
Using PROGRES for graph-based program
refactoring

Erhard Weinell

RWTH Aachen University of Technology
Department of Computer Science 3 (Software Engineering)

Ahornstraße 55, D-52074 Aachen, Germany
Weinell@cs.rwth-aachen.de

http://se.rwth-aachen.de

1 Introduction

Applying the graph rewriting language PROGRES [1] to model program refac-
toring is a a natural choice, as it already been successfully applied for re-
engineering. In [2], complex legacy telecommunication systems were analyzed
and re-designed using the PROGRES toolchain. Similarly, we combine PRO-
GRES’ high-level language features such as visual graph transformation rules,
functional expressions, and means for rule composition to yield an executable
prototypical refactoring tool. The source code generated from this specification
is combined with a framework for visual prototyping, which allows direct in-
spection of the basic graph structure. Furthermore, the prototype extends the
framework’s functionality to provide GXL import/export functionality according
to the predefined schema.

This paper is structured as follows: The created specification is introduced
in Section 2, followed by a short presentation of the generated refactoring tool
in Section 3. Section 4 discusses experiences made during solving the tool con-
test task in response to the case studies’ authors. In the appendix, Section A
provides informations how to retrieve and evaluate the refactoring tool and the
PROGRES specification. For the reader’s convenience, Section B holds the entire
PROGRES specification relevant to the case study solution.

2 Specification

The developed PROGRES specification is roughly composed of four parts, i.e.
sections of the specification: First, the program graph meta-model is reproduced
in form of a PROGRES graph schema. Second, additional helper functionality is
added, e.g. commonly used path expressions. Third, refactoring rules are mod-
eled using several transformation rules, with an “outer rule” to control their
respective execution. Fourth, rules to allow users to build up or modify program
graphs are provided for testing purposes. In the following, observations that were
made during the development of the respective parts are discussed.



Meta-model: The meta-model of the given case study could be mapped to PRO-
GRES in an almost direct way. One disadvantaged we encountered is the fact
that PROGRES requires edge type identifiers to be unique. Therefore, numerous
associations of the meta-model were renamed, e.g. belongsTo between Variable and
Class to vBelongsToClass. However, it could be argued whether massive overload-
ing of identifiers leads to an easily understandable meta-model. Furthermore,
PROGRES does not support ordered edge types in general, so we simulated
this feature simply by adding an integer attribute to the association’s respective
target class.

Helper functionality mainly comprises path expressions which are re-used in the
refactoring rules. Among others, paths expressions are provided to determine the
Class where an Expression is defined in, or to determine a MethodBody’s references
to this.

Encapsulate Field Refactoring. This refactoring is implemented by a total of
five rules, i.e. to declare getters and setters, replace accesses and updates of
the encapsulated fields, and a single controller rule. The latter also checks for
previously existing getters and setters, creating new ones if none can be found.
In the generated prototype, the controller rule is made available to the user

Move Method Refactoring. To implement this refactoring, seventeen transforma-
tion rules were required. This refactoring is inherently complex as it requires the
selection of an appropriate increment to move the selected method body along,
i.e. either a Variable or a Parameter. As this selection is not part of the given
interface, and non-deterministic choice can hardly be considered a good solu-
tion, transformation processing has to allow user interaction. Basically, graph
transformation rules modeled in PROGRES can access native code to add such
functionality, Java in this case. However, requiring the developer to add UI
code manually, and to embed this code into the transformation rules can hardly
be considered as model-based development. We therefore followed a different
approach by adding special marker nodes to the host graph in order to sug-
gest possible continuations of the refactoring. From the seventeen rules, two are
therefore required to find appropriate points of application and to add corre-
sponding marker elements. Among the rest, there is again one controller rule,
three rules to construct delegate methods, five to handle this references in the
moved methods (including parameter addition and invocation-rewrite), two for
call-rewriting in the non-delegation case, and some minor clean-up rules.

Pull-up Method Refactoring. This comparatively simple refactoring case is com-
posed of eight rules. Again, a controller rule is added for checking precondi-
tions and invoking sub-rules. The latter are responsible for moving the pulled-up
method body, removing other bodies of the same operation, adding stub meth-
ods and abstract declarations of the pulled-up method. This refactoring case
does not require any user interaction.



Constructive rules allow user-interactive manipulation of program graphs. Whilst
PROGRES ensures schema-conformant results of all rule applications, users can
nevertheless violate constraints which are not encoded in the schema, e.g. dis-
jointness of a Variable’s belongsTo edges.

Example rule. Figure 1 depicts a moderately complex transformation rule, whilst
making use of some more “advanced” PROGRES functionality. Its intention is
to rewrite calls to a method being moved along one of its parameters, given that
the call has no explicitly stated receiver. A previously invoked transformation
rule will already have rewritten the call’s receiver for being passed as actual
parameter, if required by the moved method’s body.

The transformation rule’s header defines two formal parameters, expecting
the method declaration, and the parameter being moved along. The rule is ap-
plied for all matches in pseudo-parallel mode, as indicated by the star.

As defined by the rule’s left-hand side (LHS), values of the formal param-
eters are bound to nodes ‘1 and ‘2, respectively. Furthermore, a Call (‘3)
to the moved method is retrieved from the host graph, as well as the actual
parameter (‘4) with the same ordering index as the passed parameter, stated
by the attribute condition below. The chain of expression edges emerging
from the actual parameter is traversed as long as possible, until the end of this
chain is reached in node ‘6. Considering the case where an actual parameter
comprises only a single node, the folding clause allows non-isomorphic binding
of rule nodes. Finally, the LHS ensures that no “expression parent” exists for
the given call by referring to the exprParent path expression and a negated
target node ‘5. This prohibits the existence of a receiver for this call (e.g. calls
and accesses), though it does not deny the existence of other expression elements
such as blocks.

If any occurrence of the rule’s LHS is found, the matched sub-graph is trans-
formed according to the right-hand side (RHS), and the textual transformation
descriptions. According to the RHS, the cActualParameter edge between ‘3
and ‘4 is removed, whereas an expression edge is added between 6’ and 3’.
Therefore, the call is now the final element of the expression chain belonging
to the previous actual parameter. Furthermore, the beginning of this expression
chain is embedded into the unknown parts of the host graph by redirecting in-
coming edges from the call node 3’. Finally, the order attribute is transfered
from 3’ to 4’, to keep ordered relations to the call node intact.

