
Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel

Specification of Software Systems

SDLSDL

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 2

CharacterizationCharacterization

Specification language for the telecommunication domain

Primarily process-oriented, even though data-oriented parts are also
included

Primarily targeted at the specification of processes, process states, and
communication behavior

Model-oriented specification, based on extended state machines

Operational specification, i.e., SDL specifications are executable

SDL is actually used in industry (e.g., at Ericsson)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 3

IntroductionIntroduction

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 4

Application domain: telecommunicationApplication domain: telecommunication

Telephone Telephone Telephone Telephone

Telephone Telephone Telephone Telephone

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 5

Call processingCall processing

Establish connection:
» A path through the network is established from the caller to the callee
» For the connection, processes are created dynamically on the switching

computers and the terminal devices

Conversation:
» Transfer of data along the connection

Release connection:
» Processes created for the connection are destroyed

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 6

History of SDL (Specification and Description Language)History of SDL (Specification and Description Language)

1972 Start of the development of SDL

1976 First version, issued by CCITT
(Comité Consultatif International Télégraphique et Téléphonique),
now ITU (International Telecommunications Union)

1980 Structuring concepts (hierarchy)

1984 Abstract data types

1988 Formal definition von SDL (FDT = Formal Description Technique)

1992 Object orientation, non-determinism, RPCs

1996 „Smoothening“ of SDL-92 (SDL-96 is basis of this lecture)

2000 Agents, interfaces, exception handling, composite states

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 7

Basic concepts of SDLBasic concepts of SDL

A system consists of a set of communicating processes

Processes may be created and destroyed dynamically

Processes communicate by sending and receiving of signals

Actual communication paths between processes are determined only at
runtime

The behavior of a process is defined by an extended state machine
(explicit states + local variables)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 8

Specification level and runtime levelSpecification level and runtime level

Specification level

An SDL specification is structured
hierarchically:

» System: root
» Block: inner node (as many

nesting levels as desired)
» Process: leaf

Note: A leaf of the hierarchy represents
a set of process instances sharing the
same specification

Blocks are introduced to structure the
specification

Block and process types allow reuse
at multiple places in the hierarchy

Runtime level

At runtime, a system consists of a
dynamic set of process instances

This set is flat, i.e., some process Q
generated by some process P exists
independently of P

The communication paths between
process instances are determined
dynamically

In particular, processes P and Q may
communicate even if they are not
connected by a static communication
path

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 9

Graphical and textual syntaxGraphical and textual syntax

SDL specifications may be written alternatively in graphical or textual syntax

Both notations are equivalent and may be transformed into each other

In particular, the graphical notation is complete

In the sequel, the graphical notation will be preferred

Graphical syntax
(SDL-GR)

Textual syntax
(SDL-PR)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 10

Basic SDLBasic SDL

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 11

Structure of specifications (1): hierarchiesStructure of specifications (1): hierarchies

Specifications of systems, blocks, and processes may be nested physically
(like e.g. nested procedures in Pascal)

Disadvantages:
» Mixing of hierarchy levels
» Unreadable in case of large specifications

System

Block 1

Block 1.1

Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 12

Structure of specifications (2): remote specificationsStructure of specifications (2): remote specifications

Instead of physical nesting, a reference to a remote specification may be
introduced (cf. e.g. local packages in Ada)

Semantics: replace the reference with the specification

Disadvantages:
» No reuse (exactly one reference)
» Remote specification depends on the context of the reference

System

Block 1

Block 1.1

Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2Block 1.1 Reference

Remote specification

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 13

Structure of specifications (3): block and process typesStructure of specifications (3): block and process types

In case of a block or process types, specifications may be reused at
different locations in the hierarchy

Type declarations do not depend on the context of the applied occurrence

System

Block 1

BlockT
Process 1.1.1 Process 1.1.2

Block 2 Block 3

Block 1.2 : BlockTBlock 1.1 : BlockT Applied
occurrence

Remote specification

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 14

Scopes and packagesScopes and packages

Systems, blocks, and processes define scopes

Scoping rules are the same as in Pascal (i.e., a declaration is visible in its
scope and all enclosing scopes unless hidden)

Reusable type declarations are provided in packages

Import clauses make declarations contained in packages visible elsewhere

System S

Block A

Block B

Process P Process Q

Block C
use P1

Package P1

Process type RT Block type BT . . .

