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CharacterizationCharacterization

Specification language for the telecommunication domain

Primarily process-oriented, even though data-oriented parts are also 
included

Primarily targeted at the specification of processes, process states, and 
communication behavior

Model-oriented specification, based on extended state machines

Operational specification, i.e., SDL specifications are executable

SDL is actually used in industry (e.g., at Ericsson)
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IntroductionIntroduction
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Application domain: telecommunicationApplication domain: telecommunication

Telephone Telephone Telephone Telephone

Telephone Telephone Telephone Telephone
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Call processingCall processing

Establish connection:
» A path through the network is established from the caller to the callee
» For the connection, processes are created dynamically on the switching 

computers and the terminal devices

Conversation:
» Transfer of data along the connection

Release connection:
» Processes created for the connection are destroyed
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History of SDL (Specification and Description Language)History of SDL (Specification and Description Language)

1972 Start of the development of SDL 

1976 First version, issued by CCITT 
(Comité Consultatif International Télégraphique et Téléphonique), 
now ITU (International Telecommunications Union) 

1980 Structuring concepts (hierarchy) 

1984 Abstract data types 

1988 Formal definition von SDL (FDT = Formal Description Technique)

1992 Object orientation, non-determinism, RPCs 

1996 „Smoothening“ of SDL-92 (SDL-96 is basis of this lecture) 

2000 Agents, interfaces, exception handling, composite states 
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Basic concepts of SDLBasic concepts of SDL

A system consists of a set of communicating processes

Processes may be created and destroyed dynamically

Processes communicate by sending and receiving of signals

Actual communication paths between processes are determined only at 
runtime

The behavior of a process is defined by an extended state machine
(explicit states + local variables)
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Specification level and runtime levelSpecification level and runtime level

Specification level

An SDL specification is structured 
hierarchically:

» System: root
» Block: inner node (as many 

nesting levels as desired)
» Process: leaf

Note: A leaf of the hierarchy represents 
a set of process instances sharing the 
same specification

Blocks are introduced to structure the 
specification

Block and process types allow reuse 
at multiple places in the hierarchy

Runtime level

At runtime, a system consists of a 
dynamic set of process instances

This set is flat, i.e., some process Q
generated by some process P exists 
independently of P

The communication paths between 
process instances are determined 
dynamically

In particular, processes P and Q may 
communicate even if they are not 
connected by a static communication 
path
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Graphical and textual syntaxGraphical and textual syntax

SDL specifications may be written alternatively in graphical or textual syntax

Both notations are equivalent and may be transformed into each other

In particular, the graphical notation is complete

In the sequel, the graphical notation will be preferred

Graphical syntax
(SDL-GR)

Textual syntax
(SDL-PR)
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Basic SDLBasic SDL
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Structure of specifications (1): hierarchiesStructure of specifications (1): hierarchies

Specifications of systems, blocks, and processes may be nested physically 
(like e.g. nested procedures in Pascal)

Disadvantages:
» Mixing of hierarchy levels
» Unreadable in case of large specifications

System

Block 1

Block 1.1

Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2
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Structure of specifications (2): remote specificationsStructure of specifications (2): remote specifications

Instead of physical nesting, a reference to a remote specification may be 
introduced (cf. e.g. local packages in Ada)

Semantics: replace the reference with the specification

Disadvantages: 
» No reuse (exactly one reference)
» Remote specification depends on the context of the reference

System

Block 1

Block 1.1

Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2Block 1.1 Reference

Remote specification
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Structure of specifications (3): block and process typesStructure of specifications (3): block and process types

In case of a block or process types, specifications may be reused at 
different locations in the hierarchy 

Type declarations do not depend on the context of the applied occurrence

System

Block 1

BlockT
Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2 : BlockTBlock 1.1 : BlockT Applied
occurrence

Remote specification
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Scopes and packagesScopes and packages

Systems, blocks, and processes define scopes

Scoping rules are the same as in Pascal (i.e., a declaration is visible in its
scope and all enclosing scopes unless hidden)

