Specification with Graph Rewriting Systems

Characterization

- Formal specification of abstract data types
- Model-oriented specification
- Graphs as underlying data model
- Specification of read operations by graph tests, specification of write operations by graph rewrite rules
- Proof technique: induction
- Rapid Prototyping by generating code from the specification

Specification of Software Systems

Introductory Example

Specification of Software Systems

Representation of a list as a graph

Example of a graph rewrite rule

Example of a graph test

Interface of the abstract data type List

List creation and deletion	
CreateList	Creation of a list
DeleteList	Deletion of a list
Write operations	Insertion into an empty list
InsertFirstElement	Insertion before an element
PreInsertElement	Insertion after an element
PostInsertElement	Deletion of an element
DeleteElement	
Read operations	List empty?
IsEmpty	First element
GetFirstElement	Last element
GetLastElement	Next element
GetNextElement	Previous element
GetPreviousElement	Data of current element
GetData	

Specification of Software Systems

Cases of PreInsertElement

PreInsertLastElement

Example of programming with graph rewrite rules

Theoretical Foundations

Graphs

Definition: Directed, labeled graph

$G=(V, E, I)$ is a directed graph over label sets L_{V} (labels for vertices) and L_{E} (labels for edges) \Leftrightarrow
" V is a set of nodes (node identifiers).
" $E \subseteq V \times L_{E} \times V$ is a set of labeled edges.
» I:V $\rightarrow L_{V}$ is a labeling function for nodes.

Remarks:

- Nodes have identifiers, but not edges.
- Thus, there are no parallel edges with the same labels.
- Edges are binary relationships.
- Nodes and edges are typed (labeled).
- So far, neither nodes nor edges are attributed.

Specification of Software Systems

Example of a directed graph

$G=(V, E, I)$ with:

- $V=\{1,2,3,4,5\}$
- $E=\{(1$, First, 2), (1, Elem, 3), (1, Elem, 4), (1, Last, 5),
(2, Next, 3), (3, Next, 4), (4, Next, 5) \}
- $I=\{(1$, List $),(2$, Element), (3, Element), (4, Element), (5, Element) $\}$

Partial graphs and subgraphs

Definition: Partial graph

$G=(V, E, I)$ is a partial graph of $G^{\prime}=\left(V^{\prime}, E^{\prime}, I^{\prime}\right) \Leftrightarrow$
» $V \subseteq V^{\prime}$, i.e., the nodes of G are also contained in G^{\prime}.
» $E \subseteq E^{\prime}$, i.e., the edges of G are contained in G^{\prime}.
" $\left.I^{\prime}\right|_{v}=l$, i.e., the nodes of G have the same labels in G^{\prime}.

Definition: Subgraph

$G=(V, E, I)$ is a subgraph of $G^{\prime}=\left(V^{\prime}, E^{\prime}, I^{\prime}\right) \Leftrightarrow$
» G is a partial graph of G^{\prime}.
» $E=\left\{\left(v_{1}, e l, v_{2}\right) \in E^{\prime} \mid v_{1}, v_{2} \in V\right\}$
G contains all edges of G^{\prime} whose sources and targets are common to G and G^{\prime}.

Example of partial graphs and subgraphs

Graph

\qquad

Subgraph

Graph morphisms

Definition: Graph morphism

A function $h: V \rightarrow V^{\prime}$ is a graph morphism from G to G^{\prime}, i.e., $h: G \rightarrow G^{\prime} \Leftrightarrow$
» $\forall v \in V: l^{\prime}(h(v))=I(v)$, i.e., labels are preserved.
» $\forall\left(v_{1}, e l, v_{2}\right) \in E:\left(h\left(v_{1}\right), e l, h\left(v_{2}\right)\right) \in E^{\prime}$, i.e., edges are preserved.

Definition: Graph isomorphism

A graph morphism $h: G \rightarrow G^{\prime}$ is a graph isomorphism \Leftrightarrow
" $h: V \rightarrow V^{\prime}$ is injective and surjective
» $h: V \rightarrow V^{\prime}$ induces a function $h^{\prime}: E \rightarrow E^{\prime}$, which must be injective and surjective, as well.