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 15

Block and process interaction diagramsBlock and process interaction diagrams

. . .

system S
Block interaction diagram for
System S

. . . Block or process interaction
diagram for block B

block B

B Reference to
remote specification of B

P Reference to remote
specification of P

[s1, s2]

Uni-directional
channel C (without delay)
for transmitting signals s1
and s2

[s1, s2]

Uni-directional channel C
(with delay) for
transmitting signals s1 and
s2

[s1, s2]

Bi-directional channel C
(without delay) for
transmitting signals s1, s2
and s3, s4, respectively

[s3, s4]

[s1, s2]

Bi-directional channel C
(with delay) for transmitting
signals s1, s2 and s3, s4,
respectively

[s3, s4]

C

C

C

C

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 16

Channels and signal routesChannels and signal routes

Communication paths between blocks are called channels

Communication paths between processes are called signal routes

Signal routes are always undelayed

Channels may or may not have a delay

A bi-directional communication path stands for two uni-directional
communication paths

Association between communication paths in hierarchical specifications:
» In physically nested diagrams: graphical position
» In case of remote specifications: matching names
» m:n associations between parent and child are allowed
» Signal flow may even be non-deterministic (at least statically)
» Balancing rule for mutually associated communication paths:

The set of transmitted signals must be the same in parent and child

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 17

Example of an interaction diagramExample of an interaction diagram
system S

B2

[s1, s2]

[s5, s6]

[s1, s2]

[s3, s4]

C4

C1

block B1

C2

[s1, s3]

C3

P1 P2
S1

[s1, s3]

S2 S3
[s1, s2][s1]

S4 S5
[s3, s4] [s1, s2]

S6

[s5, s6]

C5 [s7, s8]

block B2

P4P3
S1

[s5, s6]
C4

C5

S2 S3
[s8][s7]

S4

[s9][s10]

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 18

Process and block typesProcess and block types

Process and block types enable reuse in the specification

Process and block types may be declared locally, or they may be imported
from packages

An applied occurrence of a block type stands for exactly one block

An applied occurrence of a process type stands for a set of process
instances

The cardinality of process instances may be constrained as follows (the
lower bound simultaneously defines the number of initial instances):
» (0,n): unconstrained number of instances (default)
» (1,n): at least one instance
» (1,1): exactly one instance
» (0,1): at most one instance

Gates define the connection points of process and block types (roughly
corresponding to formal parameters of procedures)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 19

Graphical notation of block and process typesGraphical notation of block and process types

. . . Interaction diagram for
block type BT

blocktype BT

Reference to the
remote specification
of block type BT

Reference to the
remote specification
of process type PT

PT

gate1
B : BT
gate2

Instance B of block type BT
with gates gate1 and gate2

gate1 (1,n)
P : PT
gate2

BT
Instance P of process type PT
with cardinality (1,n) and
Gates gate1 and gate2

gate1

gate2

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 20

Definition of signalsDefinition of signals

In the simplest case, a signal does not carry further information, e.g.,
» signal Ready, Active, Suspended ...;

In general, a signal may carry a tuple of values, e.g.
» signal State(TState);
» newtype TState

literals Ready, Active, Suspended ...;
endnewtype TState; /* Aufzählungstyp */

The following types are available:
» Pre-defined types (integer, real, boolean, character, charstring)
» Records
» Arrays
» Sets
» Enumeration types
» Abstract data types

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 21

Extended state machinesExtended state machines

The behavior of processes is defined by extended finite automata (states,
transitions, local variables)

A process is idle while residing in a state

An incoming signal triggers a state transition

During a state transition, the following actions may be executed:
» Assignment of values to local variables
» Decisions (branches)
» Sending of signals
» Creation of process instances
» Termination (a process instance may terminate only itself)