Reusable type declarations are provided in packages

Import clauses make declarations contained in packages visible elsewhere

System S

Block A

Block B

Process P Process Q

Block C
use P1

Package P1

Process type RT Block type BT . . .
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Block and process interaction diagramsBlock and process interaction diagrams

. . .

system S
Block interaction diagram for
System S

. . . Block or process interaction
diagram for block B

block B

B Reference to
remote specification of B

P Reference to remote
specification of P

[s1, s2]

Uni-directional
channel C (without delay)
for transmitting signals s1
and s2

[s1, s2]

Uni-directional channel C
(with delay) for
transmitting signals s1 and
s2

[s1, s2]

Bi-directional channel C
(without delay) for
transmitting signals s1, s2
and s3, s4, respectively

[s3, s4]

[s1, s2]

Bi-directional channel C
(with delay) for transmitting
signals s1, s2 and s3, s4,
respectively

[s3, s4]

C

C

C

C
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Channels and signal routesChannels and signal routes

Communication paths between blocks are called channels

Communication paths between processes are called signal routes

Signal routes are always undelayed

Channels may or may not have a delay

A bi-directional communication path stands for two uni-directional 
communication paths

Association between communication paths in hierarchical specifications:
» In physically nested diagrams: graphical position
» In case of remote specifications: matching names
» m:n associations between parent and child are allowed
» Signal flow may even be non-deterministic (at least statically)
» Balancing rule for mutually associated communication paths:

The set of transmitted signals must be the same in parent and child
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Example of an interaction diagramExample of an interaction diagram
system S

B2

[s1, s2]

[s5, s6]

[s1, s2]

[s3, s4]

C4

C1

block B1

C2

[s1, s3]

C3

P1 P2
S1

[s1, s3]

S2 S3
[s1, s2][s1]

S4 S5
[s3, s4] [s1, s2]

S6

[s5, s6]

C5 [s7, s8]

block B2

P4P3
S1

[s5, s6]
C4

C5

S2 S3
[s8][s7]

S4

[s9][s10]
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Process and block typesProcess and block types

Process and block types enable reuse in the specification

Process and block types may be declared locally, or they may be imported 
from packages

An applied occurrence of a block type stands for exactly one block

An applied occurrence of a process type stands for a set of process 
instances

The cardinality of process instances may be constrained as follows (the 
lower bound simultaneously defines the number of initial instances):
» (0,n): unconstrained number of instances (default)
» (1,n): at least one instance
» (1,1): exactly one instance
» (0,1): at most one instance

Gates define the connection points of process and block types (roughly 
corresponding to formal parameters of procedures)
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Graphical notation of block and process typesGraphical notation of block and process types

. . . Interaction diagram for
block type BT

blocktype BT

Reference to the
remote specification
of block type BT

Reference to the
remote specification
of process type PT

PT

gate1
B : BT
gate2

Instance B of block type BT
with gates gate1 and gate2

gate1 (1,n)
P : PT
gate2

BT
Instance P of process type PT
with cardinality (1,n) and
Gates gate1 and gate2

gate1

gate2
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Definition of signalsDefinition of signals

In the simplest case, a signal does not carry further information, e.g.,
» signal Ready, Active, Suspended ...;

In general, a signal may carry a tuple of values, e.g.
» signal State(TState);
» newtype TState

literals Ready, Active, Suspended ...;
endnewtype TState; /* Aufzählungstyp */

The following types are available:
» Pre-defined types (integer, real, boolean, character, charstring)
» Records
» Arrays
» Sets
» Enumeration types
» Abstract data types
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Extended state machinesExtended state machines

The behavior of processes is defined by extended finite automata (states, 
transitions, local variables)

A process is idle while residing in a state

An incoming signal triggers a state transition

During a state transition, the following actions may be executed:
» Assignment of values to local variables
» Decisions (branches)
» Sending of signals
» Creation of process instances
» Termination (a process instance may terminate only itself)

