The Specification Language Z

Characterization

- Formal specification of abstract data types
- Model-oriented specification
- Data types are defined with the help of sets, relations, and functions
- Operations are specified with pre- and postconditions
- Proofs based on logic and set theory
- Specifications may be refined in an evolutionary way

Survey

- Z is based on set theory and predicate logic
- Sets may be defined in the following ways:
 - » Extensional: Enumeration of elements
 - » Intensional: Specification of a predicate
- Operations on sets: union, intersection, ...
- Base types for sets:
 - » Pre-defined type \mathbb{Z} (for integers)
 - » User-defined types (abstract data types)
- Type constructors:
 - » Power set: $\mathbb{P} X$ denotes the set of all subsets of X
 - » Cartesian product: $X \times Y$ is the set of all pairs (x, y), where $x \in X$ and $y \in Y$
- Strong typing:
 - » All elements of a set must have the same type
 - » Operations require operands of the same type

Running example: library

- A library lends books to readers
- For each book, there may be one or more copies
- Only registered users may borrow books from the library
- There is a maximal number of copies which may be issued to one user
- Operations:
 - » Stock administration (addition and removal of copies)
 - » User administration (registration and deregistration of users)
 - » Issue (lending and returning of book copies)

Examples of base types and constructed types

[Book, Copy, Reader]	User-defined base types for books, copies, and readers
Z	Set of integers
PZ	Set of all subsets of integers
FZ	Set of all finite subsets of Z
$Book \times Copy$	Set of all pairs of books and copies

Examples for the definition of sets

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}	Extensional definition of the set of integers from 1 to 10
1 10	Interval notation
$\{n: \mathbb{Z} \mid 1 \leqslant n \land n \leqslant 10\}$	Intensional definition of the set of integers from 1 to 10
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}	Extensional definition of the square numbers 1 ² 10 ²
$\{n: \mathbb{Z} \mid 1 \leqslant n \land n \leqslant 10 \bullet n^2\}$	Intensional definition of the square numbers 1 ² 10 ²

Elements of Z specifications

readers : F Reader	Variable declarations
shelved: F Copy	
$stock : \mathbb{F}(Copy \times Book)$	
issued: $\mathbb{F}(Copy \times Reader)$	
$max: \mathbb{Z}$	
$max \geqslant 0$	Predicates
$\#stock \leqslant max$	
Stock ==	Constant definitions
$\{s : \mathbb{F} (Copy \times Book) \mid$	
$\forall c : Copy; b_1, b_2 : Book \bullet$	
$(c, b_1) \in s \land (c, b_2) \in s \Rightarrow b_1 = b_2$	
$\mathbb{N} == \{n : \mathbb{Z} \mid n \geqslant 0\}$	
$\mathbb{N}_1 == \{n : \mathbb{Z} \mid n > 0\}$	

Type concept

- □ Types are maximal sets (e.g., Z)
- □ Predicates for restricting these sets do not modify the type (e.g., Note to does not define a new type)
- Sets constrained by predicates may be used in variable declarations
 - » Example:

 $max : \mathbb{N} \text{ stands for } max : \mathbb{Z}; max \ge 0$

Strong typing: The operands of an operator (e.g., ∪) must have the same type

Notations for quantification and sets

∀ Decs • Pred	Pred holds for all objects in Decs
$\forall \ Decs \mid Constr \bullet Pred = $ $\forall \ Decs \bullet \ Constr \Rightarrow Pred$	Pred holds for all objects in Decs meeting the constraint Constr
$\exists Decs \bullet Pred$	There is an object in <i>Decs</i> which meets the predicate <i>Pred</i>
$\exists \ Decs \mid Constr \bullet Pred = \\ \exists \ Decs \bullet Constr \land Pred$	There is an object in <i>Decs</i> which meets both the constraint <i>Constr</i> and the predicate <i>Pred</i>
{Decs Pred}	Set of all objects in <i>Decs</i> which meet the predicate <i>Pred</i>
{ $Decs \mid Pred \bullet Expr$ }, e.g. { $n : \mathbb{Z} \mid 1 \le n \land n \le 10 \bullet n^2$ }	Set of all values of all expressions <i>Expr</i> , where variables range over objects from <i>Decs</i> satisfying the predicate <i>Pred</i>

Definition of enumeration types

BookKind ::= hardcover | paperback

stands for

[BookKind]

hardcover, paperback: BookKind

 $hardcover \neq paperback$

 $\forall bk : BookKind \bullet bk = hardcover \lor bk = paperback$

Generic definitions

- There are polymorphic operators, which may be applied to operands of different types
- Such operators may be defined as generic
- Unconstrained genericity: any type may replace a generic parameter