In the graphical notation, states may be replicated to improve readability

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 22

Graphical notation of state machinesGraphical notation of state machines

Assignment

Decision (at least
2 branches)

Process creationStart state

Ordinary state

Variable
declaration

Receiving
a signal

Sending a
signal

Termination

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 23

Communication between process instancesCommunication between process instances

Each process has an input queue of
signals which are processed in FIFO
order

A transition consumes the head of the
input queue

Process
instance

Process
instance

Process
instance

Signal

Input queue

Input queue

Input
queue

Signal

Signals without a transitions are
consumed without state change
(implicit transition)

Each signal is sent to only one receiver
(no broadcasting or multicasting)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 24

Addressing of processesAddressing of processes

Each process instance is designated by a unique process identifier (of type
PId)

Process identifiers may be sent as values of signals and may be stored in
local variables ⇒ communication at runtime need not occur along the static
channels and signal routes

Explicit addressing: When sending a signal, the receiver is specified
explicitly, using the following pre-defined variables if appropriate:
» self: the current process
» sender: the process from which the last signal was received
» offspring: the last process created by the current process
» parent: the process which created the current process

Implicit addressing: Specification of a communication path along which the
signal will be sent:
» Signal route
» Gate

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 25

ExampleExample

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 26

System System ToffeeVendorToffeeVendor

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 27

Block Block DialogueDialogue

Viewer

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 28

Process Process ControlControl (1)(1)

payment

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 29

Process Process ControlControl (2)(2)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 30

Process type Process type CoinHdlrCoinHdlr (1)(1)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 31

Process type Process type CoinHdlrCoinHdlr (2)(2)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 32

Block type Block type WareManagerWareManager

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 33

Process Process ContentsContents

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 34

Process type Process type ViewerViewer (1)(1)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 35

Process type Process type ViewerViewer (2)(2)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 36

Comments on Comments on ToffeeVendorToffeeVendor and and DialogueDialogue
ToffeeVendor

Machine for selling toffee, chocolate,
and (chewing) gum

Accepts the coins Coin10, Coin50
and Coin100

Dialogue manages the dialogue with
the user:
» InpC: Selection by the user
» Pay: Payment
» Flush: Return of money

WMgr manages the goods on stock:
» OutW: Output of goods
» Sync: Communication with

Dialogue

Dialogue

CoinH handles the coins:
» Plop: Coins inserted by the user
» Pong: Coins output by the machine
» Cash: Communication with

Control

ViewPt manages user selections and
outputs:
» Look: Communication with the

user
» Displ: Communication with

control

Control is the control unit:
» Int: Interrupt by the user
» Comm: Communication with WMgr

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 37

Comments on Comments on ControlControl

Control of money and display

Creation of the processes CoinH and ViewPt

After user selection, initiate check whether requested good is present

If present, display price and availability of change

Accept coins until price is payed

Return change (if any)

In case of time out or interrupt, terminate current action and return money

In case of maintenance or full stock of coins, lock coin slot and terminate process

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 38

Comments on Comments on CoinHdlrCoinHdlr andand ContentsContents

CoinHdlr

Initialization of coin stock

On reception of Accept signal, receive
coins and update stock until a wrong
coin is inserted or the Close signal is
received

Signal a full stock of coins to Control

On reception of Release, return the
specified amount

On reception of the Change signal,
check whether sufficient change is
available

Contents

Initialization of ware storage

On reception of the Exists signal,
reply whether the requested good is
present

On reception of the Paid signal, output
requested good and update ware
storage

Terminate if the ware storage is
exhausted

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 39

Advanced ConceptsAdvanced Concepts

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 40

Combined block specificationsCombined block specifications

Up to now: Refinement of a block either by a block interaction diagram or a
process interaction diagram

Combined block specification: Refinement both by a block interaction
diagram and a process interaction diagram

Refinements are alternatives and should be equivalent (which cannot be
guaranteed)

