
spec Queues

declares

section GraphSchema

declares

node class QUEUE
intrinsic
Name : string;

end;

node type Queue : QUEUE end;

node class ELEMENT
intrinsic
Data : integer := 0;

end;

node type Element : ELEMENT end;

edge type Head : QUEUE [0:1] -> ELEMENT [1:1];

edge type Tail : QUEUE [0:1] -> ELEMENT [1:1];

edge type Next : ELEMENT [0:1] -> ELEMENT [0:1];

end;

section ExportedOperations

declares

production newqueue(name : string ; out queue : Queue) =

::=

3’ : Element

Tail
Head

1’ : Queue

Next
2’ : Element

transfer 1’.Name := name;
return queue := 1’;

end;
(*An empty queue is represented with the help of two dummy
elements, whose data attributes are never accessed. This
representation was chosen such that each exported operation
may be encoded by just one corresponding graph test or
graph production without having to use negative application
conditions, etc. *)

test isempty(queue : Queue) =

‘3 : Element

Tail Head

‘1 = queue

Next
‘2 : Element

end;

production enqueue(queue : Queue ; data : integer ; out element : ELEMENT)
=

‘3 : Element

Tail

‘1 = queue

Next
‘2 : Element

::=

3’ = ‘3
Next

2’ = ‘2
Next

4’ : Element

Tail

1’ = ‘1

transfer 4’.Data := data;
return element := 4’;

end;
(*By the representation chosen, it is guaranteed that there is an
outgoing Next edge from the dummy tail element. The new element
is inserted into the chain of Next edges. Note that this production
exploits the fact that partial graphs rather than subgraphs
are required in PROGRES: A Head edge from ’1 to ’3 may or may
not be present. *)

production dequeue(queue : Queue) =

‘2 : Element

Head

‘1 = queue

Next
‘3 : Element

Next
‘4 : Element

::=

2’ = ‘2

Head

1’ = ‘1

Next
4’ = ‘4

end;
(*Inverse operation to enqueue, see also comment above. *)

test head(queue : QUEUE ; out data : integer) =

‘2 : Element
Next

‘3 : Element

Head

‘1 = queue

return data := ‘3.Data;

end;

test tail(queue : QUEUE ; out data : integer) =

‘2 : Element
Next

‘3 : Element

Tail

‘1 = queue

return data := ‘2.Data;

end;

end;

end.