Set-theoretic graph operations (1)

Definition: Union of graphs

Let G and G^{\prime} be directed graphs, $\|_{\vee \cap v^{\prime}}=\left.I^{\prime}\right|_{V \cap v}$:
» $G \cup G^{\prime}=G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}, I^{\prime \prime}\right)$ with
$\Rightarrow V^{\prime \prime}=V \cup V^{\prime}$
$\Rightarrow \forall v \in V^{\prime \prime}: l^{\prime \prime}(v)=\underline{\text { if }} v \in V$ then $I(v)$ else $I^{\prime}(v)$ end
$\Rightarrow E^{\prime \prime}=E \cup E^{\prime}$
» $G \oplus G^{\prime}$ disjoint union of G and G^{\prime} :
Rename nodes of G or G^{\prime} such that $V \cap V^{\prime}=\varnothing$, and apply the graph union defined above:
$G \oplus G^{\prime}=G \cup G^{\prime}$.

Set-theoretic graph operations (2)

Definition: Difference of graphs

Let G and G^{\prime} be directed graphs, $\left.I\right|_{v \cap v}=\left.I^{\prime}\right|_{v \cap v^{\prime}}$:
» $G \backslash G^{\prime}=G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}, l^{\prime \prime}\right)$ with
$\Rightarrow V^{\prime \prime}=V \backslash V^{\prime}$
$\Rightarrow l^{\prime \prime}=\| V^{\prime}$
$\Rightarrow E^{\prime \prime}=E \backslash E^{\prime}$ (without deletion of dangling edges)
» $G \backslash G^{\prime}=G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}, I^{\prime \prime}\right)$ with
$\Rightarrow V^{\prime \prime}=V \backslash V^{\prime}$
$\Rightarrow I^{\prime \prime}=\| V^{\prime}$
$\Rightarrow E^{\prime \prime}=\left(E \backslash E^{\prime}\right) \cap\left(V^{\prime \prime} \times L_{E} \times V^{\prime \prime}\right)=E \cap\left(V^{\prime \prime} \times L_{E} \times V^{\prime \prime}\right)$
(with deletion of dangling edges)

Set-theoretic graph operations (3)

Definition: Intersection of graphs

Let G and G^{\prime} be directed graphs, $\left.I\right|_{V \cap V^{\prime}}=\left.I^{\prime}\right|_{V \cap v^{\prime}}$:
» $G \cap G^{\prime}=G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}, I^{\prime \prime}\right)$ with
$\Rightarrow V^{\prime \prime}=V \cap V^{\prime}$
$\Rightarrow l^{\prime \prime}=\| V^{\prime \prime}$
$\Rightarrow E^{\prime \prime}=E \cap E^{\prime}$

Graph rewrite rules

Definition: Graph rewrite rule

A graph rewrite rule is a triple $r=(L, K, R)$ with:
» L, the left-hand side of r, is a graph.
» R, the right-hand side of r, is a graph.
» $K=L \cap R$ is the gluing graph.

Remarks

- Elements of L but not of K are deleted.
- Elements of R but not of K are inserted.
- Elements of K are preserved.
- K is called gluing graph because it is used for the embedding of new nodes of R.

Example of a graph rewrite rule (1)

production DeleteElement $=$

Example of a graph rewrite rule (2)

Application of a graph rewrite rule

(Direct) derivation
A graph G^{\prime} is derivable from a graph G by a rule $r=(L, K, R) \Leftrightarrow$
» There is an isomorphism $h: L \rightarrow G_{L}$, where G_{L} is a partial graph of G which determines the location of application of r.
» Nodes and edges of $G_{\llcorner }$not appearing as images of K are deleted:
$H=G \backslash(h(L) \backslash h(K))$
» Nodes and edges of R which do not belong to K are inserted:
$G^{\prime}=H \oplus h^{\prime}(R \backslash K)$, where
$\Rightarrow h^{\prime}$ maps nodes of $R \backslash K$ such that they do not occur in H,
\Rightarrow Context edges with sources or targets from K are transferred to the respective nodes in $h(K)$.

Other variants of graph rewrite rules

- h need only be a morphism \Rightarrow
» Higher flexibility by identification of graph elements
» Danger of undesired effects of rule applications
- G_{L} must even be a subgraph $G \Rightarrow$
» Larger left-hand sides
» Larger rule sets
- No edges from deleted nodes to context nodes (Dangling Edge Condition) \Rightarrow
» Exclusion of undesired side effects
» Large left-hand sides
- Empty gluing graph \Rightarrow
» Embedding of nodes of the right-hand side must be specified explicitly by embedding rules

Example of the application of a graph rewrite rule

Host graph

Graph rewriting systems

Definition: Graph rewriting system

A graph rewriting system is a tuple $g s=\left(L_{V}, L_{E}, R, S\right)$ with:
» L_{V} : finite set of node labels
» L_{E} : finite set of edge labels
» R : finite set of rules $r=(L, K, R)\left(L, K, R\right.$ graphs over $\left.L_{V}, L_{E}\right)$
" S : start graph (over L_{V} and L_{E})