Interpretation of the specification on a consistent cut:
» In case of selecting a process interaction diagram, refinements ends
» Otherwise, the refining blocks are taken into account (interpretation on a

more detailed level)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 41

Example: Protocol specificationExample: Protocol specification

Protocols in telecommunication are structured into (abstraction) layers

On each layer, communication is specified by a process interaction diagram

Communication is realized on the next lower layer ⇒
Specification by a block interaction diagram

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 42

Process interaction diagramProcess interaction diagram

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 43

Block interaction diagramBlock interaction diagram

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 44

Combined channel specificationCombined channel specification

Channels may be refined like blocks

A channel is refined by an interaction diagram

The blocks to be connected serve as interfaces of the interaction diagram

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 45

Example of a combined channel specificationExample of a combined channel specification

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 46

Refinement of a channelRefinement of a channel

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 47

ProceduresProcedures

A procedure serves to structure local computations in a process

A procedure may have formal parameters which are replaced with actual
parameters when the procedure is called

Similarly to a process, a procedure is defined by an extended state machine

When a procedure is called, the calling process is suspended until the
procedure call has been executed

During execution of the call, the input queue and the variables of the calling
process may be executed

In addition to local calls, there are also remote procedure calls

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 48

Graphical notation of proceduresGraphical notation of procedures

Procedure
start

Procedure
end

Procedure call

Function call
in assignment

Function call
in condition

call P

 x := call P

 x = call P

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 49

Example of a procedure specificationExample of a procedure specification

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 50

ServicesServices

Instead of an extended state machine, a process may be described by a
service interaction diagram

In this case, a process consists of a set of interacting services

Concurrency within a process is prohibited, i.e., at each point in time at most
one service may perform a state transition

Services share the variables and the input queues of the process

For each signal, there may be only one service which handles this signal

Graphical notation of a service reference:

<service_name>

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 51

Service interaction diagram for the process Service interaction diagram for the process CoinsCoins

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 52

Service Service CoinsCoins (1)(1)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 53

Service Service CoinsCoins (2)(2)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 54

Service Service GetCoinGetCoin

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 55

Refinement of signalsRefinement of signals

A signal may be refined by a set of signals

A channel transmitting a refined signal automatically transmits all of its
refinements

In the refinement, bi-directional signals are permitted even for uni-directional
channels

Refinement does not have a dynamic semantics:
» Signals are not composed or decomposed dynamically
» At runtime, either the complex signal or the refining signals may be

transmitted
» Therefore, it is not allowed to refine only one end of a channel when

defining a consistent cut for execution

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 56

Example of the refinement of signalsExample of the refinement of signals

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 57

Specification of ProtocolsSpecification of Protocols

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 58

Layered architecture of telecommunication systemsLayered architecture of telecommunication systems

Eventually, data must be transmitted on physical channels

However, the user would like to send logical objects (e.g., files)

Solution: layered architecture with multiple levels of abstraction

User A

Layer n Service provider

Service provider

. . .

Layer n-1

Layer 0

User B

Service provider

Service provider

. . .

Service provider Service provider

Logical communication

Physical communication

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 59

Example: OSI reference modelExample: OSI reference model

OSI: Open Systems Interconnection Standard (ISO)

Physical layer

Data link layer

Network layer

Transport layer

Session layer

Presentation layer

Application layer

Transmission of bit streams

Error correction

Routing

Ordering, flow control

Session management

Data compression

(e.g., File transfer)

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 60

Basic notionsBasic notions

(N)-service: Service on layer N

(N)-service provider: Provider of the service

(N)-service user: User of the service

(N)-service access point:
Access point which provides the service provider to the service user

(N)-service primitive: Communication primitive of a service

(N)-service data unit: Transport unit for data on layer N

(N)-layer: Layer N

(N)-protocol: Providing for providing the service

(N)-entity: Entity on layer N

peer entity: Entity on the same level (“partner”)

(N)-protocol data unit: Data unit of the protocol on layer N

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 61

Generic model of layersGeneric model of layers

Fig. 10.3, S. 248

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 62

Service primitivesService primitives

request: Service user requests an action

indication: Service provides indicates the request to the partner

response: Partner responds to the indicated request

confirm: Service confirms that the request has been delivered

Message
Sequence

Chart
(MSC)

