Algebraic Specifications
Characterization

- Formal specification of abstract data types
- Behavioral specification with the help of equations over terms
- Semantics defined by algebras (sorts + operations)
- Under certain restrictions algebraic specifications are operational
- Specifications may be refined in an evolutionary way
- Proof techniques: term rewriting, induction
Foundations
Signature and algebra

- **Signature** (syntactic domain)
 \[\Sigma = \langle SN, FN, domN, ranN \rangle \]
 - \(SN = \{sn_1, ..., sn_k\} \) set of sort names
 - \(FN = \{fn_1, ..., fn_m\} \) set of function names
 - \(domN: FN \to SN^* \) domain
 - \(ranN: FN \to SN \) range

- **Algebra** (semantic domain)
 \[A = \langle S, F, dom, ran \rangle \]
 - \(S = \{S_1, ..., S_k\} \) set of sorts
 - \(F = \{f_1, ..., f_m\} \) set of functions
 - \(dom: F \to S^* \) domain
 - \(ran: F \to S \) range
Denotation

- **Denotation** (mapping syntactic \rightarrow semantic domain)
 - $\delta : \Sigma \rightarrow A$
 - $\delta : sn_i \rightarrow S_j$ (δ maps each sort name into a sort)
 - $\delta : fn_i \rightarrow F_j$ (analogously for function names)
 - $\text{dom}(\delta(fn_i)) = \delta(\text{domN}(fn_i))$, $\text{ran}(\delta(fn_i)) = \delta(\text{ranN}(fn_i))$
 - (domain and range “are preserved”)

Example

syntactic domain

\begin{verbatim}
sort Nat;
operations
 zero : Nat;
 succ : Nat -> Nat;
\end{verbatim}

semantic domain

\[
\begin{array}{c}
succ(n) = n+1 \\
succ(n) = n+1 \\
succ(n) = n+1 \\
succ(n) = 0
\end{array}
\]

<table>
<thead>
<tr>
<th>Nat</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>succ</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>succes</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

denotation
Terms

- **Term language**
 Let $\Sigma = \langle SN, FN, domN, ranN \rangle$ be a signature and X be a set of typed variables (i.e. each variable x is mapped into a sort name $sn \in SN$). Terms are defined inductively as follows:
 - Each variable x is a term of its respective type sn.
 - Each function name fn, where $fn: \rightarrow sn$ (i.e. fn denotes a nullary function/constant) is a term of type sn.
 - Given $fn: sn_1 \times \ldots \times sn_k \rightarrow sn$ ($k \geq 1$), t_1, \ldots, t_k terms of type sn_1, \ldots, sn_k. $fn(t_1, \ldots, t_k)$ is a term of type sn.
 - Each element of the term language may be generated by a finite derivation applying the rules given above.

- **Variable-free term language**
 - Terms which do not contain variables
Example: stack

signature

```plaintext
sorts Stack, Nat, Bool;

operations

  true, false : -> Bool;
  zero : -> Nat;
  succ : Nat -> Nat;
  newstack : -> Stack;
  push : Stack x Nat -> Stack;
  isnewstack : Stack -> Bool;
  pop : Stack -> Stack;
  top : Stack -> Nat;
```

terms

```plaintext
zero
succ(zero)
succ(succ(zero))
newstack
push(newstack, zero)
isnewstack(newstack)
pop(newstack)
top(newstack)
pop(push(newstack, zero))
top(push(newstack, zero))
push(x, y)
push(x, succ(succ(y)))
...
```
Word algebra

- **Word algebra**
 - Variable-free terms, interpreted as strings

terms

- zero
- succ(zero)
- succ(succ(zero))
- newstack
- push(newstack, zero)
- isnewstack(newstack)
- pop(newstack)
- top(newstack)
- pop(push(newstack, zero))
- top(push(newstack, zero))
 ...

strings

- "zero"
- "succ(zero)"
- "succ(succ(zero))"
- "newstack"
- "push(newstack, zero)"
- "isnewstack(newstack)"
- "pop(newstack)"
- "top(newstack)"
- "pop(push(newstack, zero))"
- "top(push(newstack, zero))"
 ...

Example: $\delta(\text{push})("\text{newstack}", "\text{zero}") = "\text{push(newstack, zero)}"$
Substitution

- **Substitution**
 Let $T(\Sigma)$ be a set of terms over a signature Σ, X be a set of typed variables. A substitution σ is defined as follows:
 - $\sigma : X \rightarrow T(\Sigma)$, where x and $\sigma(x)$ must have the same type

- **Ground substitution**
 Substitution of variables by variable-free terms

Diagram:

```
push(x, y)
  y -> succ(zero)
  push(x, succ(zero))
    x -> push(newstack, zero)
    push(push(newstack, zero), succ(zero))
```
Properties of abstract data types

- **Presentation**
 - A presentation \((\Sigma, E)\) is a signature \(\Sigma\), combined with a set of equations \(E\)
 - Each equation \(e \in E\) is built up as follows:
 \(t_1 == t_2\) (\(t_1, t_2\) terms)

- **Satisfies-Relation**
 - Let \((\Sigma, E)\) be a presentation, \(A\) be an algebra and \(\delta : \Sigma \to A\) be a denotation. \(A\) satisfies the presentation \((\Sigma, E)\) if and only if:
 \(t_1 == t_2 \implies \delta(t_1) = \delta(t_2)\) for all ground substitutions of variables

