refactoring.bat
(Win32).

The prototype was tested on recent Windows and Linux versions, we cannot
guarantee its functionality on other platforms.

A.3 Running the example

— The sample code can be loaded via the File menu (Backup / Restore GXL).
Loading 100k of GXL code might take some time, although we are still
optimizing the solution. Alternatively, trivial demo graphs can be created
via the Add Sample Data Menu.

— The generated diagram can be layouted using e.g. Layout - Sugiyama.

— Refactoring rules are applied using the Refactorings toolbar or menu.

— The prototype should be closed via File - Exit.

A.4 Inspecting the specification

— PROGRES can be freely downloaded from our website:
http://se.rwth-aachen.de/research/progres
However, getting it running is non-trivial due to quite out-dated library
dependencies. We recommend the virtual machine image release - have a
look at the Release page.

— After you launched PROGRES, single-left click on the last specification doc-
ument, and type “m” (short for import)

— Enter any name, confirm with TAB

Select the GraBaTs.backup file from the distribution to import the specifica-

tion

Right-click to open the appended specification

Source-code generation isn’t fully possible with the current VM release -

we will fix this soon. Still you may inspect the specification and try the

interpreter

B Full Specification
This section comprises the full PROGRES specification used to create the refac-

toring tool. It is also provided in plain text format in the archive (see above) as
file named GraBaTs.backup.

spec GraBats08_CS1
declares
section metamodel
declares

node class PGElement

original_id : string :="";

derived

chooseOption = not empty (self.<-marker_of-);
methods

transformation selectMarker

use m : Marker := elem (self.<-marker_of-)
do
m.select
end
end i
end

14

node class Named is a PGElement

intrinsic
name : string;
end;

node class StructuralFeature is a Named

intrinsic
visibility : type in Visibility := Public;
isAbstract := false;

end;

node class Classifier is a StructuralFeature end;

node class Ordered is a PGElement
intrinsic
order : integer := 1;

end;

edge type extends : Classifier [0:n] -> Classifier [0:n];
edge type import : Classifier [0:n] -> Classifier [0O:n];

node type Clazz : Classifier
intrinsic
cIsFinal : boolean := false;
end;

node type Interface : Classifier end;

edge type implements : Clazz [0:n] —-> Interface [0:n];
node type Package : Named end;

edge type pBelongsTo : Package [0:n] —-> Package [0:11];
edge type cBelongsTo : Classifier [0:n] -> Package [1:1];

node type Variable : StructuralFeature

intrinsic

vIsStatic : boolean := false;

vIsFinal : boolean := false;
end;

edge type vTIype : Variable [0:n] -> Classifier [0:1];
edge type vBelongsToClass : Variable [0:n] -> Clazz [0:1];

edge type vBelongsToBody
Variable [0:n] -> MethodBody [0:1];

edge type vBelongsToExpr
Variable [0:n] -> Expression [0:1];

node type MethodBody : PGElement end;
edge type mBelongsTo : MethodBody [0:n] -> Clazz [1:1];
edge type binding : Operation [1l:1] -> MethodBody [0:n];

node type Operation : StructuralFeature
intrinsic

oIsStatic : boolean := false;
oIsFinal : boolean := false;
end;

edge type oBelongsTo : Operation [0:n] -> Interface [0:1];
edge type oType : Operation [0:n] -> Classifier [0:1];
edge type parameter : Operation [1l:1] -> Parameter [0:n];
node type Parameter : Ordered end;

edge type pType : Parameter [0:n] -> Classifier [1:1];

node type Literal : PGElement

intrinsic
val : string;
end;

edge type 1Type : Literal [0:n] -> Clazz [1:11];
node class Expression is a Ordered end;
edge type expression : Expression [0:1] -> Expression [0:n];

node type Access : Expression

intrinsic
aThis : boolean := false;
end;

edge type alLinkLiteral : Access [1l:1] -> Literal [0:1];
edge type alinkParameter : Access [0:n] -> Parameter [0:1];
edge type alinkVariable : Access [0:n] -> Variable [0:1];
edge type alLinkClass : Access [0:n] -> Clazz [0:1];

node type Update : Expression

intrinsic
uThis : boolean := false;
end;

edge type ulinkParameter : Update [0:n] -> Parameter [0:1];

edge type ulinkVariable : Update [0:n]

node type Call : Expression

intrinsic

cThis : boolean := false;

cSuper : boolean := false;
end;

edge type cActualParameter : Call [0:1]

edge type cLink : Call [0:n] -> Operation

-> Variable

-> Expression

node type Instantiation : Expression end;

node type Operator : Expression
intrinsic
oName : string;

end;

node type Return : Expression end;

node type Block : Expression end;