Definition: Derivability

Let $g s=\left(L_{V}, L_{E}, R, S\right)$ be a graph rewriting system. A graph G is derivable from the start graph S using the rule set $R g s \Leftrightarrow$
There is a sequence $G_{1} \ldots G_{n}$ with

$$
S \rightarrow G_{1} \ldots \rightarrow G_{n}=G
$$

Proof techniques

Proof by induction

A predicate p is proved for all derivable graphs as follows (n : length of derivation):
$1 n=0: p$ holds for the start graph S.
$2 n \rightarrow n+1$: Let G be a graph which may be derived in n steps from the start graph.
Induction assumption: p holds for G.
Induction conclusion: p holds for all graphs G^{\prime} which may be derived from G by some rule r (in one derivation step). (Induction conclusion has to be proved for all rules r and all potential locations of application.)

Examples of (provable) properties of list graphs

- Each list has at most one First element.
- Each list has at most one Last element.
- The First element does not have a predecessor.
- The Last element does not have a successor.
- Each element has at most one predecessor.
- Each element has at most one successor.
- ...

Specification with PROGRES

What is PROGRES?

- PROGRES = PROgrammed GRaph REwriting Systems
- Multiparadigmatic Specification language, based on graph rewriting
» Object-oriented modeling of graph schemata
» Declarative definition and incremental evaluation of derived attributes
» Rule-based and visual specification of graph tests and graph transformations
» Imperative and non-deterministic programming
- Development environment for the construction of specifications
» Syntax-aided editor
» Static analyses
» Interpreter
» Code generator

Components of PROGRES

Example

Tools for programming-in-the-large

Explanations

- There are three types of modules (fm, ado, adt).
- The function module (fm) Main exports a set of functions; it has exactly one body variant.
- This variant imports the modules UserInterface and Files.
- The data object module (ado) UserInterface realizes a data store and its access operations (in exactly one variant).
- The interface of module UserInterface imports from the module Files the type File.
- The data type module (adt) Files exports a data type with operations for creating and manipulating an arbitrary number of instances; it has two variants.
- Properties of variants are defined through a set of attributes (ws for Window System and OS for Operating System).
- Attributes either have concrete values (like UNIX or MSDOS) or are undefined.

Desired tool functionality

- Syntax-aided editing of module graphs (context free correctness is enforced, e.g. variant import do not emanate from module interfaces)
- Checking of context sensitive constraints (e.g., no import cycles)
- Completely automatic or semi-automatic configuration of system variants satisfying given properties (Attention: Requires consistent selection of variants. In the example, there is only one consistent configuration for $\mathrm{WS}=\mathrm{x}$ and $\mathrm{OS}=$ UNIX.)

Attributed Graphs and Graph Schemata

PROGRES schema editor

Definition of attributes

a A graph schema may be specified both textually and graphically.

- Attributes and attribute evaluation rules may be defined in a textual (sub-)view.
- Intrinsic attributes receive their values by explicit assignment and may be initialized with a constant.
- Derived attributes are calculated from the attribute values of related nodes with the help of a (directed) equation.
- Related nodes are all nodes which may be reached via a path, e.g.: » self: Returns the current node
» -e-> and <-e--, respectively : Traversal of edges of type e (in forward and backward direction, respectively)
» Concatenation:p1 \& p2

Textual definition of a graph schema (2)

```
edge type has : SPECIFICATION [1:1] -> REALIZATION [0:n];
    (* A 'SPECIFICATION' 'has' an arbitrary number of *)
    (* 'REALIZATIONS', but a 'REALIZATION' belongs to a *)
    (* uniquely defined 'SPECIFICATION'. *)
node class COMPLEX is a UNIT
    redef derived
        Size = addSize( 0, all self.-contains-> );
            (* The 'Size' of a complex unit is the sum of *)
            (* the 'Size' of all its children. *)
end;
node class ATOM is a UNIT
    intrinsic
        File : file; (* Pointer to externally stored file. *)
    redef derived
        Size = size( self.File );
        (* 'Size' is the length of the attached File *) Edge type
end;
edge type contains : COMPLEX [1:1] -> ATOM [0:n];
    (* A 'COMPLEX' may contain 0 to n 'ATOM' nodes.
    (* Conversely, an 'ATOM' node is contained in exactly
    (* one'COMPLEX'. *)
```