- **Variety**
 - Let \((\Sigma, E)\) be a presentation. The variety \(V\) is the set of all algebras \(A\) which satisfy the presentation.
Example of a presentation

```plaintext
sorts Stack, Nat, Bool;

operations
  true, false : -> Bool;
  zero : -> Nat;
  succ : Nat -> Nat;
  newstack : -> Stack;
  push: Stack x Nat -> Stack;
  isnewstack : Stack -> Bool;
  pop : Stack -> Stack;
  top : Stack -> Nat;

declare s : Stack; n : Nat;

axioms
  isnewstack(newstack) == true;
  isnewstack(push(s,n)) == false;
  pop(newstack) == newstack;
  pop(push(s,n)) == s;
  top(newstack) == zero;
  top(push(s,n)) == n;
```

```
Relationships between algebras

- **Homomorphism**
  Let $A$ and $B$ be algebras for the signature $\Sigma$, i.e. there are denotations $\delta_A : \Sigma \rightarrow A$, $\delta_B : \Sigma \rightarrow B$. A homomorphism $h : A \rightarrow B$ is a set of functions $h_1, \ldots, h_m$ with the following properties:
  - $h_i : \delta_A(sn_i) \rightarrow \delta_B(sn_i)$ (for all sort names)
  - Let $fn : \rightarrow sn_i$ be a name of a nullary function. Then:
    $$ h_i(\delta_A(fn)) = \delta_B(fn) $$
  - Let $fn : sn_{j1} \times sn_{jk} \rightarrow sn_i$, $k > 0$. The following condition must hold for all suitably typed $s_{j1}, \ldots, s_{jk}$:
    $$ h_i(\delta_A(fn)(s_{j1}, \ldots, s_{jk})) = \delta_B(fn)(h_j(s_{j1}), \ldots, h_k(s_{jk})) $$

- **Isomorphism**
  An isomorphism is a bijective homomorphism.
Illustration by a commutative diagram

\[ A \xrightarrow{\delta_A(fn)} s_{iA} \]

\[ \delta_B(fn) \xrightarrow{h_i} B \]

\[ (s_{j1}, \ldots, s_{jk}) \xrightarrow{h_{j1}, \ldots, h_{jk}} (h_{j1}(s_{j1}), \ldots, h_{jk}(s_{jk})) \]
Example: sets and multi-sets

sorts $S$, $Nat$, $Bool$;
operations
...
empty : $\rightarrow S$;
insert : $Nat \times S \rightarrow S$;
isin : $Nat \times S \rightarrow Bool$;
declare $n$, $n_1$, $n_2$ : $Nat$; $s$ : $S$;
axioms
insert($n_1$,insert($n_2$,s)) ==
insert($n_2$,insert($n_1$,s));
isin($n$,empty) == false;
isin($n_1$,insert($n_2$,s)) ==
if eq($n_1,n_2$)
then true
elseisin($n_1$,s);
Initial and final algebras

- **Category**
  A category $C$ consists of sets of algebras and homomorphisms such that:
  - $h_1 : A_1 \to A_2 \land h_2 : A_2 \to A_3$ \implies $h_1 \circ h_2 : A_1 \to A_3$ is a homomorphism and belongs to $C$
  - $(h_1 \circ h_2) \circ h_3 = h_1 \circ (h_2 \circ h_3)$

- **Initial algebra**
  Finest algebra of a category:
  - $I \in C \land A \in C \implies \exists h : I \to A$

- **Final algebra**
  Coarsest algebra of a category:
  - $F \in C \land A \in C \implies \exists h : A \to F$

- Initial and final algebra of a variety exist and are uniquely defined up to isomorphism
Construction of the initial algebra

- **Quotient algebra** of the word algebra:
  - Subsume all words representing equal terms in an equivalence class

```
"newstack"
"pop(push(newstack,zero))"
"pop(push(newstack,succ(zero)))"
"pop(pop(push(push(newstack,zero),zero)),zero))"
...