3 Prototype

Figure 2 show the prototypical editing tool. The main part of the view window
is taken up by the graph viewer h1 . On the left, attribute values of the cur-
rently selected node is depicted h2 . Transformation rules can either be invoked
by selection from the menubar, or directly from the toolbar h3 . In case of the
EncapsulateField rule, the UI framework queries parameters of the transformation
rule, either using the toolbar as well, or through a detached window h4 . Here, the



transformation - mm_rewriteCall_alongParam_noReceiver
( op : Operation ; par : Parameter) * =

‘5 : Expression

‘2 = par

cLink

parameter
‘1 = op

exprParent

‘6 : Expression

cActualParameter
‘3 : Call

{ −expression−> }

‘4 : Expression

::=

2’ = ‘2
parameter

1’ = ‘1

4’ = ‘4

expression

6’ = ‘6

cLink

3’ = ‘3

folding ‘4, ‘6 ;
condition ‘2.order = ‘4.order;
embedding

redirect <-expression-, <-cActualParameter- from ‘3 to 4’;
transfer 4’.order := ‘3.order;

end;

Fig. 1. PROGRES transformation rule for rewriting method calls

user can input parameter values in a convenient way, e.g. using checkboxes for
boolean values. To pass nodes as parameter values, the user simply selects nodes
from the graph view. If a transformation rule requires multiple node-valued pa-
rameters, selected nodes are assigned in the order they were selected to those
parameters they match. In case of ambiguities, the user may also enter node
identifiers directly. For better navigation, h5 shows an overview window on the
entire host graph.

Most of the prototype’s functionality is generated from the underlying PRO-
GRES specification, i.e. all transformation rules for refactoring. The behavior



1

2

3

5

4

Fig. 2. Prototypical refactoring tool

of transformation selection, as discussed above, is also configured automatically
from the information provided by the PROGRES specification. Some additional
effort was made to provide a nicer display of graph elements, e.g. colors and icons
as shown in the graph view, whilst hiding elements of lesser interest to the user.
Furthermore, transformation rules are grouped into menus. This fine-tuning of
the user interface can be achieved through configuration only. The only program-
ming effort required is for importing and exporting GXL documents according to
the provided schema, as the PROGRES-internal graph schema slightly diverges
due to naming requirements.

4 Discussion

Language features. PROGRES, as a language for programmed graph rewriting,
showed to be very much feasible to model the case studie’s task. Whilst basic
graph transformation rules allow visual and declarative modeling, these rules
can be combined in an imperative manner including parameterization. This way,
PROGRES allows e.g. to conditionally branch transformation execution, iterate
over all matches, and the like. All transformations are conducted in a transaction-
like atomic way - either successfully executing all transformations in a sequence,
or none. For the refactoring tool contest, we can conclude that imperative control
structures allow re-use and composition of elementary transformation rules.

Besides simple graph patterns comprising pattern nodes and edges, PRO-
GRES provides a set of valuable additional language constructs. Firstly, path
expressions allow convenient reasoning on connectivity structures, including se-
quences, alternatives, and conjunctions. Path expressions also allow to reason on
the reached nodes regarding their type and attribute values. Paths of unknown
length can be expressed by transitive closure of edge traversals and loop expres-
sions, where the latter only retrieve the set of nodes from which no continuation
exists. As shown in Figure 1, path expressions can be directly added to a rule’s
LHS (between ‘4 and ‘6), or refer to externally defined expressions by an iden-



tifier (between ‘3 and ‘5). The latter choice is a valuable element for re-using
functionality. Externally defined path expressions, which may also be attributed
by scalar and node values, can be defined in a textual or visual way.

Another valuable language construct is embedding of nodes into an unknown
context. This not only allows to conveniently redirect edges from one node to
another, but also to copy edges, revert their direction, or to remove them. Al-
though this behavior can be achieved by set-valued nodes as well, one set-valued
node would be required for each edge type considered in an embedding directive,
making an LHS considerably hard to read.

As for genericity, PROGRES provides a two-level type system for nodes,
which allows to reason on types of nodes, and to specify transformation rules
in a generic way. However, this is not provided for edges, as inheritance on
edges comes with some nasty semantical effects [3]. The two level type system,
nevertheless, has already been applied to build syntax-directed editors in the
IPSEN project [4]. A set of language-independent editing rules, e.g. to add an
increment to the abstract syntax tree (AST), is complemented by language-
specific node types, which define the allowed AST children by means of meta-
attributes. Such an approach could be followed to build generic refactoring tools
as well, although this would require a sufficiently powerful generic meta model.

Development environment. PROGRES provides a sophisticated, though by mod-
ern standards difficult getting used to, development environment. Developers are
aided by numerous checks considering static semantics, e.g. whether a edges in a
graph pattern and their adjacent nodes match the corresponding type definition.
More sophisticated checks support proper use of non-determinism, e.g. whether
an expressions always delivers exactly, at most, or at least one result.

However, PROGRES does not perform checks considering rule overlapping
or the like. As control flow is specified explicitly be the developer, there would
be very few occasions where such an analysis could reveal programming er-
rors, though. That said, PROGRES cannot in any way guarantee correctness
of a specification w.r.t. its intended semantics, such as behavior preservation of
transformation rules. It is up to the developer to specify refactoring rules to
check decidable preconditions, and undecidable ones to an appropriately simpli-
fied extend.

Generated refactoring tool. The current status of the generated tool is clearly
prototypical, as almost no customization of this tool have been carried out so far.
Therefore, refactoring rules can be accessed by the standard UI including menus
and toolbars. One could also move refactoring rules directly to the context menu
of a node, simply by redefining existing transformation rules as methods of the
respective node types.

Customized user interaction is probably the most pressing requirement for
the current tool, e.g. to interactively query the user’s choice for a specific element.
Currently this is achieved by marker elements which are added to the host graph,
although this surely isn’t the most understandable approach. Furthermore, the
marker approach could be extended to guide users in finding “bad smells”, if



supplied with queries that determine nasty language constructs, e.g. write access
to fields across class borders.

References

1. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and
environment. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Hand-
book on Graph Grammars and Computing by Graph Transformation: Applications,
Languages, and Tools. Vol. 2. 1st edn. World Scientific, Singapore (1999) 487–550

2. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication Sys-
tems. PhD thesis, RWTH Aachen University (2005)

3. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssyste-
men. Dissertation, RWTH Aachen University (1991)

4. Schürr, A.: Specification of logical documents and tools. In Nagl, M., ed.: Building
Tightly Integrated Software Development Environments: The IPSEN Approach.
Vol. 1170 of Lect. Notes in Comp. Sci. Springer-Verlag (1996) 297–323



A Getting & using the prototype

This section gives basic information on how to get and run the prototypical
editor. It is intended as reference for the reviewers, but is not part of the paper
contribution. In case of having trouble with the prototype, please contact the
authors.