[0:1];

edge type bBelongsTo : Block [0:1] -> MethodBody

end;

section mmadditions

declares

path ofClass : Expression [0:n] -> Clazz [0:1]

<-expression-—
& [(instance of Block
& —-bBelongsTo—>
& —-mBelongsTo—->)
| (<-cActualParameter-
& =ofClass=>)]
end;

path ofOperation : Expression [0:n] —-> Operation

<-expression- : [0:1]
& [(instance of Block

& —bBelongsTo—>

& <-binding-)

[0:11;

[0:n]

[0:17;

[O:n];

| (<-cActualParameter-
& =ofOperation=>)]
nd;

0]

path containsSubexp : Expression [0:1] -> Expression [0:n] =
(—expression->
or (instance of Call
& —cActualParameter—->)) =«
nd;

]

path containsExp : Clazz [1:1] -> Expression [0:n] =
<-mBelongsTo-—

& <-bBelongsTo-—

& =containsSubexp=>

nd

0]

~.

path explicitThisRef : MethodBody [0:1] -> Expression [0:n]
<-bBelongsTo—
& =containsSubexp=>
& ((instance of Update
& valid (self.uThis))
or (instance of Access
& valid (self.aThis))
r (instance of Call

& valid (self.cThis)))

path implicitThisRef : MethodBody [0:1] —-> Expression [0:n]

<-bBelongsTo-
& =containsSubexp=>

expression
‘1l : MethodBody ‘=> ‘2 : Expression M: Expressioﬂ
mBelongsTo \b ﬁ R

(instance of Access
or instance of Call)

'3 : Clazz (instance of Access
& with -aLinkVariable->
& wvalid (self.-alinkVariable->.-vBelongsToClass—>
in ‘3. (-extends-> *)))
or (instance of Update
& with -uLinkVariable->
& wvalid (self.-uLinkVariable->.-vBelongsToClass—>
in “3.(-extends-> *)))
or (instance of Call)

end;

path exprParent : Expression [0:n]
<-expression-—
& (instance of Call

r instance of Access)

end;

end;

section utility
declares

node class ENUM
meta
ordinal : integer;
end;

—> Expression

node class Visibility is a ENUM end;

function ‘<=’ : (left, right : type in Visibility)

boolean =
left.ordinal <= right.ordinal
end;

node type Public : Visibility
redef meta
ordinal := 1 ;

end;

node type Protected : Visibility
redef meta
ordinal := 2 ;

end;

node type Default : Visibility
redef meta
ordinal := 3 ;

end;

node type Private : Visibility
redef meta
ordinal := 4 ;

end;

[0:n]

—>

node class Accessor is a ENUM end;

node type Getter : Accessor
redef meta
ordinal := 1 ;

end;

node type Setter : Accessor
redef meta

ordinal := 2 ;
end;
function - accessorName
(v : Variable ; variant : type in Accessor ;
predefName : string [0:1]) -> string =
[not empty (predefName) :: predefName : [1:1]
| [variant = Getter :: "get"
| "set"] & toFirstUpper (v.name)]
end;
function - toFirstUpper : (n : string) —-> string
use first := substr (n, 1, 1)
[first = "a" :: "A"
| first = "b" :: "B"
| first = "c¢" :: "C"
| first = "d" :: "D"
| first = "e" :: "E"
| first = "f" :: "EF"
| first = "g" :: "G"
| first = "h" :: "H"
| first = "i" :: "I"
| first = "3" :: "g"
| first = "k" :: "K"
| first = "1" :: "L"
| first = "m" :: "M"
| first = "n" :: "N"
| first = "o" :: "O"
| first = "p" :: "P"
| first = "g" :: "Q"
| first = "r" :: "R"
| first = "g" :: "S"
| first = "t" :: "T"
| first = "u" :: "U"
| first = "v" :: "VU"

| W" ["W"
I X" . "X"
| first = "y" :: "Y"
I Z" . o "Z"
|

first] & substr (n, 2, length (n))

function - min : (i : integer [0:n]) -> integer =
min2 (0, all i)
end;

function - min2 : (i, Jj : integer) -> integer =
[1> 73 :: 7
[1]

end;

function - max : (1 : integer [0:n]) -> integer =
max2 (0, all 1)
end;

function - max2 : (i, J : integer) -> integer =
[1 < J 2 7
i]

|
end

4

end;

section markers
declares

node class Marker
intrinsic
description : string;
methods
transformation select;
end;

edge type marker_of : Marker [0:1] -> PGElement [1:11];

transformation + mrk_ClearChooses =

section refactorings
declares
section s_EncapsulateField
declares
transformation EncapsulateField
(var : Variable ; getterName : string [0:1] ;

setterName : string [0:1] ; useAccessorsAlways : boolean ;
accessorVisibility : type in Visibility)