"push(newstack,zero)"
"push(pop(push(newstack,zero)),zero)"
"push(pop(push(newstack,succ(zero))),zero)"
"push(pop(pop(push(push(newstack,zero),zero),zero))),zero)"
...
```

- equivalence class for the empty stack
- equivalence class for the stack which contains the single element 0
**Equation-based reasoning**

**Reflexivity**

\[
\text{declare} \quad <\text{declaration part}> \\
\text{axiom} \\
\quad t == t;
\]

**Symmetry**

\[
\text{declare} \quad <\text{declaration part}> \\
\text{axiom} \\
\quad t1 == t2; \\
\text{declare} \quad <\text{declaration part}> \\
\text{axiom} \\
\quad t2 == t1;
\]

**Substitutability**

\[
\text{declare} \quad x : S; <\text{declaration part 1}> \\
\text{axiom} \\
\quad t1 == t2; \\
\text{declare} \quad <\text{declaration part 2}> \\
\text{axiom} \\
\quad t3 == t4; \\
\text{declare} \quad <\text{declaration part 1}> \\
\text{declare} \quad <\text{declaration part 2}> \\
\text{axiom} \\
\quad t1[x/t3] == t2[x/t4];
\]

**Transitivity**

\[
\text{declare} <\text{declaration part}> \\
\text{axiom} \\
\quad t1 == t2; \\
\text{declare} <\text{declaration part}> \\
\text{axiom} \\
\quad t2 == t3; \\
\text{declare} <\text{declaration part}> \\
\text{axiom} \\
\quad t1 == t3;
\]
Example

Reflexivity

\[
\text{declare } s : \text{Stack}; \ x : \text{Nat}; \\
\text{axiom} \\
\quad \text{push}(s, x) == \text{push}(s, x);
\]

Symmetry

\[
\text{declare } s : \text{Stack}; \ n : \text{Nat}; \\
\text{axiom} \\
\quad \text{top} (\text{push}(s, n)) == n;
\]

Substitutability

\[
\text{declare } s : \text{Stack}; \ n : \text{Nat}; \\
\text{axiom} \\
\quad \text{push}(s, n) == \text{push}(s, \text{top}(\text{push}(s, n)));
\]

\[
\text{declare } s : \text{Stack}; \ n : \text{Nat}; \\
\text{axiom} \\
\quad \text{top}(\text{push}(s, n)) == n;
\]
Proofs by induction

- **Induction**
  A predicate $P(x)$ is proved as follows:
  - $P$ is proved for all elementary, i.e.
    $P[x/c]$ must hold for all constants $c$
  - Assuming that $P$ holds for a term $t$,
    it is proved that $P$ also holds for $f(t)$ for each function $f$
Example

Presentation

```plaintext
sort Z;
operations
 zero : -> Z;
 succ : Z -> Z;
 pre : Z -> Z;
 add : Z x Z -> Z;
declare i, j : Z;
axioms
 pre(succ(i)) == i; --1--
 succ(pre(i)) == i; --2--
 add(zero,i) == i; --3--
 add(succ(i),j) == succ(add(i,j)); --4--
 add(pre(i),j) == pre(add(i,j)); --5--
```

To demonstrate

```plaintext
declare i : Z;
axiom
 i == add(i,zero);
```
Example

Start of induction

Axiom 3

\[ \text{add}(\text{zero}, i) = i \]

Substitution of \( i \) with \( \text{zero} \)

\[ \text{add}(\text{zero}, \text{zero}) = \text{zero} \]

Symmetry

\[ \text{zero} = \text{add}(\text{zero}, \text{zero}) \]
Example

Induction step (only for \(i \implies \text{succ}(i)\))

Induction assumption

\[ i = \text{add}(i, \text{zero}) \]

Reflexivity

\[ \text{succ}(j) = \text{succ}(j) \]

Substitution of \(j\)

\[ \text{succ}(i) = \text{succ}(\text{add}(i, \text{zero})) \]

Axiom 4

\[ \text{succ}(i) = \text{add}(\text{succ}(i), \text{zero}) \]
Modules
Module concept for algebraic specifications

- A specification is composed of reusable units (*modules*)
- Definition of *export* and *import* interfaces
- *Generic modules* with constrained genericity
- *Formal parameters* are *abstract modules*
- *Semantic* in addition to *syntactic constraints*
EBNF for modular specifications

<specification> = (<module>)+

<module> = "module" [<module name>] ";"
    [<import clause>]
    [<export clause>]
    [<sorts part>]
    [<operations part>]
    [<declarations part>]
    [<axioms part>]
    "end" "module" [<module name>] ";"

<import clause> = "import" (<item name list> "from" <module name list> ";")+

<export clause> = "export" (<item name list> ["from" <module name list>] ";")+

=item name list = <item name> ("," <item name>)*
    | "all" ["except" <item name> ("," <item name>)*]

=item name = <sort name> | <operation name>

=module name list = <module name> ("," <module name>)*
Examples of exports and imports

module Stack;
    import Bool, true, false from Bool;
    Nat, zero from Nat;
    export all;
    sort Stack;
    operations
        newstack : -> Stack;
        push : Stack x Nat -> Stack;
        isnewstack : Stack -> Bool;
        pop : Stack -> Stack;
        top : Stack -> Nat;
    declare s : Stack; n : Nat;
    axioms
        isnewstack(newstack) == true;
        isnewstack(push(s,n)) == false;
        pop(newstack) == newstack;
        pop(push(s,n)) == s;
        top(newstack) == zero;
        top(push(s,n)) == n;
end module Stack;

module Bool;
    export Bool, true, false;
    sort Bool;
    operations
        true, false : -> Bool;
end module Bool;

module Nat;
    export Nat, zero, succ;
    sort Nat;
    operations
        zero : -> Nat;
        succ : Nat -> Nat;
end module Nat;

Graphical representation
Semantic integrity constraints

- Let $H$ be a hierarchy of modules, $M$ be a new module which is added to $H$.

- **Consistency**: Two objects which were different in the initial algebra must not become equal by insertion of $M$, i.e.:
  If the equation $o_1 == o_2$ does not hold in $H$,
  then it must not hold in $H \cup M$.

- **Completeness**: Insertion of $M$ must not involve the insertion of new objects, i.e.:
  If a term $t$ belongs to the term language $H \cup M$ and its sort $s$ is already present in $H$,
  then there is a term $t'$ in $H$ with $t == t'$.
Example of a consistent and complete addition

module ExtendedStack;
    import Nat, zero, succ from Nat;
    Stack, newstack, push, pop, top, isnewstack from Stack;
    export length from ExtendedStack;
    Stack, newstack, push, pop, top, isnewstack from Stack;
    operation
        length : Stack -> Nat;
    declare
        s : Stack; n : Nat;
    axioms
        length(newstack) == zero;
        length(push(s,n)) == succ(length(s));
end module ExtendedStack;
Example of an inconsistent and erroneous addition

module Bool;
    export all;
sort Bool;
operations
    true, false : -> Bool;
    and : Bool x Bool -> Bool;
declare b : Bool;
axioms
    and(true,true) == true;
    and(false,b) == false;
    and(b,false) == false;
end module Bool;

module ExtendedBool;
    import all from Bool;
    export all from Bool;
    axioms
        true == false;
end module Bool;
Example of an inconsistent yet meaningful addition

### Multi-sets