In the graphical notation, states may be replicated to improve readability
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Graphical notation of state machinesGraphical notation of state machines

Assignment

Decision (at least
2 branches)

Process creationStart state

Ordinary state

Variable
declaration

Receiving
a signal

Sending a
signal

Termination
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Communication between process instancesCommunication between process instances

Each process has an input queue of 
signals which are processed in FIFO 
order

A transition consumes the head of the 
input queue

Process
instance

Process
instance

Process
instance

Signal

Input queue

Input queue

Input
queue

Signal

Signals without a transitions are 
consumed without state change 
(implicit transition)

Each signal is sent to only one receiver 
(no broadcasting or multicasting)



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 24

Addressing of processesAddressing of processes

Each process instance is designated by a unique process identifier (of type 
PId)

Process identifiers may be sent as values of signals and may be stored in 
local variables ⇒ communication at runtime need not occur along the static 
channels and signal routes

Explicit addressing: When sending a signal, the receiver is specified 
explicitly, using the following pre-defined variables if appropriate:
» self: the current process
» sender: the process from which the last signal was received
» offspring: the last process created by the current process
» parent: the process which created the current process

Implicit addressing: Specification of a communication path along which the 
signal will be sent:
» Signal route
» Gate
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ExampleExample
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System System ToffeeVendorToffeeVendor
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Block Block DialogueDialogue

Viewer
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Process Process ControlControl (1)(1)

payment
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Process Process ControlControl (2)(2)
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Process type Process type CoinHdlrCoinHdlr (1)(1)
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Process type Process type CoinHdlrCoinHdlr (2)(2)
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Block type Block type WareManagerWareManager
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Process Process ContentsContents
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Process type Process type ViewerViewer (1)(1)



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 35

Process type Process type ViewerViewer (2)(2)
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Comments on Comments on ToffeeVendorToffeeVendor and and DialogueDialogue
ToffeeVendor

Machine for selling toffee, chocolate, 
and (chewing) gum

Accepts the coins Coin10, Coin50
and Coin100

Dialogue manages the dialogue with 
the user:
» InpC: Selection by the user
» Pay: Payment
» Flush: Return of money

WMgr manages the goods on stock:
» OutW: Output of goods
» Sync: Communication with 

Dialogue

Dialogue

CoinH handles the coins:
» Plop: Coins inserted by the user
» Pong: Coins output by the machine
» Cash: Communication with 

Control

ViewPt manages user selections and 
outputs:
» Look: Communication with the 

user
» Displ: Communication with 

control

Control is the control unit:
» Int: Interrupt by the user
» Comm: Communication with WMgr



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 37

Comments on Comments on ControlControl

Control of money and display

Creation of the processes CoinH and ViewPt

After user selection, initiate check whether requested good is present

If present, display price and availability of change

Accept coins until price is payed

Return change (if any)

In case of time out or interrupt, terminate current action and return money

In case of maintenance or full stock of coins, lock coin slot and terminate process
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Comments on Comments on CoinHdlrCoinHdlr andand ContentsContents

CoinHdlr

Initialization of coin stock

On reception of Accept signal, receive 
coins and update stock until a wrong 
coin is inserted or the Close signal is 
received

Signal a full stock of coins to Control

On reception of Release, return the 
specified amount

On reception of the Change signal, 
check whether sufficient change is 
available

Contents

Initialization of ware storage

On reception of the Exists signal, 
reply whether the requested good is 
present

On reception of the Paid signal, output 
requested good and update ware 
storage

Terminate if the ware storage is 
exhausted
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Advanced ConceptsAdvanced Concepts
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Combined block specificationsCombined block specifications

Up to now: Refinement of a block either by a block interaction diagram or a 
process interaction diagram

Combined block specification: Refinement both by a block interaction 
diagram and a process interaction diagram

Refinements are alternatives and should be equivalent (which cannot be 
guaranteed)