A.1 Getting

– Our prototype is available for download at (case sensitive):
http://se.rwth-aachen.de/files/progres/GraBaTs08 Refactoring PROGRES.tgz
The filesize is approximately 14 megabytes.

A.2 Starting the prototype

– The downloaded archive should be extracted somewhere.
– Make sure a Java SE 5 or 6 runtime environment is installed, and the
JAVA HOME environment variable is set.

– The prototype is started using Refactoring.sh (Linux) or Refactoring.bat
(Win32).

– The prototype was tested on recent Windows and Linux versions, we cannot
guarantee its functionality on other platforms.

A.3 Running the example

– The sample code can be loaded via the File menu (Backup / Restore GXL).
Loading 100k of GXL code might take some time, although we are still
optimizing the solution. Alternatively, trivial demo graphs can be created
via the Add Sample Data Menu.

– The generated diagram can be layouted using e.g. Layout - Sugiyama.
– Refactoring rules are applied using the Refactorings toolbar or menu.
– The prototype should be closed via File - Exit.

A.4 Inspecting the specification

– PROGRES can be freely downloaded from our website:
http://se.rwth-aachen.de/research/progres
However, getting it running is non-trivial due to quite out-dated library
dependencies. We recommend the virtual machine image release - have a
look at the Release page.

– After you launched PROGRES, single-left click on the last specification doc-
ument, and type “m” (short for import)

– Enter any name, confirm with TAB
– Select the GraBaTs.backup file from the distribution to import the specifica-

tion
– Right-click to open the appended specification
– Source-code generation isn’t fully possible with the current VM release -

we will fix this soon. Still you may inspect the specification and try the
interpreter



B Full Specification

This section comprises the full PROGRES specification used to create the refac-
toring tool. It is also provided in plain text format in the archive (see above) as
file named GraBaTs.backup.

spec GraBats08_CS1

declares

section metamodel

declares

node class PGElement
intrinsic
original_id : string := "";
derived
chooseOption = not empty ( self.<-marker_of- );
methods
transformation selectMarker
=

use m : Marker := elem ( self.<-marker_of- )
do
m.select
end

end ;
end;

node class Named is a PGElement
intrinsic
name : string;
end;

node class StructuralFeature is a Named
intrinsic
visibility : type in Visibility := Public;
isAbstract := false;
end;

node class Classifier is a StructuralFeature end;

node class Ordered is a PGElement
intrinsic
order : integer := 1;



end;

edge type extends : Classifier [0:n] -> Classifier [0:n];

edge type import : Classifier [0:n] -> Classifier [0:n];

node type Clazz : Classifier
intrinsic
cIsFinal : boolean := false;
end;

node type Interface : Classifier end;

edge type implements : Clazz [0:n] -> Interface [0:n];

node type Package : Named end;

edge type pBelongsTo : Package [0:n] -> Package [0:1];

edge type cBelongsTo : Classifier [0:n] -> Package [1:1];

node type Variable : StructuralFeature
intrinsic
vIsStatic : boolean := false;
vIsFinal : boolean := false;
end;

edge type vType : Variable [0:n] -> Classifier [0:1];

edge type vBelongsToClass : Variable [0:n] -> Clazz [0:1];

edge type vBelongsToBody :
Variable [0:n] -> MethodBody [0:1];

edge type vBelongsToExpr :
Variable [0:n] -> Expression [0:1];

node type MethodBody : PGElement end;

edge type mBelongsTo : MethodBody [0:n] -> Clazz [1:1];

edge type binding : Operation [1:1] -> MethodBody [0:n];

node type Operation : StructuralFeature
intrinsic



oIsStatic : boolean := false;
oIsFinal : boolean := false;
end;

edge type oBelongsTo : Operation [0:n] -> Interface [0:1];

edge type oType : Operation [0:n] -> Classifier [0:1];

edge type parameter : Operation [1:1] -> Parameter [0:n];

node type Parameter : Ordered end;

edge type pType : Parameter [0:n] -> Classifier [1:1];

node type Literal : PGElement
intrinsic
val : string;
end;

edge type lType : Literal [0:n] -> Clazz [1:1];

node class Expression is a Ordered end;

edge type expression : Expression [0:1] -> Expression [0:n];

node type Access : Expression
intrinsic
aThis : boolean := false;
end;

edge type aLinkLiteral : Access [1:1] -> Literal [0:1];

edge type aLinkParameter : Access [0:n] -> Parameter [0:1];

edge type aLinkVariable : Access [0:n] -> Variable [0:1];

edge type aLinkClass : Access [0:n] -> Clazz [0:1];

node type Update : Expression
intrinsic
uThis : boolean := false;
end;

edge type uLinkParameter : Update [0:n] -> Parameter [0:1];



edge type uLinkVariable : Update [0:n] -> Variable [0:1];

node type Call : Expression
intrinsic
cThis : boolean := false;
cSuper : boolean := false;
end;

edge type cActualParameter : Call [0:1] -> Expression [0:n];

edge type cLink : Call [0:n] -> Operation [0:1];

node type Instantiation : Expression end;

node type Operator : Expression
intrinsic
oName : string;
end;

node type Return : Expression end;

node type Block : Expression end;

edge type bBelongsTo : Block [0:1] -> MethodBody [0:1];

end;

section mmadditions

declares

path ofClass : Expression [0:n] -> Clazz [0:1] =
<-expression-

& [ ( instance of Block
& -bBelongsTo->
& -mBelongsTo-> )

| ( <-cActualParameter-
& =ofClass=> ) ]

end;

path ofOperation : Expression [0:n] -> Operation [0:n] =
<-expression- : [0:1]

& [ ( instance of Block
& -bBelongsTo->
& <-binding- )



| ( <-cActualParameter-
& =ofOperation=> ) ]

end;

path containsSubexp : Expression [0:1] -> Expression [0:n] =
( -expression->
or ( instance of Call