```haskell
module MultiSet;
 import all from Nat;
 export all;
 sort S;
 operations
 empty : -> S;
 insert : Nat x S -> S;
 isin : Nat x S -> Bool;
 declare n, n1, n2 : Nat; s : S;
 axioms
 insert(n1,insert(n2,s)) ==
 insert(n2,insert(n1,s));
 isin(n,empty) == false;
 isin(n1,insert(n2,s)) ==
 if eq(n1,n2)
 then true
 else isin(n1,s)
end module MultiSet;
```

### Sets

```haskell
module Set;
 import all from Nat, MultiSet;
 export all from MultiSet;
 declare n : Nat; s : S;
 axiom
 insert(n,insert(n,s)) ==
 insert(n,s)
end module Set;
```
Example of an incomplete yet meaningful addition

Binary logic

```plaintext
module BinaryLogic;
 export all;
 sort Bool;
 operations
 true, false : -> Bool;
 and : Bool x Bool -> Bool;
 declare b : Bool;
 axioms
 and(true,true) == true;
 and(false,b) == false;
 and(b,false) == false;
end module BinaryLogic;
```

Ternary logic

```plaintext
module TernaryLogic;
 import all from BinaryLogic;
 export all;
 operations
 unknown : -> Bool;
 declare b : Bool;
 axioms
 and(unknown,true) == unknown;
 and(true,unknown) == unknown;
end module TernaryLogic;
```
Parameterized specifications (genericity)

- **Reusability** of data types is increased by *formal parameters*
- Parameters are *formal modules*
- **Instantiations** of parameterized specifications yield abstract data types
- **Constrained genericity**: actual parameters must meet the requirements defined by formal modules
- **Semantic constraints**: axioms of formal modules must hold
EBNF for parameterized specifications

```
<scheme> = "scheme" <scheme name> ["[(<requirement>)+"]"];
 (<module>)+
 "end scheme" [<scheme name>] ;

<requirement> = "requirement" [<requirement name>] ";"
 [<import clause>]
 [<export clause>]
 [<sorts part>]
 [<operations part>]
 [<declarations part>]
 [<axioms part>]
 "end" "requirement" [<requirement name>] ";"

<instantiation> = "instantiate" <scheme name> [rename clause] ";"
 ("with" <requirement name> "as" <module name>
 ("," <item name> "as" <item name>)* ";")+
 "end" "instantiate" [<scheme name>] ";"

<rename clause> = "rename"
 <item name> "as" <item name>
 ("," <item name> "as" <item name>)*
```
Example of parameterized specifications

scheme StackScheme [
    requirement Item;
    export all;
    sort Item;
    operation error : -> Item;
]

module Stack;
...
end module Stack;
end scheme StackScheme;

module Stack;
import Bool, true, false from Bool;
all from Item;
export all;
sort Stack;
operations
    newstack : -> Stack;
    push: Stack x Item -> Stack;
    isnewstack : Stack -> Bool;
    pop : Stack -> Stack;
    top : Stack -> Item;

declare s : Stack; it : Item;
axioms
    isnewstack(newstack) == true;
    isnewstack(push(s, it)) == false;
    pop(newstack) == newstack;
    pop(push(s, it)) == s;
    top(newstack) == error;
    top(push(s, it)) == it;
end module Stack;
Example of an instantiation of a parameterized specification

Instantiation clause

```plaintext
instantiate StackScheme;
 with Item as Nat,
 error as zero;
end instantiate StackScheme;
```

Instantiated specification

```plaintext
module Stack;
 import Bool, true, false from Bool;
 all from Nat;
 export all;
 sort Stack;
 operations
 newstack : -> Stack;
 push: Stack x Nat -> Stack;
 isnewstack : Stack -> Bool;
 pop : Stack -> Stack;
 top : Stack -> Nat;
 declare s : Stack; it : Nat;
 axioms
 isnewstack(newstack) == true;
 isnewstack(push(s,it)) == false;
 pop(newstack) == newstack;
 pop(push(s,it)) == s;
 top(newstack) == zero;
 top(push(s,it)) == it;
end module Stack;
```
Another example of a parameterized specification (1)