& not empty (var.-vBelongsToClass—>)
&
use

go : Operation [0:1]

elem
(var.-vBelongsToClass—>.<-mBelongsTo-.<-binding—-.valid
(self.name = accessorName (var, Getter, getterName)))

(#search for method of adequate name x)

so : Operation [0:1]

elem

(var.-vBelongsToClass—>.<-mBelongsTo-.<-binding-.valid
(self.name = accessorName (var, Setter, setterName)))
(#search for method of adequate name x)

newVis : type in Visibility

:= elem (ef_NewVisibility (accessorVisibility, var))

0
-
[

or all op := elem (go or so)
p.oIsStatic = var.vIsStatic)
d not (op.isAbstract)
and (op.visibility.ordinal <= newVis.ordinal)

(#Check preconditions on existing operations x)
&

choose
when empty (go)
then
ef_DeclareGetter
(var, accessorName (var, Getter, getterName), newVis,
out go)
else
skip
end
(#Declare getter unless present x)
&
choose
when empty (so)
then
ef_DeclareSetter
(var, accessorName (var, Setter, setterName), newVis,
out so)
else
skip
end
(#Declare setter unless present x)
& ef_ReplaceUpdate (var, so : [1l:1], useAccessorsAlways)
& ef_ReplaceAccess (var, go : [1l:1], useAccessorsAlways)
& var.visibility := Private (xhide variable x)
end
end;

transformation - ef_ReplaceUpdate
(var : Variable ; setter : Operation ; useAcc : boolean)

* =

‘2 = var ‘3 : Expression

inkVariable

vBelongsToClass expression

Opération

‘6 : Clazz ‘1l : Update

valid (useAcc or not (self.=ofClass=> <=> ‘6))

i \
I I
I I
I I
I I
I I
I I
I I
| |
! cLin .
! vBelongsToClass cActualParameter

I I
I I
I I
|)
I I
! 6’ = 6 1’ : Call !
I I
I I
I I
| I

embedding

redirect <-expression—-, <-cActualParameter- from ‘1 to 1’;
transfer 1’ .order := ‘l.order;
end;

transformation - ef_ReplaceAccess
(var : Variable ; getter : Operation ; useAcc : boolean)

alinkVariable

ofOperation

‘1 Access

valid

(useAcc or not (self.=ofClass=> <=>

‘2.-vBelongsToC

.

expyession

embedding
redirect <-expression—-, <-cActualParameter- from

transfer 1’ .order := ‘l.order;
end;

transformation - ef_DeclareGetter
(var : Variable ; gname : string ;
newVis : type in Visibility ; out op : Operation)

‘3 : Classifier ‘

vType vBelongsToClass

vType

vBelongsToClass

mBelongsTo

‘3’ Operation ‘

binding

‘4’ : MethodBody ‘

bBelon o

folding ‘2, '3
transfer 3’ .name := gname;
37 .0IsStatic := ‘l.vIsStatic;

~.

6’ .aThis := true;
37 .visibility := newVis;
return op := 3';

end;

transformation — ef DeclareSetter
(var : Variable ; sname : string ;
newVis : type in Visibility ; out op : Operation) =

‘ ‘3 : Classifier

vBelongsToClass

pType
@ %{ 7' : Parameter

mBelongsTo

alLinkParameter parameter

E

: Operation

17 = ‘1 : Access ‘
bindi
uLinkVariable
‘8’ : Update ‘ ‘4’ : MethodBody

expression

folding ‘2, ‘3 ;
transfer 3’ .name := sname;
37 .0IsStatic := ‘l.vIsStatic;
37 .visibility := newVis;
9’ .aThis := true;
return op := 3’;
end;

function - ef_ NewVisibility
(selVis : type in Visibility ; wvar : Variable)
tyvpe in Visibility [0:1] =
[var.visibility = Public :: Public
| var.visibility = Private :: selVis
| (var.visibility in (Protected or Default))
and (selVis in (Public or var.visibility)) :
selVis]
end;

end;

section s_MoveMethod

declares

transformation MoveMethod
(body : MethodBody ; trg : Clazz ; use_delegation : boolean)

not (body.<-binding-.oIsStatic)
& not mm_conflictingMoval (body, trg)
(*will not override method =)
& not mm_hasSuperCall (body)
(xno call to super constructor x)
& not (body.-mBelongsTo—> <=> trqg)
(xdo not move to own class x)
& not (body.<-binding-.name = body.-mBelongsTo->.name)
(#not a constructor x)