& -cActualParameter-> ) ) *
end;

path containsExp : Clazz [1:1] -> Expression [0:n] =
<-mBelongsTo-

& <-bBelongsTo-
& =containsSubexp=>
end;

path explicitThisRef : MethodBody [0:1] -> Expression [0:n]
=
<-bBelongsTo-

& =containsSubexp=>
& ( ( instance of Update

& valid (self.uThis) )
or ( instance of Access

& valid (self.aThis) )
or ( instance of Call

& valid (self.cThis) ) )
end;

path implicitThisRef : MethodBody [0:1] -> Expression [0:n]
=
‘1 => ‘2 in

‘3 : Clazz

‘2 : Expression

   <−bBelongsTo−

&  =containsSubexp=>

mBelongsTo

‘1 : MethodBody

    (    instance of Access

      &  with −aLinkVariable−>

      &  valid (self.−aLinkVariable−>.−vBelongsToClass−>

                in ‘3.( −extends−> * )                  ) )

or  (    instance of Update

      &  with −uLinkVariable−>

      &  valid (self.−uLinkVariable−>.−vBelongsToClass−>

                in ‘3.( −extends−> * )                  ) )

or  ( instance of Call )

expression
‘4 : Expression

(     instance of Access

  or  instance of Call   )



end;

path exprParent : Expression [0:n] -> Expression [0:n] =
<-expression-

& ( instance of Call
or instance of Access )

end;

end;

section utility

declares

node class ENUM
meta
ordinal : integer;
end;

node class Visibility is a ENUM end;

function ‘<=’ : ( left, right : type in Visibility) ->
boolean =
left.ordinal <= right.ordinal
end;

node type Public : Visibility
redef meta
ordinal := 1 ;
end;

node type Protected : Visibility
redef meta
ordinal := 2 ;
end;

node type Default : Visibility
redef meta
ordinal := 3 ;
end;

node type Private : Visibility
redef meta
ordinal := 4 ;
end;



node class Accessor is a ENUM end;

node type Getter : Accessor
redef meta
ordinal := 1 ;
end;

node type Setter : Accessor
redef meta
ordinal := 2 ;
end;

function - accessorName :
( v : Variable ; variant : type in Accessor ;
predefName : string [0:1]) -> string =
[ not empty ( predefName ) :: predefName : [1:1]
| [ variant = Getter :: "get"
| "set" ] & toFirstUpper ( v.name ) ]
end;

function - toFirstUpper : ( n : string) -> string =
use first := substr ( n, 1, 1 ) ::
[ first = "a" :: "A"
| first = "b" :: "B"
| first = "c" :: "C"
| first = "d" :: "D"
| first = "e" :: "E"
| first = "f" :: "F"
| first = "g" :: "G"
| first = "h" :: "H"
| first = "i" :: "I"
| first = "j" :: "J"
| first = "k" :: "K"
| first = "l" :: "L"
| first = "m" :: "M"
| first = "n" :: "N"
| first = "o" :: "O"
| first = "p" :: "P"
| first = "q" :: "Q"
| first = "r" :: "R"
| first = "s" :: "S"
| first = "t" :: "T"
| first = "u" :: "U"
| first = "v" :: "V"



| first = "w" :: "W"
| first = "x" :: "X"
| first = "y" :: "Y"
| first = "z" :: "Z"
| first ] & substr ( n, 2, length ( n ) )
end
end;

function - min : ( i : integer [0:n]) -> integer =
min2 ( 0, all i )
end;

function - min2 : ( i, j : integer) -> integer =
[ i > j :: j
| i ]
end;

function - max : ( i : integer [0:n]) -> integer =
max2 ( 0, all i )
end;

function - max2 : ( i, j : integer) -> integer =
[ i < j :: j
| i ]
end;

end;

section markers

declares

node class Marker
intrinsic
description : string;
methods
transformation select;
end;

edge type marker_of : Marker [0:1] -> PGElement [1:1];

transformation + mrk_ClearChooses =



‘1 : Marker

::=

end;

end;

section refactorings

declares

section s_EncapsulateField

declares

transformation EncapsulateField
( var : Variable ; getterName : string [0:1] ;
setterName : string [0:1] ; useAccessorsAlways : boolean ;
accessorVisibility : type in Visibility)
=

skip
& not empty ( var.-vBelongsToClass-> )
&
use
go : Operation [0:1]
:=
elem
( var.-vBelongsToClass->.<-mBelongsTo-.<-binding-.valid

(self.name = accessorName ( var, Getter, getterName )))
(*search for method of adequate name *) ;

so : Operation [0:1]
:=
elem
( var.-vBelongsToClass->.<-mBelongsTo-.<-binding-.valid
(self.name = accessorName ( var, Setter, setterName )))
(*search for method of adequate name *) ;

newVis : type in Visibility



:= elem ( ef_NewVisibility ( accessorVisibility, var ) )
do
skip
& for all op := elem ( go or so ) ::
(op.oIsStatic = var.vIsStatic)
and not (op.isAbstract)
and (op.visibility.ordinal <= newVis.ordinal)
end
(*Check preconditions on existing operations *)

&
choose
when empty ( go )
then
ef_DeclareGetter
( var, accessorName ( var, Getter, getterName ), newVis,
out go )

else
skip

end
(*Declare getter unless present *)
&
choose
when empty ( so )
then
ef_DeclareSetter
( var, accessorName ( var, Setter, setterName ), newVis,
out so )

else
skip

end
(*Declare setter unless present *)
& ef_ReplaceUpdate ( var, so : [1:1], useAccessorsAlways )
& ef_ReplaceAccess ( var, go : [1:1], useAccessorsAlways )
& var.visibility := Private (*hide variable *)
end

end;

transformation - ef_ReplaceUpdate
( var : Variable ; setter : Operation ; useAcc : boolean)

* =



‘6 : Clazz

‘5 = setter‘3 : Expression

uLinkVariable
expression

ofOperation

‘1 : Update

vBelongsToClass

‘2 = var

valid (useAcc or not (self.=ofClass=> <=> ‘6))

::=

6’ = ‘6

5’ = ‘53’ = ‘3

cActualParameter
cLink

1’ : Call

vBelongsToClass

2’ = ‘2

embedding
redirect <-expression-, <-cActualParameter- from ‘1 to 1’;
transfer 1’.order := ‘1.order;

end;

transformation - ef_ReplaceAccess
( var : Variable ; getter : Operation ; useAcc : boolean)

* =

‘5 = getter‘3 : Expression ‘2 = var

aLinkVariable
expression

valid

  (useAcc or not (self.=ofClass=> <=> ‘2.−vBelongsToClass−>))

ofOperation

‘1 : Access



::=

5’ = ‘53’ = ‘3 2’ = ‘2

expression

cLink

1’ : Call

embedding
redirect <-expression-, <-cActualParameter- from ‘1 to 1’;
transfer 1’.order := ‘1.order;

end;

transformation - ef_DeclareGetter
( var : Variable ; gname : string ;
newVis : type in Visibility ; out op : Operation) =