```plaintext
scheme ArrayScheme [
 requirement Attribute; (* For array elements *)
 export all;
 sort Attribute;
 operation error : -> Attribute;
end requirement Attribute;

requirement Index; (* For indices *)
import Bool, true, _ and _ from Bool;
export all;
sort Index;
operation
 _ = _ : Index x Index -> Bool; (* Infixnotation *)
declare i, i1, i2, i3 : Index;
axioms
 i = i == true; (* Reflexivity *)
 i1 = i2 == i2 = i1; (* Symmetry *)
 (i1 = i2) and (i2 = i3) => (i1 = i3) == true; (* Transitivity *)
end requirement Index;]

module Array ...
end scheme StackArrayScheme;
```
Another example of a parameterized specification (2)

```
module Array;

import Bool, true, false, not _ from Bool; all from Attribute, Index;
export all;
sort Array;
operations empty : -> Array;
[/] : Array x Attribute x Index -> Array;
 (* Replacement of an array element *)
isundefined : Array x Index -> Bool;
read : Array x Index -> Attribute;
declare ar : Array; i, i1, i2 : Index; at, at1, at2 : Attribute;
axioms
 not (i1 = i2) => ar[at1/i1][at2/i2] == ar[at2/i2][at1/i1];
ar[at1/i][at2/i] == ar[at2/i];
isundefined(empty,i) == true;
isundefined(ar[at/i1],i2) ==
 if i1 = i2 then false else isundefined(ar,i2) end if;
read(empty,i) == error;
read(ar[at/i1],i2) ==
 if i1 = i2 then at else read(ar,i2) end if;
end module Array;
```
Constructive Specifications
Rapid prototyping with constructive specifications

- Implementation of an abstract data type by a term rewriting system
- Separation between constructors for building up objects and other operations
- Equations for operations are interpreted from left to right as term rewrite rules
- Additional constraints must hold for constructive specifications
- Constructive specifications are operational and thus less abstract than non-constructive ones
- Axioms of non-constructive specifications become theorems of constructive specifications
Example: stack

```
scheme StackScheme [
 requirement Item;
 export all;
 sort Item;
 operation error : -> Item;
end requirement Item;
];

module Stack;
 ...
end module Stack;
end scheme StackScheme;
```

**Constructors**