Interpretation of the specification on a consistent cut:
» In case of selecting a process interaction diagram, refinements ends 
» Otherwise, the refining blocks are taken into account (interpretation on a 

more detailed level)
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Example: Protocol specificationExample: Protocol specification

Protocols in telecommunication are structured into (abstraction) layers

On each layer, communication is specified by a process interaction diagram

Communication is realized on the next lower layer ⇒
Specification by a block interaction diagram
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Process interaction diagramProcess interaction diagram
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Block interaction diagramBlock interaction diagram
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Combined channel specificationCombined channel specification

Channels may be refined like blocks 

A channel is refined by an interaction diagram

The blocks to be connected serve as interfaces of the interaction diagram
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Example of a combined channel specificationExample of a combined channel specification
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Refinement of a channelRefinement of a channel
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ProceduresProcedures

A procedure serves to structure local computations in a process

A procedure may have formal parameters which are replaced with actual 
parameters when the procedure is called

Similarly to a process, a procedure is defined by an extended state machine

When a procedure is called, the calling process is suspended until the 
procedure call has been executed

During execution of the call, the input queue and the variables of the calling 
process may be executed

In addition to local calls, there are also remote procedure calls
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Graphical notation of proceduresGraphical notation of procedures

Procedure
start

Procedure
end

Procedure call

Function call
in assignment

Function call
in condition

call P

 x := call P

 x = call P
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Example of a procedure specificationExample of a procedure specification
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ServicesServices

Instead of an extended state machine, a process may be described by a 
service interaction diagram

In this case, a process consists of a set of interacting services

Concurrency within a process is prohibited, i.e., at each point in time at most 
one service may perform a state transition

Services share the variables and the input queues of the process

For each signal, there may be only one service which handles this signal

Graphical notation of a service reference:

<service_name>
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Service interaction diagram for the process Service interaction diagram for the process CoinsCoins
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Service Service CoinsCoins (1)(1)
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Service Service CoinsCoins (2)(2)
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Service Service GetCoinGetCoin
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Refinement of signalsRefinement of signals

A signal may be refined by a set of signals

A channel transmitting a refined signal automatically transmits all of its 
refinements

In the refinement, bi-directional signals are permitted even for uni-directional 
channels

Refinement does not have a dynamic semantics:
» Signals are not composed or decomposed dynamically
» At runtime, either the complex signal or the refining signals may be 

transmitted
» Therefore, it is not allowed to refine only one end of a channel when 

defining a consistent cut for execution
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Example of the refinement of signalsExample of the refinement of signals
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Specification of ProtocolsSpecification of Protocols
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Layered architecture of telecommunication systemsLayered architecture of telecommunication systems

Eventually, data must be transmitted on physical channels 

However, the user would like to send logical objects (e.g., files)

Solution: layered architecture with multiple levels of abstraction

User A

Layer n Service provider

Service provider

. . .

Layer n-1

Layer 0

User B

Service provider

Service provider

. . .

Service provider Service provider

Logical communication

Physical communication
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Example: OSI reference modelExample: OSI reference model

OSI: Open Systems Interconnection Standard  (ISO)

Physical layer

Data link layer

Network layer

Transport layer

Session layer

Presentation layer

Application layer

Transmission of bit streams

Error correction

Routing

Ordering, flow control

Session management

Data compression

(e.g., File transfer)
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Basic notionsBasic notions

(N)-service: Service on layer N

(N)-service provider: Provider of the service

(N)-service user: User of the service

(N)-service access point:
Access point which provides the service provider to the service user

(N)-service primitive: Communication primitive of a service

(N)-service data unit: Transport unit for data on layer N

(N)-layer: Layer N

(N)-protocol: Providing for providing the service

(N)-entity: Entity on layer N

peer entity: Entity on the same level (“partner”)

(N)-protocol data unit: Data unit of the protocol on layer N
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Generic model of layersGeneric model of layers

Fig. 10.3, S. 248



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 62

Service primitivesService primitives

request: Service user requests an action

indication: Service provides indicates the request to the partner

response: Partner responds to the indicated request

confirm: Service confirms that the request has been delivered

Message
Sequence

Chart
(MSC)