& empty (instance of Marker)

(*no selection open x)
&

for all candidate : PGElement

:= elem (body.=mm_incrementCandidates (trg)=>)

do
mm_createSelection (body, trg, use_delegation, candidate)
end
&
use choices : Marker [0:n] := (instance of Marker)
do
choose

when empty (choices)

then

fail

(*No choice induces transaction failure x)
else

when (card (choices) = 1)

then

use c Marker [1:1] elem (choices)

c.select (xUnique choice is selected automatically x)
end
else

ski
Requires User interaction to select choice. «)

:

Q. *

(
n

D

]
Q.

n

(]
o]
Q.

transformation mm_createSelection
(body : MethodBody ; trg : Clazz ; use_delegation : boolean

|
I
|
:
. ‘1 = along
|
|
I
|
|
|
|

marker_of

; i
| |
|

| 17 =11 <E‘444444447‘2’ : MoveMethodMarker ‘
|
| |
| method_makggt_mrk |
| |
| i
: ‘ = ‘ ‘ 3= ‘ :
| |
| |
i |
| |

transfer 2’ .useDelegation_mrk := use_delegation;
end;

node type MoveMethodMarker : Marker

intrinsic
method_mrk : MethodBody;
useDelegation_mrk : boolean;

target_mrk : Clazz;
methods redef
redef transformation select =

use src : Clazz := self.method_mrk.-mBelongsTo->;
op : Operation := self.method _mrk.<-binding-;
along := self.marker_of

do

choose

when self.useDelegation_mrk
or not mm_isLocalDecl (self.method_mrk)
then

use deleg_op : Operation;
call : Call
do
mm_addDelegate_base
(self.method_mrk, src, self.marker_ of, out deleg_op,
out call)
& choose

mm_addDelegate_return (deleg_op)
else

skip
end

& mm_addDelegate_parameters
(op, deleg_op, call, self.marker_of)
end
else
skip
end

(*When using delegates, add them immediately to the source class. x)

&
choose

when

exist e := self.method_mrk. ((=explicitThisRef=>

& —expression—->)
or =implicitThisRef=>)
not (e.(instance of Access
& —alLinkVariable->) <=> along)
and not (e.(instance of Update
& —uLinkVariable->) <=> along)

end

(*This access or update, except to the variable being moved along =)
or exist ¢ := self.method _mrk.<-binding-.<-cLink-

not empty (c.(=exprParent=> +
& instance of Call))

end

(#Complex call: having a call as receiver x)

then
use thisParam : Parameter
do

mm_rewriteOp_sourceParamDecl (op, src, out thisParam)

& mm_rewriteOp_sourceParamAppl_explicit (thisParam)

& mm_rewriteOp_sourceParamAppl_implicit (thisParam)

& mm_rewriteOp_sourceParam_simplify
(thisParam, self.marker_of)
& mm_rewriteCall_sourceParam_implicitReceiver (thisParam)
& mm_rewriteCall_sourceParam_explRcv (thisParam)
end
else
skip
end
&
choose

when self.useDelegation_mrk

or not mm_isLocalDecl (self.method_mrk)
then

skip
else

choose

when (self.marker _of is instance of Variable)
then

mm_rewriteCall_variable (op, self.marker_of : Variable)
else

when (self.marker_of is instance of Parameter)
then

mm_rewriteCall_alongParam_removeRcv

(op, self.marker_of : Parameter)

& mm_rewriteCall_alongParam_noReceiver
(op, self.marker_of : Parameter)
end
end
(*If NOT using delegates, rewrite calls acoording to move—along
element after treatmet of ’"this’references. x)

& mm_moveBody (self.method _mrk, self.target_mrk)
(*Right, we still have to move a method. x)

& choose

mm_rewriteOp_param (op, self.marker_of)

else

skip

end

(*Remove parameters we moved along - just in case. x)

& mm_fixVisibility (self.method_mrk)
& mrk_ClearChooses
end

end;

end;

transformation - mm_moveBody
(body : MethodBody ; trg : Clazz) =

I
3 1
i \mBelongsTo i
| |
i i
| |
| |
| |
i i

,,,

transformation - mm_addDelegate_base
(body : MethodBody ; src : Clazz ; along : PGElement ;
out op : Operation ; out call : Call) =

src 1 Y4 = along. (instance of Parameter)

mBelongsTo

‘4’ : Operation ‘

inding w
\\\&H;\\ binding

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
)
I
' ‘5’ : MethodBody ‘
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

17 =1
bBelongsTo $
ffffffffffff
I
117 = M4

expression w

alinkParameter

8’ : Access

expression

alinkVariable

embedding redirect <-cLink- from ‘2 to 4’;

transfer 4’ .name := ‘2.name;
4" .0IsFinal := ‘2.o0IsFinal;
4’ .visibility := ‘2.visibility;
2" .visibility := Public;
return op := 47’;
call := 9/;
end;

(xReplaces the method to be moved by a delegation method,
though not considering parameters. Furthermore, any call to the
moving method is redirected to the newly created delegate method.