```
module Stack;
 import Bool, true, false from Bool;
 all from Item;
 export all;
 sort Stack;
 constructors
 newstack : -> Stack;
 push : Stack x Item -> Stack;
 operations
 isnewstack : Stack -> Bool;
 pop : Stack -> Stack;
 top : Stack -> Item;
 declare s : Stack; it : Item;
 operation axioms
 isnewstack(newstack) == true;
 isnewstack(push(s,it)) == false;
 pop(newstack) == newstack;
 pop(push(s,it)) == s;
 top(newstack) == error;
 top(push(s,it)) == it;
end module Stack;
```
Examples of term rewriting

pop(push(pop(push(push(newstack,5),7),9)),9) ==
  pop(push(s,n)) == s
pop(push(push(newstack,5),9)) ==
  pop(push(s,n)) == s
push(newstack,5)

isnewstack(pop(push(pop(push(newstack,5),7)),7)) ==
  pop(push(s,n)) == s
isnewstack(pop(push(push(newstack),7))) ==
  pop(push(s,n)) == s
isnewstack(newstack) ==
  isnewstack(newstack) == true
ture
	op(push(newstack,8))) ==
  top(push(s,n)) == n
pop(push(newstack,8)) ==
  pop(push(s,n)) == s
newstack
The outermost operation of a left-hand side of an axiom is no constructor, all inner operations are constructors.

A variable occurs at most once on the left-hand side.

All variables of the right-hand side occur on the left-hand side.

The system of axioms is **unique** with respect to a (non-constructor) operation, i.e. for each tuple of argument terms there is at most one matching rule.

The system of axioms is **complete** with respect to a (non-constructor) operation, i.e. for each tuple of argument terms there is at least one matching rule.

The system of axioms is **terminating**, i.e. for variable-free terms there are only derivations of finite length.
module Bool;
  export all;
  sort Bool;
  constructors true, false : -> Bool;
  operations
    not _ : Bool -> Bool; _ and _ : Bool x Bool -> Bool;
    _ or _ : Bool x Bool -> Bool; _ => _ : Bool x Bool -> Bool;
    _ <= _ : Bool x Bool -> Bool; _ <=> _ : Bool x Bool -> Bool;
  declare b, b1, b2, b3 : Bool;
  operation axioms
    not true == false; not false == true;
    b and true == b; b and false == false;
    b or true == true; b or false == b;
    true => b == b; false => b == true;
    b <= true == b; b <= false == true;
    true <=> b == b; false <=> b == not b;
  theorems
    b and b == b;
    b1 and b2 == b2 and b1;
    b1 or b2 == b2 or b1;
    b1 and (b1 or b2) == b1;
    b1 or (b1 and b2) == b1;
    b and not b == false; b or not b == true;
...
end module Bool;
Semi-constructive specifications

- Often, operation axioms do not suffice to specify the semantics of an abstract data type.
- Thus, **constructor axioms** are added to make the initial algebra “sufficiently coarser”.
- The semantics of operations are still specified only by operation axioms.
- Constructor axioms are used only to prove that objects are equal.
- Constructor axioms must not allow for non-terminating derivations $\Rightarrow$ equality is decidable.
module Set;
    import Bool, true, false from Bool;
all from Item;
export all;
sort Set;
constructors
    Ø : -> Set;
    insert : Item x Set -> Set;
operations
    delete : Item x Set -> Set;
    { _ } : Item -> Set;
    _ ∪ _ : Set x Set -> Set;
    _ ∩ _ : Set x Set -> Set;
    isin : Item x Set -> Bool;
declare
    s, s1, s2 : Set;
    it, it1, it2 : Item;
constructor axioms
    insert(it1, insert(it2,s)) ==
        insert(it2, insert(it1,s));
    insert(it, insert(it,s)) ==
        insert(it,s);

Example: sets

operation axioms
    delete(it,Ø) == Ø;
    delete(it1, insert(it2,s)) ==
        if it1 = it2
            then delete(it1,s)
            else insert(it2, delete(it1,s))
        end if;
    {it} == insert(it,Ø);
    s ∪ Ø == s;
    s1 ∪ insert(it,s2) ==
        insert(it, s1 ∪ s2);
    s ∩ Ø == Ø;
    s1 ∩ insert(it,s2) ==
        if isin(it,s1)
            then insert(it, s1 ∩ s2)
            else s1 ∩ s2
        end if;
    isin(it,Ø) == false;
    isin(it1, insert(it2,s)) ==
        if it1 = it2
            then true
            else isin(it1,s)
        end if;
end module Set;
Example: proof of equality by constructor axioms

Problem: Are the following sets equal?
\[ s_1 = \{0,1,2,3,0\}, \ s_2 = \{3,2,1,0\} \]

\[
\begin{align*}
\text{insert} \left( 0, \text{insert} \left( 1, \text{insert} \left( 2, \text{insert} \left( 3, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 1, \text{insert} \left( 0, \text{insert} \left( 2, \text{insert} \left( 3, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 1, \text{insert} \left( 2, \text{insert} \left( 0, \text{insert} \left( 3, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 1, \text{insert} \left( 2, \text{insert} \left( 3, \text{insert} \left( 0, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 2, \text{insert} \left( 1, \text{insert} \left( 3, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 2, \text{insert} \left( 3, \text{insert} \left( 1, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) & = \\
\text{insert} \left( \text{it1}, \text{insert} \left( \text{it2}, s \right) \right) & = \text{insert} \left( \text{it2}, \text{insert} \left( \text{it1}, s \right) \right) \\
\text{insert} \left( 3, \text{insert} \left( 2, \text{insert} \left( 1, \text{insert} \left( 0, \emptyset \right) \right) \right) \right) & = \\
\end{align*}
\]
Abstract Implementations
Abstract implementations: goals and approach

- Starting point: algebraic specifications for abstract data types on a high level of abstraction
- Goal: efficient implementation
- Approach: step-wise refinement of specifications, i.e. replacement of abstract with increasingly concrete data types
- Result: abstract implementation (not “real” because base types are only specified)
Example of step-wise refinement (1)

SymbolTable
  ↓
Identifier Attribute Bool

Implementation (↓) of a symbol table by a stack of mappings

↓SymbolTable

Stack
  ↓
Bool Identifier Attribute

Mapping
Example of step-wise refinement (2)

Implementation (↓) of a stack by an array with level index