Fig. 10.5, S. 250
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Service specification in SDLService specification in SDL

Ex. 10.1, S. 255



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 64

Protocol specification in SDLProtocol specification in SDL

Ex. 10.2, S. 257
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Alternative specification with a complex channel (1)Alternative specification with a complex channel (1)

Ex. 10.3, S. 258
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Alternative specification with a complex channel (2)Alternative specification with a complex channel (2)

Ex. 10.3, S. 259
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Example: Example: InresInres systemsystem

Inres: Initiator - Responder

Connection-oriented service for transmitting data

Use of a connection-less medium (potential data losses)

Fig. 10.7, S. 260
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Survey of service primitivesSurvey of service primitives

ICONreq: Initiator requests connection

ICONind: Service provider indicates 
this to the responder

ICONres: Responder replies

ICONconf: Service provider confirms 
the connection

IDATreq(ISDU) : Initiator sends data

IDATind(ISDU) : Service provider 
transmits data to the responder

IDISreq: Responder aborts connection

IDISind: Service provider indicates this 
to the initiator

Fig. 10.8, S. 261
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Behavior of the Behavior of the InresInres service (1)service (1)

Fig. 10.9a-c, S. 262
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Behavior of the Behavior of the InresInres service (2)service (2)

Fig. 10.9d-f, S. 263
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Behavior of the Behavior of the InresInres service (3)service (3)

Fig. 10.9g-i, S. 264
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Behavior of the mediumBehavior of the medium

S. 265
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The The InresInres protocolprotocol

Fig. 10.12, S. 267



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 74

Operation of the protocolOperation of the protocol

Establish connection:
After initiation through ICONreq the connection is established, if possible. In 
case of errors (e.g., timeouts), the attempt to establish a connection is 
aborted.

Data transfer:
After initiation by IDATreq data are transferred, if possible. Each receipt is 
acknowledged. In case of timeouts, the transfer of data is attempted multiple 
times. In order to recognize duplicate transfers, data are marked with an 
alternating bit.

Release connection:
The connection may be released by the responder or by the service 
provider.
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InresInres systemsystem

Ex. 10.4, S. 270
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Process Process ISAP_Manager_IniISAP_Manager_Ini

Ex. 10.5,S. 272
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Process Process ISAP_Manager_ResISAP_Manager_Res

Ex. 10.6, S. 273
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InresInres protocolprotocol

Ex. 10.7, S. 275
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Process Initiator (1)Process Initiator (1)

Ex. 10.8, S. 277
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Process Initiator (2)Process Initiator (2)

Ex. 10.8, S. 278
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SummarySummary

SDL is a standard for the specification of telecommunication systems

There are industrial applications of SDL

SDL has a long history

In particular, it is well suited for layered communication architectures

SDL specifications are operational ⇒
Generation of code from the specification

SDL has a formally defined semantics

But (to the best of my knowledge) there is no verification calculus (no proofs)

Model-oriented specification

Process specifications resemble flow diagrams ⇒
What about structured programming?

Overall fairly low level of abstraction



Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 82

LiteratureLiterature
J. Ellsberger, D. Hogrefe, A. Sarma: SDL - Formal Object-Oriented 
Language for Communicating Systems, Prentice Hall (1997)
Book on which this chapter is based. Informal description of SDL-96. 
Unfortunately, primary written for experts.

D. Hogrefe: Estelle, Lotos und SDL, Springer-Verlag (1988)
Introduction into three specification languages for telecommunication 
systems. Readable, but out-of-date.

A. Sarma: Introduction to SDL-92, Computer Networks and ISDN Systems 
28, 1603-1615 (1992)
Introductory, short article on SDL.

F. Belina, D. Hogrefe: The CCITT-Specification and Description 
Language SDL, Computer Networks and ISDN Systems 16, 311-341 
(1988/89)
A longer article on SDL-88.