%)

transformation - mm_addDelegate_return
(deleg_op : Operation) =

oType
‘ ‘1l = deleg_op %44444444}{ ‘2 : Classifier

binding N

‘3 : MethodBody ‘

‘4 : Block
expression N

I
I
I
I
I
I
I
I
I
I
I
I
|
bBelongsTo N |
I
I
I
I
I
I
I
|
‘5 : Access :
I

I

I

I

D
[oN

na;

(xIf the method to be moved has a return value, then
a return statement is required. x)

transformation - mm_addDelegate_parameters
(impl_op, deleg_op : Operation ; call : Call ;
along : PGElement) * =

‘ ‘1l = deleg_op ‘ ‘3 = impl_op

parameter
‘2 = call

‘ ‘4 : Parameter ‘

I
I I
‘ !
! ‘
I 1
I I
! ‘
‘ !
1 I
I I
‘ !
! ‘
| |
! pTyp%
1 I
I I
‘ !
] I
I 1
I I
! |
‘ !
1 I
I I
| !
1 I
I 1
I I
! ‘

‘ ‘5 : Classifier ‘

parameter

cActualParameter

alinkParameter

Access

transfer 6’ .order := ‘4.order;
7" .order := ‘4.order;
end;
(*For each parameter of the moving method, with exception of the
parameter the method is being moved along, an access and
actual parameter is added to the delegation method.
*)

uery — mm_isLocalDecl(body : MethodBody) =

[j}:: Interfacé::]

oBelongsTo ¢

‘ ‘3 : Operation ‘

binding binding

FTE\: MethodBod§//W “1 = body ‘

end;

(xAn operation is called ’locally declared’iff

it has a unique binding, and is not declared in some
interface.

*)

transformation — mm_rewriteCall_variable
(op : Operation ; wvar : Variable) * =

vBelongsToClass

embedding
redirect <-expression—-, <-cActualParameter- from ‘2 to 1’;

transfer 1’ .order := ‘2.order;
2’ .order := 1;
end;

(*Rewrites calls to the moved method by redirecting calls
through the selected variable. If the respective call does
not belong to the class of var, then the var’s visibility
is changed to Public, otherwise it is kept.

*)

transformation - mm_rewriteCall_alongParam noReceiver
(op : Operation ; par : Parameter) + =

,,,

parameter

‘2 = par

cActualParameter

} ‘4 : Expression ‘

i
I
|
|
I
|
I
|
|
I
|
|
|

{ —expression—> }<> !
|
I
|
|
I
|
|
|
|
I
|
|

‘6 : Expression ‘

exprParent

‘5 : Expression

6" = '6
folding ‘4, ‘6 ;
condition ‘2.order = ‘4.order;
embedding
redirect <-expression-, <-cActualParameter- from '3 to 4’;
transfer 4’ .order := ‘3.order;
end;

(*Rewrites accesses to the former method container and
subsequent calls to the moved method by invoking the call
on the actual parameter of the respective formal parameter
where the method is being moved along.

This variant treats cases where the call’s container is
simply retained (e.g. this-calls or remainders of thisParam
productions) .

*)

(*Known Bugs: Expects ’'6 to be unique, which isnt’t the case e.g.

for binary operators - would require a proper AST structure.
*)
transformation - mm_rewriteCall_alongParam_removeRcv

(op : Operation ; along : Parameter) * =

parameter

‘2 = along

{ —expression-> }

cActualParameter
‘ ‘4 : Expression F::::::::::{;% ‘8 : Expression

(—expression->) +

folding ‘4, '8 ;

condition ‘2.order = ‘4.order;
embedding
redirect <-expression—-, <-cActualParameter- from ‘5 to 4';
transfer 4’ .order := ‘5.order;
end;

(*rRewrites accesses to the former method container

and subsequent calls to the moved method by invoking the

call on the actual parameter of the respective formal parameter

where the method is being moved along.

This variant treats the case where the method is invoked from an
expression of accesses, which are DELETED here (’5, ’'6). Note that any
calls on the expression chain must be preserved, which implies

using them as ’'this’parameter value.