```
Symboltable
↓Stack
Mapping
↓Symboltable
ArrayNat
Identifier
Attribute

Bool
Nat
Array
```

Implementation of a stack by an array with level index
Specification of a stack

module Stack;
  import Bool, true, false from Bool;
  Nat, zero from Nat rename Nat as Item, zero as error;
  export all;
  sort Stack;
  constructors
    newstack : -> Stack;
    push: Stack x Item -> Stack;
  operations
    isnewstack : Stack -> Bool;
    pop : Stack -> Stack;
    top : Stack -> Item;
  declare s : Stack; it : Item;
  operation axioms
    isnewstack(newstack) == true;
    isnewstack(push(s,it)) == false;
    pop(newstack) == newstack;
    pop(push(s,it)) == s;
    top(newstack) == error;
    top(push(s,it)) == it;
end module Stack;
Implementation of a stack

module Stack;
  import ArrayNat, (_,_), arrayOf _, natOf _ from ArrayNat;
  Array, empty, _[_/[_], read from Array; Bool from Bool;
  Nat, zero, succ, pre, _ = _, _ < _ from Nat
  rename Nat as Item, zero as 0, zero as error, succ as _+1, pre as _-1;
operations
  newstack : -> ArrayNat;
  push : ArrayNat x Item -> ArrayNat;
  pop : ArrayNat -> ArrayNat;
  top : ArrayNat -> Item;
  isnewstack : ArrayNat -> Bool;

declare an : ArrayNat; it : Item;
operation axioms
  newstack == (empty,0);
  push(an,it) == (arrayOf an[it/natOf an],natOf an + 1);
  pop(an) ==
    if natOf an = 0 then an else (arrayOf an,natOf an - 1) end if;
  top(an) ==
    if natOf an = 0 then error else read(arrayOf an, natOf an - 1) end if;
  isnewstack(an) == natOfan = 0;
end module Stack;
module ArrayNat; (* Record composed of an array and a natural number. *)
  import Array from Array; Nat from Nat;
  export all;
  sort ArrayNat;
  constructor (_,_) : Array x Nat -> ArrayNat;
  operations
    arrayOf _ : ArrayNat -> Array; (* Projection on first component *)
    natOf _ : ArrayNat -> Nat; (* Projection on second component *)
    _[_/array] : ArrayNat x Array -> ArrayNat; (* Replace first comp. *)
    _[_/nat] : ArrayNat x Nat -> ArrayNat; (* Replace second comp. *)
  declare a : Array; n : Nat; an : ArrayNat;
  operation axioms
    arrayOf((a,n)) == a;
    natOf((a,n)) == n;
    an[a/array] == (a,natOf an);
    an[n/nat] == (arrayOf an,n);
end module ArrayNat;
Abstract implementation (definition)

Let $A$ and $\downarrow A$ be modules. $\downarrow A$ is an **implementation** of $A$ ⇔

- $A$ defines a sort $S$, $\downarrow A$ defines (or imports) a sort $\downarrow S$
- **Data representation**: each $A$-constructor is mapped into an $\downarrow A$-operation
- **Procedure implementation**: each $A$-procedure is mapped into an $\downarrow A$-operation
- **Representation function**: each $A$-Term is mapped into an $\downarrow A$-term
- **Implementation invariant**: condition met by all $\downarrow S$-objects which implement $S$-objects
- **Abstraction function**: function which maps each $\downarrow S$-object meeting the implementation invariant into the corresponding $S$-object
- **Equivalence function**: defines $\downarrow S$-objects as equivalent which are mapped onto the same $S$-object
- Several constraints to be defined later are satisfied
Remarks

- No explicit distinction between module interface and module body (Modula-3 or Ada), but definition of an implementation relation between two modules $A$ und $\downarrow A$

- Data representation and procedure implementation jointly define the representation function

- Multiple $\downarrow S$-objects may be mapped into the same $S$-object

- The equivalence relation on $\downarrow S$-objects cannot be defined by term equivalence $==$, rather in general it is coarser than $==$ and is specifically defined for the implementation relation
Data representation: definition

Let $C$ be the set of constructors in $A$, $O$ the set of operations in $\downarrow A$. The **data representation** $d$ is a signature-preserving function $d : C \rightarrow O$ such that:

- For each nullary constructor $c : \rightarrow S$:  
  $d(c) : \rightarrow \downarrow S$

- For each constructor $c : S_1 \times \ldots \times S_n \rightarrow S$ ($n \geq 1$):  
  $d(c) : f(S_1) \times \ldots \times f(S_n) \rightarrow \downarrow S$, where  
  $f(S_i) = \downarrow S$ if $S_i = S$  
  $f(S_i) = S_i$ otherwise

(analogous definition for procedure implementation $p : P \rightarrow O$)
Example of data representation and procedure implementation

module Stack;
...
sort Stack; (* Sort S *)
constructors
  newstack : -> Stack;
  push: Stack x Item -> Stack;
operations
  pop : Stack -> Stack;
  top : Stack -> Item;
  isnewstack : Stack -> Bool;
...
end module Stack;

module Stack;
import ArrayNat ... from ArrayNat;
(* Imported sort \( S \) *)
...
operations
  newstack : -> ArrayNat;
  push : ArrayNat x Item -> ArrayNat;
  pop : ArrayNat -> ArrayNat;
  top : ArrayNat -> Item;
  isnewstack : ArrayNat -> Bool;
...
end module Stack;
Representation function: definition and example

Let $T$ be a set of terms, $d, p$ be a data representation and a procedure implementation, respectively. The induced representation function is a function $r : T \rightarrow T$ which eventually replaces all operations of $A$ by operations of $\downarrow A$:

- $r(f(t_1,\ldots,t_n)) =$
  - $d(f)(r(t_1),\ldots,r(t_n))$ if $f$ is an $A$-constructor
  - $p(f)(r(t_1),\ldots,r(t_n))$ if $f$ is an $A$-procedure
  - $f(r(t_1),\ldots,r(t_n))$ otherwise ($n \geq 0$)

\[
\begin{align*}
r(\text{pop}(\text{push}(\text{newstack},10))) &= \text{pop}(\text{push}(\text{newstack},10)) \\
p(\text{pop})(r(\text{push}(\text{newstack},10))) &= \text{pop}(\text{push}(\text{newstack},10)) \\
\downarrow\text{pop}(r(\text{push}(\text{newstack},10))) &= \text{pop}(\downarrow\text{push}(\text{newstack},10)) \\
\downarrow\text{pop}(d(\text{push})(r(\text{newstack}),r(10))) &= \text{pop}(\downarrow\text{push}(\text{newstack},10)) \\
\downarrow\text{pop}(\downarrow\text{push}(d(\text{newstack}),10)) &= \text{pop}(\downarrow\text{push}(\text{newstack},10))
\end{align*}
\]
Implementation invariant: definition and example

An **implementation invariant** is a Boolean function $I : \downarrow S \rightarrow \text{Bool}$ which all $\downarrow S$-objects meet which serve as implementations of $S$-objects.