‘3 : Classifier ‘2 : Clazz

vBelongsToClassvType

‘1 = var

::=



9’ = ‘3

2’ = ‘2

vBelongsToClass

mBelongsTo

4’ : MethodBody

bBelongsTo

aLinkVariable

7’ : Access

expression

5’ : Block

expression

8’ : Return

expression

6’ : Access

vType

1’ = ‘1

oType

binding

3’ : Operation

folding ‘2, ‘3 ;
transfer 3’.name := gname;

3’.oIsStatic := ‘1.vIsStatic;
6’.aThis := true;
3’.visibility := newVis;

return op := 3’;
end;

transformation - ef_DeclareSetter
( var : Variable ; sname : string ;
newVis : type in Visibility ; out op : Operation) =

‘3 : Classifier‘2 : Clazz

vBelongsToClass vType

‘1 = var

::=



10’ = ‘32’ = ‘2

vBelongsToClass

mBelongsTo

4’ : MethodBody

bBelongsTo

uLinkVariable

expression

8’ : Update

parameteraLinkParameter

6’ : Access

expression

5’ : Block

expression

9’ : Access

vType

1’ = ‘1

pType
7’ : Parameter

binding

3’ : Operation

folding ‘2, ‘3 ;
transfer 3’.name := sname;

3’.oIsStatic := ‘1.vIsStatic;
3’.visibility := newVis;
9’.aThis := true;

return op := 3’;
end;

function - ef_NewVisibility :
( selVis : type in Visibility ; var : Variable) ->
type in Visibility [0:1] =
[ var.visibility = Public :: Public
| var.visibility = Private :: selVis
| (var.visibility in (Protected or Default))
and (selVis in (Public or var.visibility)) ::
selVis ]

end;

end;

section s_MoveMethod

declares



transformation MoveMethod
( body : MethodBody ; trg : Clazz ; use_delegation : boolean)
=

not (body.<-binding-.oIsStatic)
& not mm_conflictingMoval ( body, trg )

(*will not override method *)
& not mm_hasSuperCall ( body )

(*no call to super constructor *)
& not (body.-mBelongsTo-> <=> trg)
(*do not move to own class *)

& not (body.<-binding-.name = body.-mBelongsTo->.name)
(*not a constructor *)

& empty ( instance of Marker )
(*no selection open *)
&
for all candidate : PGElement

:= elem ( body.=mm_incrementCandidates ( trg )=> )
do
mm_createSelection ( body, trg, use_delegation, candidate )
end
&
use choices : Marker [0:n] := (instance of Marker)
do
choose
when empty ( choices )
then
fail
(*No choice induces transaction failure *)

else
when (card ( choices ) = 1)
then
use c : Marker [1:1] := elem ( choices )
do
c.select (*Unique choice is selected automatically *)
end

else
skip
(*Requires User interaction to select choice. *)

end
end

end;

transformation mm_createSelection
( body : MethodBody ; trg : Clazz ; use_delegation : boolean



; along : PGElement)
=

‘3 = trg

‘2 = body

‘1 = along

::=

3’ = ‘34’ = ‘2

1’ = ‘1

marker_of

method_mrktarget_mrk

2’ : MoveMethodMarker

transfer 2’.useDelegation_mrk := use_delegation;
end;

node type MoveMethodMarker : Marker
intrinsic
method_mrk : MethodBody;
useDelegation_mrk : boolean;
target_mrk : Clazz;
methods redef
redef transformation select =

use src : Clazz := self.method_mrk.-mBelongsTo->;
op : Operation := self.method_mrk.<-binding-;
along := self.marker_of
do
choose
when self.useDelegation_mrk
or not mm_isLocalDecl ( self.method_mrk )

then
use deleg_op : Operation;
call : Call

do
mm_addDelegate_base
( self.method_mrk, src, self.marker_of, out deleg_op,
out call )
& choose



mm_addDelegate_return ( deleg_op )
else
skip
end
& mm_addDelegate_parameters
( op, deleg_op, call, self.marker_of )

end
else
skip
end
(*When using delegates, add them immediately to the source class. *)
&
choose
when
exist e := self.method_mrk.( ( =explicitThisRef=>

& -expression-> )
or =implicitThisRef=> )

::
not (e.( instance of Access
& -aLinkVariable-> ) <=> along)

and not (e.( instance of Update
& -uLinkVariable-> ) <=> along)

end
(*This access or update, except to the variable being moved along *)
or exist c := self.method_mrk.<-binding-.<-cLink- ::
not empty ( c.( =exprParent=> +

& instance of Call ) )
end
(*Complex call: having a call as receiver *)

then
use thisParam : Parameter
do
mm_rewriteOp_sourceParamDecl ( op, src, out thisParam )
& mm_rewriteOp_sourceParamAppl_explicit ( thisParam )
& mm_rewriteOp_sourceParamAppl_implicit ( thisParam )
& mm_rewriteOp_sourceParam_simplify
( thisParam, self.marker_of )
& mm_rewriteCall_sourceParam_implicitReceiver ( thisParam )
& mm_rewriteCall_sourceParam_explRcv ( thisParam )

end
else
skip
end
&
choose



when self.useDelegation_mrk
or not mm_isLocalDecl ( self.method_mrk )

then
skip
else
choose
when (self.marker_of is instance of Variable)
then
mm_rewriteCall_variable ( op, self.marker_of : Variable )

else
when (self.marker_of is instance of Parameter)
then
mm_rewriteCall_alongParam_removeRcv
( op, self.marker_of : Parameter )
& mm_rewriteCall_alongParam_noReceiver
( op, self.marker_of : Parameter )

end
end
(*If NOT using delegates, rewrite calls acoording to move-along
element after treatmet of ’this’references. *)
& mm_moveBody ( self.method_mrk, self.target_mrk )

(*Right, we still have to move a method. *)
& choose
mm_rewriteOp_param ( op, self.marker_of )
else
skip
end
(*Remove parameters we moved along - just in case. *)
& mm_fixVisibility ( self.method_mrk )
& mrk_ClearChooses
end

end;
end;

transformation - mm_moveBody
( body : MethodBody ; trg : Clazz) =

‘2 = trg‘4 : Clazz

mBelongsTo

‘1 = body

::=



4’ = ‘4 3’ = ‘2

mBelongsTo

1’ = ‘1

end;

transformation - mm_addDelegate_base
( body : MethodBody ; src : Clazz ; along : PGElement ;
out op : Operation ; out call : Call) =

‘6 = along.( instance of Variable )

‘4 = along.( instance of Parameter )

‘5 : Classifier

‘3 = src

‘1 = body

oType

binding

‘2 : Operation

::=

12’ = ‘6

11’ = ‘4

10’ = ‘53’ = ‘3

1’ = ‘1

mBelongsTo

5’ : MethodBody

bBelongsTo

expression

cLink
9’ : Call

oTypeoType

expression

6’ : Block

aLinkParameter

aLinkVariable
8’ : Access

binding

4’ : Operation

binding

2’ = ‘2



embedding redirect <-cLink- from ‘2 to 4’;
transfer 4’.name := ‘2.name;

4’.oIsFinal := ‘2.oIsFinal;
4’.visibility := ‘2.visibility;
2’.visibility := Public;

return op := 4’;
call := 9’;

end;
(*Replaces the method to be moved by a delegation method,
though not considering parameters. Furthermore, any call to the
moving method is redirected to the newly created delegate method.