*)

transformation — mm_rewriteCall_sourceParam implicitReceiver
(thisParam : Parameter) x =

arametern
“1 = thisParam ?é%““*

‘ ‘4 : Expression ‘

‘2 : Operation ‘

(<-expression-
& mnot (instance of Access
or instance of Call))
or <-cActualParameter-—

transfer 5’ .order := ‘l.order;
5’ .aThis := true;
end;

(*Rewrites calls to the moved method in a ’"this’context, i.e.
with no explicit receiver reference. In this case, an explicit
"this’access is inserted.

*)

transformation - mm_rewriteCall_sourceParam_explRcv
(thisParam : Parameter) * =

‘2 : Operation

cLink

‘ ‘4 : Expression

expression

‘ ‘6 : Expression

|
|
|
|
i
|
|
|
|
|
|
|
|
| { =exprParent=> }
|
|
|
|
|
|
|
i
|
|
|
|
|

folding ‘4, ‘6 ;
condition not ‘3.cThis;

embedding
redirect <-expression—-, <-cActualParameter- from ‘4 to 3’;
transfer 3’ .order := ‘4.order;
4’ .order := ‘l.order;
end;

(xRewrites calls to the moved method, where the invocation receiver
is determined by an expression. It does so by searching the first
call / access in a sequence of such, and uses this as the actual
parameter. The previous container of this call / access is used

as the container of the rewritten method call.

*)

transformation - mm_rewriteOp_param
(op : Operation ; par : PGElement) =

alinkParameter

‘5 = par.(instance of Parameter)

I
|
|
I
|
|
i
|
I
i
. parameter
|
|
i
|
I
i
|
I
|
|
i

transfer 3’ .aThis := true;

end;

(xRewrites accesses to the formal parameter this method was moved along
to 'this’references, and removes the old parameter.

*)

transformation - mm_rewriteOp_sourceParamDecl
(op : Operation ; src : Clazz ; out thisParam : Parameter)

‘2 : MethodBody ‘

pType
16 = Y6 ! ‘7’ : Parameter ‘4445>

transfer 7’ .order := min (‘6.order) - 1;
return thisParam := 7';
end;

(xIf the method being moved has ’'this’references in its implementation,
then a parameter for the source class is added.
*)

transformation — mm_rewriteOp_sourceParamAppl_explicit
(thisParam : Parameter) * =

parameter =explicit&rpiRef£¥

‘ ‘1l = thisParam ‘

uLinkParameter

alinkParameter

transfer 4’ .aThis := false;
5’ .uThis := false;
end;

(*Replaces any this references of accesses and updates in
the moved method’s body by a reference to the newly introduced parameter.
*)

transformation - mm_rewriteOp_sourceParamAppl_implicit
(thisParam : Parameter) x =

binding mBelongsTo
‘ ‘2 : Operation %44444445>“3 : MethodBody ‘444444444%5> ‘7 : Clazz

i

i
|

|
I

I
i

i
|

|
I

i
i

|
| :
|
! parameter implicitThisRef
i

i
i

|
I

i
i

|
|

I
I

i
i

i
I

I
i

i
i

|

‘ ‘1l = thisParam ‘ ‘ ‘4 : Expression ‘

L e =
L
. binding = mBelongsTo |
! 37 = '3 7= N7 |

|
|

|
| :
|
| parameter .
|

|
|

|
I

|
|

|
|

I
I

|
|

|
I

I
1 :
L e =

embedding

redirect <-expression-, <-cActualParameter- from ‘4 to 5’;
transfer 5’ .order := ‘4.order;
4’ .order := 1;
end;

transformation - mm_rewriteOp_sourceParam simplify
(thisParam : Parameter ; along : PGElement) * =

<-bBelongsTo—

arameter X
p & =containsSubexp=>

alL.inkParamete
‘ ‘1l = thisParam F£%444444447T‘4 : Access ‘ ‘ ‘5 = along. (instance of Variable)

expression w

alLinkVariable

‘6 : Access

binding
27 = "2 37 = '3
- |
ro.