Fig. 10.5, S. 250

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 63

Service specification in SDLService specification in SDL

Ex. 10.1, S. 255

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 64

Protocol specification in SDLProtocol specification in SDL

Ex. 10.2, S. 257

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 65

Alternative specification with a complex channel (1)Alternative specification with a complex channel (1)

Ex. 10.3, S. 258

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 66

Alternative specification with a complex channel (2)Alternative specification with a complex channel (2)

Ex. 10.3, S. 259

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 67

Example: Example: InresInres systemsystem

Inres: Initiator - Responder

Connection-oriented service for transmitting data

Use of a connection-less medium (potential data losses)

Fig. 10.7, S. 260

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 68

Survey of service primitivesSurvey of service primitives

ICONreq: Initiator requests connection

ICONind: Service provider indicates
this to the responder

ICONres: Responder replies

ICONconf: Service provider confirms
the connection

IDATreq(ISDU) : Initiator sends data

IDATind(ISDU) : Service provider
transmits data to the responder

IDISreq: Responder aborts connection

IDISind: Service provider indicates this
to the initiator

Fig. 10.8, S. 261

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 69

Behavior of the Behavior of the InresInres service (1)service (1)

Fig. 10.9a-c, S. 262

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 70

Behavior of the Behavior of the InresInres service (2)service (2)

Fig. 10.9d-f, S. 263

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 71

Behavior of the Behavior of the InresInres service (3)service (3)

Fig. 10.9g-i, S. 264

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 72

Behavior of the mediumBehavior of the medium

S. 265

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 73

The The InresInres protocolprotocol

Fig. 10.12, S. 267

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 74

Operation of the protocolOperation of the protocol

Establish connection:
After initiation through ICONreq the connection is established, if possible. In
case of errors (e.g., timeouts), the attempt to establish a connection is
aborted.

Data transfer:
After initiation by IDATreq data are transferred, if possible. Each receipt is
acknowledged. In case of timeouts, the transfer of data is attempted multiple
times. In order to recognize duplicate transfers, data are marked with an
alternating bit.

Release connection:
The connection may be released by the responder or by the service
provider.

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 75

InresInres systemsystem

Ex. 10.4, S. 270

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 76

Process Process ISAP_Manager_IniISAP_Manager_Ini

Ex. 10.5,S. 272

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 77

Process Process ISAP_Manager_ResISAP_Manager_Res

Ex. 10.6, S. 273

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 78

InresInres protocolprotocol

Ex. 10.7, S. 275

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 79

Process Initiator (1)Process Initiator (1)

Ex. 10.8, S. 277

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 80

Process Initiator (2)Process Initiator (2)

Ex. 10.8, S. 278

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 81

SummarySummary

SDL is a standard for the specification of telecommunication systems

There are industrial applications of SDL

SDL has a long history

In particular, it is well suited for layered communication architectures

SDL specifications are operational ⇒
Generation of code from the specification

SDL has a formally defined semantics

But (to the best of my knowledge) there is no verification calculus (no proofs)

Model-oriented specification

Process specifications resemble flow diagrams ⇒
What about structured programming?

Overall fairly low level of abstraction

Specification of Software Systems

Lehrstuhl für Informatik III, RWTH AachenBernhard Westfechtel 82

LiteratureLiterature
J. Ellsberger, D. Hogrefe, A. Sarma: SDL - Formal Object-Oriented
Language for Communicating Systems, Prentice Hall (1997)
Book on which this chapter is based. Informal description of SDL-96.
Unfortunately, primary written for experts.

D. Hogrefe: Estelle, Lotos und SDL, Springer-Verlag (1988)
Introduction into three specification languages for telecommunication
systems. Readable, but out-of-date.

A. Sarma: Introduction to SDL-92, Computer Networks and ISDN Systems
28, 1603-1615 (1992)
Introductory, short article on SDL.

F. Belina, D. Hogrefe: The CCITT-Specification and Description
Language SDL, Computer Networks and ISDN Systems 16, 311-341
(1988/89)
A longer article on SDL-88.