Textual definition of a graph schema (3)

```
node class SYSTEM is a SPECIFICATION, COMPLEX
    redef derived
        Size = addSize( 0, all self.-contains-> );
            (* Resolves inheritance conflict of attribute *)
            (* definitions in 'SPECIFICATION' and 'COMPLEX' *)
            (* by preferring definition in 'SPECIFICATION'. *)
end;
node class CONFIGURATION is a REALIZATION, COMPLEX end;
    (* A 'CONFIGURATION' is a set of variants of module *)
    (* realizations which fulfill all required properties. *)
node class MODULE is a SPECIFICATION, ATOM
    redef derived
        Size = size( self.File ) + max( 0, all self.-has->.Size );
            (* Resolves inheritance conflict of attribute *)
            (* definitions in 'SPECIFICATION' and 'COMPLEX' *)
            (* by building the sum of both definitions which *)
            (* are in conflict to each other. *)
end; (* A 'SYSTEM' contains a set of 'MODULES' which *)
    (* have 'VARIANTS' as their realizations. *)
node class VARIANT is a REALIZATION, ATOM end;
```


Attribute redefinition conflicts

Path expressions and restrictions

- A path expression is
" a derived relation between nodes (edges are intrinsic relations):
$v_{1}=p=>v_{2} \Leftrightarrow$ There is a path p from v_{1} to v_{2}
» a function on node sets:
$p(V)=\left\{v_{2} \mid \exists v_{1} \in V: v_{1}=p=>v_{2}\right\}$
- A restriction is a "unary path expression", i.e., a set of nodes is restricted to those elements which satisfy a certain condition.
- Path expressions and restrictions may be specified:
» textually
» graphically

Specification of Software Systems

Textual path expressions

Operator	Semantics
$p \& q$	Concatenation of p and q
p or q	Connection by p or q
p and q	Connection by p and q
p but not q	Connection by p but not by q
$[p \mid q]$	Connection by p, else by q
$p+$	Transitive closure
p^{*}	Reflexive and transitive closure
$\{p\}$	Maximal iteration

Examples of textual path expressions

```
path needs : ATOM [0:n] -> MODULE [0:n] =
    (* The path 'needs' connects any variant or module to its imports. *)
        ( instance of MODULE & =moduleNeeds=> )
    or ( instance of VARIANT & =variantNeeds=> )
end;
path moduleNeeds : MODULE [0:n] -> MODULE [0:n] = -m_uses-> end;
path variantNeeds : VARIANT [0:n] -> MODULE [0:n] =
    -v_uses-> or ( <-has- & instance of MODULE & -m_uses-> )
end;
path dependsOn : MODULE [0:n] -> MODULE [0:n] =
    (* connects module to its interface imports & imports of its variants. *)
    ( self or -has-> ) & =needs=>+
end;
```


Example of a graphical path expression

Specification of Software Systems

Graph Rewrite Rules

Specification of Software Systems

Composition of graph rewrite rules

```
production P ( parameter list ) =
    Left-hand side with:
    - single nodes, set nodes, negative/optional nodes
    - positive and negative edges between pairs of nodes
    - positive and negative paths between pairs of nodes
    - node restrictions
    ::=
Right-hand side with:
    - single nodes, set nodes, optional nodes
    - edges between pairs of nodes
fold Specified nodes may be identified;
condition Conditions on attributes of left-hand side nodes;
embedding Embedding rules for nodes of right-hand side;
transfer Attribute assignments for nodes of right-hand side;
return Assignments to out parameters;
end;
```


Elements of left-hand sides and right-hand sides

Example for parameters, negative nodes, attribute transfer, etc.

```
production CreateModule(MName : string; InterfaceDescription : file;
                            MType : type in MODULE; out NewM : MODULE) =
    |-----------------------------------------------
    ::=
    |
(* Creates a module with
name 'MName'if the 'System
                                does not already contain a
                                module with this name. The
                                'Mtype' parameter is a
                        'FunctionModule' or
                                'ADTModule' or 'ADOModule'.
    *)
    _ondition '2.Name = MName; (* Conditions only for normal nodes *)
end;
restriction name(UName : string) : UNIT = valid (self.Name = UName) end;
```


Example of optional set nodes

production DeleteModule(Module : MODULE) =

Example of a negative path

Embedding rules

Rule	Semantics
copy -e-> from `n to m' & Copy outgoing e edges from node ` n of the left-hand side to node m^{\prime} of the righthand side	
remove -e-> from 'n	Delete outgoing e edges from node ` n
redirect -e-> from ' n to m '	Redirect outgoing e edges from ' n to m '
<-e- instead of -e->	Analogously for incoming rather than outgoing edges
-e-> as -f-> instead of -e->	Relabeling
-e-> as <-f- statt -e->	... and change of direction

Example of embedding rules

PROGRES rule editor

Example of a graph test

```
test UnresolvedImport(InConfig : Config; out MSet : MODULE [1:n]) =
```



```
end;
(* Returns all modules which are needed by some variant already
selected but for which no variant is included yet in the
configuration. *)
```


Searching for subgraphs

- Complexity of naive implementation: $o\left(n^{k}\right)$ (for each of k nodes in L there are n candidates in G).
- Heuristics (sketch):
» Start at those nodes which are fixed by input parameters.
» Extend the match by nodes which may be determined in a unique way (incoming or outgoing edges of cardinality 1).
» Process remaining candidate sets by increasing cardinality.
» Process set nodes at the end.