embedding
redirect <-expression-, <-cActualParameter- from ‘4 to 4';

redirect -expression-> from ‘6 to 4’;
transfer 4’ .order := ‘4.order;
4’ .aThis := true;
end;

transformation - mm_fixVisibility (mb : MethodBody) =*

(instance of Access

i
! I
i I
| |
' I
| & -—alLinkVariable->) !
! or (instance of Update !
1 <-bBelongsTo— & -—ulLinkVariable->) !
, & =containsSubexp=> or (instance of Call I
! & -cLink->) .
| I
| | !
. ‘2 : Expression ‘ >‘ ‘3 : StructuralFeature .
| I
' I
! 1
. I

transfer 3’/ .visibility :=
use vis : type in Visibility [1:1]
:= mm_requiresVisibility (‘2, ‘3) :
[vis.ordinal > ‘3.visibility.ordinal :: vis
| Y3.visibility]
end ;
end;

uery — mm_hasSuperCall (body : MethodBody) =

condition ‘2.cSuper;
end;

path - mm_incrementCandidates(trg : Clazz) :
MethodBody -> PGElement =
‘1 => ‘2 in

(instance of Parameter
& -pType—>)
or (instance of Variable
& —-vType—>)

AN

(<-binding-
& —parameter—>)
or (-mBelongsTo—>

& <-vBelongsToClass-)

‘1 : MethodBody

I
! |
! I
! I
! I
! I
! |
! I
! |
! |
! I
! |
! |
! |
! |
! I
! |
! |
1 !
| ‘ ‘2 : PGElement ‘ |
! |
! I
! |
! |
! I
! |
! |
! I
! I
! I
! |
! |
! I
! |
! |
! I
! I
! I
! |
! |
! |

end;

uery — mm_conflictingMoval(mb : MethodBody ; trg : Clazz)

‘3 : Operation

‘6 : Operation ‘

binding binding
‘5 : MethodBody ‘ ‘1 = mb
(—extends—->) *

& instance of Clazz
& <-mBelongsTo-—

condition ‘3.name = ‘6.name;
end;

function - mm_requiresVisibility
(exp : Expression ; f : StructuralFeature) ->
type in Visibility =
use fromCls : Classifier [0:1] := exp.=ofClass=>
use toCls : Classifier [0:n]
:= [£.(instance of Variable
& —-vBelongsToClass—>)
| £.(instance of Operation
& [—-oBelongsTo—>
| -binding->
& —mBelongsTo-> 1) 1
fromCls = toCls :: Private
fromCls.-cBelongsTo-> <=> toCls.-cBelongsTo-> :: Default
toCls implies fromCls. (—-extends-> +) :: Protected
Public]

section s_pullupMethod

declares

transformation pullUpMethod
(trg : Clazz ; body : MethodBody ; use_supertype
; make_abstract : boolean ; keep : Clazz [0:n])

(trg in body.-mBelongsTo->. (—extends-> +))
(xHas superclass, trg is in this hierarchy x)
&

not

(exist trg_op := trg.<-mBelongsTo-.<-binding-—
pm_sameSignature (body.<-binding-, trg_op)
end)

boolean

(*Superclass does not have method with same signature x)

& for all e := body.(=implicitThisRef=>
or (=explicitThisRef=>
& —expression->))
e. (((instance of Access
& —alLinkVariable->)
or (instance of Update

& —ulLinkVariable->))
& —-vBelongsToClass—>)
or (instance of Call
& —cLink->
& [—-oBelongsTo—>
| -binding->
& —-mBelongsTo->]))

in trg.(—extends—-> x)

end

(xaccessed members belong to (a superclass of)trg x*)
&

not

body.<-binding-.name = body.-mBelongsTo->.name)

(
(#method name does not equal class name (constructor!))
&

for all sc := trg.(<-extends- +). (instance of Clazz)

for all sc_op := sc.<-mBelongsTo-.<-binding-
pm_sameSignature (body.<-binding-, sc_op)

implies (body.<-binding-.-oType-> <=> sc_op.-oType—>)

end

end

(#same method signature in sub-types of the target
class have the same return type x)

& use op := body.<-binding-—;

src := body.-mBelongsTo—>

do

choose
when (make_abstract)
then

use absOp : Operation
do

pm_addAbstractDecl (op, trg, out absOp)
& pm_addAbstractDecl_param (op, absOp)
& pm_addStubEmpty (op, trg)
& pm_addStubReturn (op, trg)

end
else
pm_moveMethod (body, trg)
end
& pm_removeUnguarded (op, keep or trg)
& choose
when (use_supertype)
then
use cands : PGElement [0:n]
do
pm_superTypeCandidates (src, trg, out cands)
& pm_useSuperType (cands, src, trg)
end
else
skip
end
end
end;
transformation - pm_moveMethod

(body : MethodBody ; trg : Clazz) =

‘2 = trg

\ngelongsTo

‘3 : Clazz

2!
mBelongsT

transfer

47 .visibility :=
[‘4.visibility.ordinal > Protected.ordinal :: Protected
| ‘4.visibility] ;

end;

transformation - pm_removeUnguarded
(op : Operation ; keep : Clazz [0:n]) * =

Bindin
‘1 = op ?4445>F‘2 : MethodBody ‘ <-bBelongsTo-

=containsSubexp=>

mBelongsTo

not valid (self in keep)

transformation - pm_addStubEmpty
(op : Operation ; trg : Clazz) x =

Type

mBelongsTo

(TZ\: MethodBod§//W444444444{;> ‘3 : Clazz

i
I

I

I

I

I

I

I

I

!