*)

transformation - mm_addDelegate_return
( deleg_op : Operation) =

‘5 : Access

‘3 : MethodBody

‘2 : Classifier
oType

bBelongsTo

expression

‘4 : Block

binding

‘1 = deleg_op

::=

5’ = ‘5

3’ = ‘3

2’ = ‘2
oType

bBelongsTo

expression

4’ = ‘4

expression

6’ : Return

binding

1’ = ‘1



end;
(*If the method to be moved has a return value, then
a return statement is required. *)

transformation - mm_addDelegate_parameters
( impl_op, deleg_op : Operation ; call : Call ;
along : PGElement) * =

‘6 = along (* Do not allow to bind moving parameter *)

‘5 : Classifier

‘2 = call

‘1 = deleg_op

parameter

‘3 = impl_op

pType

‘4 : Parameter

::=

8’ = ‘6

5’ = ‘5

parameter

3’ = ‘3

pType

4’ = ‘4

cActualParameter

2’ = ‘2

aLinkParameter

7’ : Access

pType

6’ : Parameter

parameter

1’ = ‘1

transfer 6’.order := ‘4.order;
7’.order := ‘4.order;

end;
(*For each parameter of the moving method, with exception of the
parameter the method is being moved along, an access and
actual parameter is added to the delegation method.

*)

query - mm_isLocalDecl( body : MethodBody) =



‘5 : MethodBody

‘4 : Interface

‘1 = body

oBelongsTo

binding binding

‘3 : Operation

end;
(*An operation is called ’locally declared’iff
it has a unique binding, and is not declared in some
interface.

*)

transformation - mm_rewriteCall_variable
( op : Operation ; var : Variable) * =

‘6 : Clazz

‘3 = op
cLink

‘2 : Call

vBelongsToClass

‘5 = var

::=

6’ = ‘6

3’ = ‘3
cLink

2’ = ‘2

vBelongsToClass

5’ = ‘5
aLinkVariable

expression

1’ : Access

embedding
redirect <-expression-, <-cActualParameter- from ‘2 to 1’;
transfer 1’.order := ‘2.order;

2’.order := 1;
end;



(*Rewrites calls to the moved method by redirecting calls
through the selected variable. If the respective call does
not belong to the class of var, then the var’s visibility
is changed to Public, otherwise it is kept.

*)

transformation - mm_rewriteCall_alongParam_noReceiver
( op : Operation ; par : Parameter) * =

‘5 : Expression

‘2 = par

cLink

parameter
‘1 = op

exprParent

‘6 : Expression

cActualParameter
‘3 : Call

{ −expression−> }

‘4 : Expression

::=

2’ = ‘2
parameter

1’ = ‘1

4’ = ‘4

expression

6’ = ‘6

cLink

3’ = ‘3

folding ‘4, ‘6 ;
condition ‘2.order = ‘4.order;
embedding
redirect <-expression-, <-cActualParameter- from ‘3 to 4’;
transfer 4’.order := ‘3.order;

end;
(*Rewrites accesses to the former method container and
subsequent calls to the moved method by invoking the call
on the actual parameter of the respective formal parameter
where the method is being moved along.
This variant treats cases where the call’s container is
simply retained (e.g. this-calls or remainders of thisParam
productions).



*)
(*Known Bugs: Expects ’6 to be unique, which isnt’t the case e.g.
for binary operators - would require a proper AST structure.

*)

transformation - mm_rewriteCall_alongParam_removeRcv
( op : Operation ; along : Parameter) * =

‘8 : Expression

‘6 : Access

‘2 = along

cLink

parameter
‘1 = op

cActualParameter

{ =exprParent=> }

( −expression−> ) +

‘5 : Access

=exprParent=> +

‘3 : Call

{ −expression−> }

‘4 : Expression

::=

4’ = ‘4

2’ = ‘2

cLink

3’ = ‘3

parameter
1’ = ‘1

expression

8’ = ‘8

folding ‘4, ‘8 ;
condition ‘2.order = ‘4.order;
embedding
redirect <-expression-, <-cActualParameter- from ‘5 to 4’;
transfer 4’.order := ‘5.order;

end;
(*Rewrites accesses to the former method container
and subsequent calls to the moved method by invoking the
call on the actual parameter of the respective formal parameter
where the method is being moved along.
This variant treats the case where the method is invoked from an
expression of accesses, which are DELETED here (’5, ’6). Note that any
calls on the expression chain must be preserved, which implies
using them as ’this’parameter value.

*)



transformation - mm_rewriteCall_sourceParam_implicitReceiver
( thisParam : Parameter) * =

‘1 = thisParam
parameter

‘2 : Operation

cLink

‘4 : Expression

    (    <−expression−

      &  not (     instance of Access

               or  instance of Call   ) )

or  <−cActualParameter−

‘3 : Call

::=

1’ = ‘1
parameter

2’ = ‘2

cLink

4’ = ‘4

5’ : Access

cActualParameter

3’ = ‘3

transfer 5’.order := ‘1.order;
5’.aThis := true;

end;
(*Rewrites calls to the moved method in a ’this’context, i.e.
with no explicit receiver reference. In this case, an explicit
’this’access is inserted.

*)

transformation - mm_rewriteCall_sourceParam_explRcv
( thisParam : Parameter) * =



‘4 : Expression

‘1 = thisParam
parameter

‘2 : Operation

cLink

{ =exprParent=> }

‘3 : Call

expression

‘6 : Expression

::=

1’ = ‘1
parameter

2’ = ‘2

cLink

4’ = ‘4

6’ = ‘6

cActualParameter
3’ = ‘3

folding ‘4, ‘6 ;
condition not ‘3.cThis;
embedding
redirect <-expression-, <-cActualParameter- from ‘4 to 3’;
transfer 3’.order := ‘4.order;

4’.order := ‘1.order;
end;
(*Rewrites calls to the moved method, where the invocation receiver
is determined by an expression. It does so by searching the first
call / access in a sequence of such, and uses this as the actual
parameter. The previous container of this call / access is used
as the container of the rewritten method call.