Specification of Software Systems

Control Structures

Control structures: motivation and properties

- Composition of graph tests into complex queries (which do not modify the host graph)
- Composition of graph rewrite rules (and graph tests) into complex transactions
- ACID properties of transactions (and graph rewrite rules):
» Atomic: either complete execution or no modification of the host graph
» Consistent: consistency-preserving transformation
» Isolated: isolation in multi-user mode
» Durable: persistent
- Additional property: non-determinism
- Failure of executing an operation results in backtracking

Overview of control structures

Control structure	Semantics
$p \& q$	Sequence
p and q	p und q in any order
p or q	Non-deterministic choice
choose p1 else p2 ... end	Try p1, else p2 ...
loop p end	Loop (execute p as long as possible)
for all n do p end	Execute p for all nodes n
use v : ... do p end	Block with declaration of variables

Example of a transaction with backtracking

```
transaction CreateConfig(CName : string; CProps : string [0:n]) =
    use ReqProps := CProps do
        InitConfig(CName, ReqProps, out ReqProps)
        & loop
            ResolveImport(CName, ReqProps, out ReqProps) (* see p. 56 *)
        end
        & not UnresolvedImportExists(CName) (* similarly to p. 57 *)
    end
end;
```


Specification of Software Systems

Rule for initializing a configuration

production InitConfig(CName : string; CPropsIn : string; out CPropsOut : string) =

$$
\text { condition } 3 . \text { Props in CPropsIn; }
$$

$$
\text { transfer } 4^{\prime} . \text { Name }:=\text { CName; }
$$

$$
\text { return CPropsOut }:=\text { merge(`3.Props, CPropsIn); }
$$

end;

Example (1)

Example (2)

Example (3)

ResolveImport("C", \{\}, out ReqProps = \{OS:MSDOS\})

Example (4)

- ResolveImport fails for the module UserInterface because \{OS:UNIX\} in $\{O S: M S D O S\}$ does not hold.
- Loop terminates successfully, but the subsequent test UnresolvedImportExists reveals an unresolved import.
- As a result of backtracking, the previous selection of the variant of Files is revised (slide 68 shows the situation after selection of another variant).
- Finally, a variant of UserInterface may be selected successfully (slide 69).

Example (5)

ResolveImport("C", \{\}, out ReqProps = \{OS:UNIX\})

Specification of Software Systems

Example (6)

ResolveImport("C", \{OS:UNIX\}, out ReqProps = \{WS : X , OS:UNIX\})

Specification of Software Systems

Summary

Advantages of specifying with graph rewrite rules

- Graphs are an appropriate data model for a large set of applications.
- Even complex data structures with a high number of consistency constraints may be represented as graphs.
- Complex graph transformations may be specified declaratively by graph rewrite rules.
- Visual programs composed of graph rewrite rules are easy to comprehend.
- The specification is operational, code generation is supported (for rapid prototyping).

Disadvantages of specifying with graph rewrite rules

- Generality is constrained: commitment to a specific data model.
- For simple data types, graphs and graph transformations are an "overkill".
- Potential efficiency problems (subgraph search is NP-complete).
- In case of PROGRES:
» Very expressive, but also very complex language.
» Specifying-in-the-large not completely elaborated.

Literature

- G. Rozenberg (Ed.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations, World Scientific (1997) Collection of papers on the theory of graph rewriting systems
- H. Ehrig et al. (Eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools, World Scientific (1999)
Applications of graph rewriting systems, including e.g. chapters on PROGRES and its applications
- A. Schürr: Operationales Spezifizieren mit programmierten Graphersetzungssystemen, Deutscher Universitätsverlag, Wiesbaden (1991)

PROGRES language definition (in German)

- A. Schürr, B. Westfechtel: Graphgrammatiken und

Graphersetzungssysteme, script for the corresponding lecture, Aachener Informatik-Berichte 92-15 (1992)
Survey of the most important approaches concerned with graph rewriting

