Specification of Software Systems Dr. Bernhard Westfechtel Wintersemester 2004/2005

17.01.05

Exercise 7

For the following exercise, we assume the solution of Exercise 6 with two simplifications: First, attributes are not considered. Second, parameter of graph rewrite rules are not considered, as well.

- a) Define the graph rewrite rule enqueue formally as a triple r = (L, K, R).
- b) Starting from the empty graph, apply the rule newqueue, followed by two applications of enqueue. Draw the corresponding sequence of graphs G_1 , G_2 , G_3 (G_i denotes the graph after applying the i^{th} rule in the sequence.
- c) Define the graph G_2 formally as a triple $G_2 = (V, E, l)$.
- d) Execute the application of enqueue to G_2 formally by
 - defining an isomorphism $h: L \to G_L$, where G_L is a partial graph of G_2 ,
 - calculating the intermediate graph *H*, which does not contain the images of elements occurring in *L* but not in *K*,
 - calculating the final graph G_3 .
- e) Discuss: In which ways would the graph rewrite rules for queues be affected, if
 - subgraphs would be required for applying graph rewrite rules,
 - homomorphisms rather than isomorphisms would be allowed for matching the left-hand sides.