*)

transformation - mm_rewriteOp_param
( op : Operation ; par : PGElement) =



‘5 = par.( instance of Parameter )

aLinkParameter

‘3 : Access

parameter

‘1 = op

::=

3’ = ‘31’ = ‘1

transfer 3’.aThis := true;
end;
(*Rewrites accesses to the formal parameter this method was moved along
to ’this’references, and removes the old parameter.

*)

transformation - mm_rewriteOp_sourceParamDecl
( op : Operation ; src : Clazz ; out thisParam : Parameter)
=

‘7 = src‘6 : Parameter

‘2 : MethodBody

parameter

binding
‘1 = op

::=

8’ = ‘76’ = ‘6

2’ = ‘2

parameter

pType
7’ : Parameter

parameter

binding
1’ = ‘1



transfer 7’.order := min ( ‘6.order ) - 1;
return thisParam := 7’;

end;
(*If the method being moved has ’this’references in its implementation,
then a parameter for the source class is added.

*)

transformation - mm_rewriteOp_sourceParamAppl_explicit
( thisParam : Parameter) * =

‘5 : Update‘4 : Access‘1 = thisParam

parameter =explicitThisRef=>

binding
‘2 : Operation

=explicitThisRef=>

‘3 : MethodBody

::=

3’ = ‘3

1’ = ‘1

parameter

binding
2’ = ‘2

aLinkParameter

4’ = ‘4

uLinkParameter
5’ = ‘5

transfer 4’.aThis := false;
5’.uThis := false;

end;
(*Replaces any this references of accesses and updates in
the moved method’s body by a reference to the newly introduced parameter.

*)

transformation - mm_rewriteOp_sourceParamAppl_implicit
( thisParam : Parameter) * =



‘7 : Clazz

‘4 : Expression‘1 = thisParam

parameter

binding
‘2 : Operation

mBelongsTo

implicitThisRef

‘3 : MethodBody

::=

7’ = ‘7

4’ = ‘41’ = ‘1

parameter

binding
2’ = ‘2

mBelongsTo
3’ = ‘3

expression
aLinkParameter

5’ : Access

embedding
redirect <-expression-, <-cActualParameter- from ‘4 to 5’;
transfer 5’.order := ‘4.order;

4’.order := 1;
end;

transformation - mm_rewriteOp_sourceParam_simplify
( thisParam : Parameter ; along : PGElement) * =

‘1 = thisParam

parameter

binding
‘2 : Operation

   <−bBelongsTo−

&  =containsSubexp=>

‘3 : MethodBody

‘5 = along.( instance of Variable )
aLinkParameter

expression

‘4 : Access

aLinkVariable
‘6 : Access

::=



5’ = ‘5

3’ = ‘3

1’ = ‘1

parameter

binding
2’ = ‘2

4’ : Access

embedding
redirect <-expression-, <-cActualParameter- from ‘4 to 4’;
redirect -expression-> from ‘6 to 4’;

transfer 4’.order := ‘4.order;
4’.aThis := true;

end;

transformation - mm_fixVisibility ( mb : MethodBody) * =

   <−bBelongsTo−

&  =containsSubexp=>

‘1 = mb

‘3 : StructuralFeature

    (    instance of Access

      &  −aLinkVariable−>   )

or  (    instance of Update

      &  −uLinkVariable−>   )

or  (    instance of Call

      &  −cLink−>         )

‘2 : Expression

::=

1’ = ‘1

2’ = ‘2

3’ = ‘3

transfer 3’.visibility :=
use vis : type in Visibility [1:1]
:= mm_requiresVisibility ( ‘2, ‘3 ) ::
[ vis.ordinal > ‘3.visibility.ordinal :: vis
| ‘3.visibility ]
end ;

end;

query - mm_hasSuperCall( body : MethodBody) =



‘2 : Call‘1 = body

bBelongsTo
containsSubexp

‘3 : Block

condition ‘2.cSuper;
end;

path - mm_incrementCandidates( trg : Clazz) :
MethodBody -> PGElement =
‘1 => ‘2 in

‘3 = trg

    (    instance of Parameter

      &  −pType−>              )

or  (    instance of Variable

      &  −vType−>             )

‘2 : PGElement

    (    <−binding−

      &  −parameter−> )

or  (    −mBelongsTo−>

      &  <−vBelongsToClass− )

‘1 : MethodBody

end;

query - mm_conflictingMoval( mb : MethodBody ; trg : Clazz)
=



‘5 : MethodBody ‘1 = mb

   ( −extends−> ) *

&  instance of Clazz

&  <−mBelongsTo−

‘4 = trg

binding

‘6 : Operation

binding

‘3 : Operation

condition ‘3.name = ‘6.name;
end;

function - mm_requiresVisibility :
( exp : Expression ; f : StructuralFeature) ->
type in Visibility =
use fromCls : Classifier [0:1] := exp.=ofClass=> ::
use toCls : Classifier [0:n]

:= [ f.( instance of Variable
& -vBelongsToClass-> )
| f.( instance of Operation
& [ -oBelongsTo->
| -binding->
& -mBelongsTo-> ] ) ] ::

[ fromCls = toCls :: Private
| fromCls.-cBelongsTo-> <=> toCls.-cBelongsTo-> :: Default
| toCls implies fromCls.( -extends-> + ) :: Protected
| Public ]

end
end

end;

end;

end;

section s_pullupMethod

declares



transformation pullUpMethod
( trg : Clazz ; body : MethodBody ; use_supertype : boolean
; make_abstract : boolean ; keep : Clazz [0:n])
=

(trg in body.-mBelongsTo->.( -extends-> + ))
(*Has superclass, trg is in this hierarchy *)
&
not
(exist trg_op := trg.<-mBelongsTo-.<-binding- ::
pm_sameSignature ( body.<-binding-, trg_op )
end )

(*Superclass does not have method with same signature *)
& for all e := body.( =implicitThisRef=>

or ( =explicitThisRef=>
& -expression-> ) ) ::

e.( ( ( ( instance of Access
& -aLinkVariable-> )

or ( instance of Update
& -uLinkVariable-> ) )