```plaintext
operation I : ArrayNat -> Bool;
declare an : ArrayNat;
operation axiom
 I(an) == alldefined(arrayOf an,natOf an);
 (* All array elements up to the level index must be defined. *)

operation alldefined : ArrayNat x Nat -> Bool;
declare a : Array; n : Nat;
operation axiom
 alldefined(a,n) ==
 if n = 0
 then true
 else
 if isundefined(a,n-1)
 then false
 else alldefined(a,n-1)
 end if
end if;
```
Abstraction function: definition and example

An abstraction function is a function \( \downarrow S \rightarrow S \) which maps each \( \downarrow S \)-object into the \( S \)-object which it represents. (@ must be defined for all \( \downarrow S \)-objects which meet the implementation invariant \( I \).)

```
operation @ : ArrayNat -> Stack;
declare a : Array; n : Nat;
operation axiom
@((a,n)) ==
 if n = 0
 then newstack
 else push(@((a,n-1)),read(a,n-1))
end if;
```
An **equivalence relation** is a reflexive, transitive, and symmetric relation \( \sim \) which determines for two \( \downarrow S \)-objects whether they represent the same abstract \( S \)-object. 

(\( \sim \) must be defined for all \( \downarrow S \)-objects which satisfy the implementation invariant \( I \).)

```
operation _~_ : ArrayNat x ArrayNat -> Bool;
declare
 an, an1, an2, an3 : ArrayNat; a1, a2 : Array; n1, n2 : Nat;
operation axiom
 (a1,n1) ~ (a2,n2) ==
 if n1 = n2 then
 if n1 = 0 then true
 else (read(a1,n1-1) = read(a2,n2-1)) and (a1,n1-1) ~ (a2,n2-1)
 end if
 else false
end if;
theorems
 an ~ an == true; (* Reflexivity *)
 an1 ~ an2 == an2 ~ an1; (* Symmetry *)
 an1 ~ an2 and an2 ~ an3 => an1 ~ an3 == true; (* Transitivity *)
```
Implementation constraints (1)

- The implementation operations of $\downarrow A$ must be closed with respect to the implementation invariant $I$.

```plaintext
declare an : ArrayNat; it : Item;
theorem I(an) => I(\downarrow\text{push}(an, it)) == true;
```

- The composition of representation function and abstraction function yields the identity (with respect to term equivalence $==$).

```plaintext
(@(\uparrow\text{pop}(\uparrow\text{push}(newstack, it))) ==
(@(\downarrow\text{pop}(\downarrow\text{push}(\downarrow newstack, it)))) ==
(@(\downarrow\text{pop}(\downarrow\text{push}((\empty, 0), it)))) ==
(@(\downarrow\text{pop}((\empty[it/0], 1)))) ==
(@(((\empty[it/0], 0)) ==
newstack ==
pop(\uparrow\text{push}(newstack, it))))
```
Implementation constraints (2)

- If two $A$-terms are equal, their representations are equivalent.

\[
\text{pop(push(newstack,it)) == newstack} \Rightarrow \\
\text{r(pop(push(newstack,it)))} = \\
... = \\
(\text{empty[it/0],0}) \sim \\
(\text{empty,0}) = \\
\text{r(newstack)}
\]

- If two $\downarrow A$-terms satisfying the implementation invariant are equivalent, then their abstractions are equal.

\[
(\text{empty[it/0],0}) \sim (\text{empty,0}) \Rightarrow \\
\Rightarrow \text{newstack} = \\
\text{\text{empty,0})}
\]
Implementation constraints (3)

- The composition of abstraction function and representation function yields the identity (with respect to the equivalence relation ~).

\[
I((\text{empty}[\text{it}/0],0)) \Rightarrow \\
\forall \left((\text{empty}[\text{it}/0],0)\right) = \\
r(\text{newstack}) = \\
(\text{empty},0) \sim \\
(\text{empty}[\text{it}/0],0)
\]

- An A-term which does not have the sort S delivers the same value as its representation.

\[
r(\text{isnewstack}(\text{push}(\text{newstack},\text{it}))) = \\
\downarrow \text{isnewstack}(\downarrow \text{push}(\downarrow \text{newstack},\text{it})) = \\
\downarrow \text{isnewstack}(\text{empty}[\text{it}/0],1)) == \\
\text{false} == \\
\text{isnewstack}(\text{push}(\text{newstack},\text{it}))
\]
Conclusion
## Advantages of algebraic specifications

- Very general approach to the specification of abstract data types
- Behavioral specification which completely abstracts from the implementation
- Formal proofs of properties of abstract data types may be conducted
- Support of rapid prototyping for constructive specifications
- Step-wise refinement from a high-level specification down to the implementation
Disadvantages of algebraic specifications

- For the specification of equations an operational mental model is usually required
- Proofs are laborious, error-prone and can be automated only partially
- Application to large software systems difficult, lack of scalability
- No built-in type constructors (arrays, records, etc. must be specified explicitly)
- No connection to a programming language (code generation)
- Complicated theory (see e.g. refinements)
Book on which this chapter is based. To the best of my knowledge, this is the only book which treats algebraic specifications from the perspective of software engineering.

Fundamental, but very theoretical book on algebraic specifications.

Collection of papers which provides an overview of the current state of the art in research.