I

! binding - ex s
. [25:: Classifier
I

I

I

I

I

I

I

I

I

I

I

binding

extends

bBelongsTo $

5’ : Block

i
I
I
I
I
I
I
I
I
I
!
I
! ‘ 4’ : MethodBody
I
I
I
I
I
I
I
I
I
I
|

37 =3

condition not '3
end;

.isAbstract;

transformation - pm_addStubReturn

(op : Operation

oType

; trg : Clazz) * =

mBelongsTo

L;£4: MethodBodz\\J44444444445> ‘3 : Clazz

|
|
|
|
|
|
|
!
|
. binding ‘ ‘5 : Classifier ‘ extends
|
|
|
|
|
|
|
|
|
|
|

binding

mBelongsTo
4’ : MethodBody ‘4444—4——4———4;>

expression V

condition not ‘3.isAbstract;
transfer 9’ .val := "null";

extends

alinkLiteral
— = 9’ : Literal

end;
transformation - pm_addAbstractDecl
(op : Operation ; trg : Clazz ; out absOp :

Operation)

valid (self.name =

<-mBelongsTo-
& <-binding-

trg

‘1l.name) =>B Operatiorﬂ

nding

< 37 Operation

44;{ 5

MethodBody ‘

I
‘
I
|
‘
I
|
|
I
|
1 -----t-----oType
I
|
|
I
‘
|
|
‘
I
|
|
I
|

bBelongsTo

embedding redirect <-cLink- from ‘1 to 3’;

transfer 3’ .name := ‘l.name;

3’ .isAbstract := true;

3’ .0IsFinal := ‘l.o0IsFinal;

37 .0IsStatic := ‘l.oIsStatic;
37 .visibility := ‘l.visibility;

2" .isAbstract := true;
return absOp := 37;
end;
transformation - pm_addAbstractDecl_param

(ori, absOp : Operation) x =

parameter

I 1
1 I
| |
I I
| i
| |
| pType N |
1 I
| ‘ ‘4 : Classifier ‘ |
| i
' ‘3 = absOp !
| i
I 1
1 I
| |
[TTTTTTTTTTTTTTTTTomooomoommoooommooooosooooes !

I

i parameter 1

| 17 =11 !

! I

! 1

! |

! 1

! 1

! I

1 !

i parameter pType / i

! 1

| ‘ 5’ : Parameter ‘ !

! 1

! |

! I

! 1

transfer 5’ .order := ‘2.order;
end;

uery - pm_superTypeCandidates(src, trg : Clazz ; out e : PGElement [0:n])

return e := ‘3;
end;

transformation - pm_useSuperType
(e : PGElement [0:n] ; src, trg : Clazz) =

| e - - vType

|
| pType \

5 = src

end;
function - pm_sameSignature : (ol, 02 : Operation) ->
boolean =

(ol.name = o2.name)

and for all trg_op_param := o02.-parameter-> ::
exist own_param := ol.-parameter—>
(trg_op_param.order = own_param.order)
and (trg_op_param.-pType-> = own_param.-pType—->)
end
end
end;

restriction - pm_hasUnaccessibleFrom(c : Clazz) : PGElement

‘4 in

expression
‘1l : Expression %44444444444;{ ‘2 : Expression

(instance of Variable

& <-alLinkVariable-) (instance of Access
or (instance of Parameter & —alinkVariable->)
& <-alLinkParameter-) or (instance of Call

& <-cLink-)

‘4 : PGElement ‘3 : StructuralFeature
not valid (pm_availableIn (self, c))

|
!
i
i
|
|
!
|
i
!
i
i
:
i
or (instance of Operation & —cLink—>)
!
i
i
|
|
i
i
i
!
i
i
|
|
i

function - pm_availableIn : (e : PGElement ; c¢ : Clazz) ->
boolean =
[e is instance of Variable ::
c in (e : Variable.-vBelongsToClass—->.(<-extends— *))
| e is instance of Operation ::
c in (e : Operation.-binding->.-mBelongsTo->.(<-extends—- *))

[...]
(# Constructive methods omitted =)

end.