& -vBelongsToClass-> )
or ( instance of Call
& -cLink->
& [ -oBelongsTo->
| -binding->
& -mBelongsTo-> ] ) )

in trg.( -extends-> * )
end
(*accessed members belong to (a superclass of)trg *)
&
not
(body.<-binding-.name = body.-mBelongsTo->.name)
(*method name does not equal class name (constructor!)*)
&
for all sc := trg.( <-extends- + ).( instance of Clazz ) ::
for all sc_op := sc.<-mBelongsTo-.<-binding- ::
pm_sameSignature ( body.<-binding-, sc_op )
implies (body.<-binding-.-oType-> <=> sc_op.-oType->)

end
end
(*same method signature in sub-types of the target
class have the same return type *)

& use op := body.<-binding-;
src := body.-mBelongsTo->



do
choose
when (make_abstract)
then
use absOp : Operation
do
pm_addAbstractDecl ( op, trg, out absOp )
& pm_addAbstractDecl_param ( op, absOp )
& pm_addStubEmpty ( op, trg )
& pm_addStubReturn ( op, trg )
end

else
pm_moveMethod ( body, trg )
end
& pm_removeUnguarded ( op, keep or trg )
& choose
when (use_supertype)
then
use cands : PGElement [0:n]
do
pm_superTypeCandidates ( src, trg, out cands )
& pm_useSuperType ( cands, src, trg )
end

else
skip

end
end
end;

transformation - pm_moveMethod
( body : MethodBody ; trg : Clazz) =

‘4 : Operation

‘2 = trg

‘3 : Clazz

mBelongsTo

binding

‘1 = body

::=



2’ = ‘2

3’ = ‘3

mBelongsTobinding

4’ = ‘4

1’ = ‘1

transfer
4’.visibility :=
[ ‘4.visibility.ordinal > Protected.ordinal :: Protected
| ‘4.visibility ] ;

end;

transformation - pm_removeUnguarded
( op : Operation ; keep : Clazz [0:n]) * =

‘3 : Clazz

not valid (self in keep)

‘4 : Expression

binding
‘1 = op

mBelongsTo

   <−bBelongsTo−

&  =containsSubexp=>

‘2 : MethodBody

::=

3’ = ‘3

1’ = ‘1

end;

transformation - pm_addStubEmpty
( op : Operation ; trg : Clazz) * =



‘3 : Clazz
mBelongsTo

‘4 : MethodBody

binding
‘5 : Classifier

oType

‘1 = op

extends

‘2 = trg

::=

3’ = ‘3

binding

1’ = ‘1

mBelongsTo4’ : MethodBody

bBelongsTo

5’ : Block

extends

2’ = ‘2

condition not ‘3.isAbstract;
end;

transformation - pm_addStubReturn
( op : Operation ; trg : Clazz) * =

‘3 : Clazz
mBelongsTo

‘4 : MethodBody

binding ‘5 : Classifier

oType

‘1 = op

extends

‘2 = trg

::=



3’ = ‘3

5’ = ‘5

oType

9’ : Literal

binding

1’ = ‘1

mBelongsTo
4’ : MethodBody

bBelongsTo

expression

6’ : Block

expression
7’ : Return

aLinkLiteral
8’ : Access

extends

2’ = ‘2

condition not ‘3.isAbstract;
transfer 9’.val := "null";
end;

transformation - pm_addAbstractDecl
( op : Operation ; trg : Clazz ; out absOp : Operation) =

‘3 : Operationvalid (self.name = ‘1.name)

‘4 : Classifier
oType

‘1 = op

   <−mBelongsTo−

&  <−binding−

‘2 = trg

::=

2’ = ‘2

4’ = ‘4
oType

oType

1’ = ‘1

bBelongsTo

6’ : Block

mBelongsTo

5’ : MethodBody

binding

3’ : Operation

embedding redirect <-cLink- from ‘1 to 3’;
transfer 3’.name := ‘1.name;



3’.isAbstract := true;
3’.oIsFinal := ‘1.oIsFinal;
3’.oIsStatic := ‘1.oIsStatic;
3’.visibility := ‘1.visibility;
2’.isAbstract := true;

return absOp := 3’;
end;

transformation - pm_addAbstractDecl_param
( ori, absOp : Operation) * =

parameter
‘1 = ori

‘3 = absOp

‘4 : Classifier

pType

‘2 : Parameter

::=

parameter

1’ = ‘1

4’ = ‘4

pType

2’ = ‘2

pType

5’ : Parameter

parameter3’ = ‘3

transfer 5’.order := ‘2.order;
end;

query - pm_superTypeCandidates( src, trg : Clazz ; out e : PGElement [0:n])
=

‘3 : PGElement

‘2 = trg

not ( pm_hasUnaccessibleFrom ( trg ) )

    <−oType−

or  <−vType−

or  <−pType−

‘1 = src



return e := ‘3;
end;

transformation - pm_useSuperType
( e : PGElement [0:n] ; src, trg : Clazz) =

‘2 = trg

‘5 = src
pType

‘3 = e.( instance of Parameter )

vType
‘1 = e.( instance of Variable )

oType

‘4 = e.( instance of Operation )

::=

2’ = ‘2

5’ = ‘5

pType

vType

oType

3’ = ‘3

1’ = ‘1

4’ = ‘4

end;

function - pm_sameSignature : ( o1, o2 : Operation) ->
boolean =
(o1.name = o2.name)
and for all trg_op_param := o2.-parameter-> ::
exist own_param := o1.-parameter-> ::
(trg_op_param.order = own_param.order)
and (trg_op_param.-pType-> = own_param.-pType->)

end
end

end;

restriction - pm_hasUnaccessibleFrom( c : Clazz) : PGElement
=
‘4 in



‘3 : StructuralFeature

    (    instance of Access

      &  −aLinkVariable−>   )

or  (    instance of Call

      &  −cLink−>         )

‘2 : Expression
expression

‘1 : Expression

not valid (pm_availableIn ( self, c ))

    (    instance of Variable

      &  <−aLinkVariable−     )

or  (    instance of Parameter

      &  <−aLinkParameter−     )

or  (    instance of Operation

      &  <−cLink−              )

‘4 : PGElement

end;

function - pm_availableIn : ( e : PGElement ; c : Clazz) ->
boolean =
[ e is instance of Variable ::

c in (e : Variable.-vBelongsToClass->.( <-extends- * ))
| e is instance of Operation ::

c in (e : Operation.-binding->.-mBelongsTo->.( <-extends- * ))
| false ]
end;

end;

[...]
(* Constructive methods omitted *)

end.