Example:

(Binary) relations

$X \longleftrightarrow Y = \mathbb{P}(X \times Y)$	Relation between X and Y
$x \mapsto y = (x, y)$	Pairs
$\operatorname{dom} R = \{ x : X \mid \exists y : Y \bullet x \mapsto y \in R \}$	Domain
$\operatorname{ran} R = \{ y : Y \mid \exists x : X \bullet x \mapsto y \in R \}$	Range
$S \triangleleft R = \{x : X; y : Y \mid x \in S \land x \mapsto y \in R \bullet x \mapsto y\}$	Domain restriction
$R \rhd T = \{x : X; y : Y \mid y \in T \land x \mapsto y \in R \bullet x \mapsto y\}$	Range restriction
$S \triangleleft R = \{x : X; y : Y \mid x \notin S \land x \mapsto y \in R \bullet x \mapsto y\}$	Domain subtraction
$R \Rightarrow T = \{x : X; y : Y \mid y \notin T \land x \mapsto y \in R \bullet x \mapsto y\}$	Range subtraction
$R^{-1} = \{ x : X; y : Y \mid x \mapsto y \in R \bullet y \mapsto x \}$	Inverse relation
$R \otimes S =$	Composition
$\{x: X; y: Y; z: Z \mid x \mapsto y \in R \land y \mapsto z \in S \bullet x \mapsto z\}$	

Functions (1)

Fund	ction		Restrictions	
Туре	Symbol	dom f	injective	ran f
Partial	→	$\subseteq X$		$\subseteq Y$
Total	\rightarrow	=X		$\subseteq Y$
Partial and injective	>++>	$\subseteq X$	+	$\subseteq Y$
Total and injective	\rightarrow	=X	+	$\subseteq Y$
Partial and surjective	-+>	$\subseteq X$		= Y
Total and surjective		=X		= Y
Bijective	>>	=X	+	= Y
Partial and finite	-#>	$\subseteq X$		$\subseteq Y$
Partial, finite, injective	>#>	$\subseteq X$	+	$\subseteq Y$

Functions (2)

$f: X \leftrightarrow Y \text{ is a function} \Leftrightarrow$ $\forall x: X; y: Y; z: Z \mid x \mapsto y \in f \land x \mapsto z \in f \bullet y = z$	Functions are unique relations
fx	Application of a function f to an argument x
$dom, \triangleleft, \triangleright, \triangleleft, \triangleright, f^{-1}, f \circ g$	Operations which are "inherited" from relations
$\lambda x : X \mid Pred \bullet Term = \{x : X \mid Pred \bullet x \mapsto Term\}$	Lambda notation for the definition of functions
$f \oplus g = ((\operatorname{dom} g) \triangleleft f) \cup g$	Combination of functions (g wins in case of a conflict)

Sequences

⟨Reagan, Bush, Clinton, Bush⟩	Notation for sequences
$\operatorname{seq} X == \{ f : \mathbb{N} \twoheadrightarrow X \mid \operatorname{dom} f = 1 \# f \}$	Formal definition of
	sequences
$\langle Reagan, Bush, Clinton, Bush \rangle =$	Example
$\{1 \mapsto Reagan, 2 \mapsto Bush, 3 \mapsto Clinton, 4 \mapsto Bush\}$	
$\operatorname{seq}_{1} X == \operatorname{seq} X \setminus \{\langle \rangle\}$	Non-empty sequences
$\forall s : \operatorname{seq}_1 X \bullet$	Head and tail of a non-
head $s = s \ 1 \land tail \ s = \lambda \ n : 1 \#s - 1 \bullet s \ (n+1)$	empty sequence
$head \langle Reagan, Bush, Clinton, Bush \rangle = Reagan$	Example
$tail \langle Reagan, Bush, Clinton, Bush \rangle =$	
⟨Bush, Clinton, Bush⟩	
$\forall s, t : \text{seq} X \bullet$	Concatenation
$s \hat{\ } t = s \cup \{ n : 1 \# t \bullet (n + \# s) \mapsto t n \}$	
$\langle Reagan, Bush \rangle ^{\smallfrown} \langle Clinton, Bush \rangle =$	Example
⟨Reagan, Bush, Clinton, Bush⟩	

On schemata

- Schemata are specification units
- A schema consists of a set of declarations and a set of (conjunctive) predicates
- Schemata may be combined with the help of several operations, including e.g. schema inclusion, schema conjunction and schema disjunction)
- Data types are specified in a model-oriented way as follows:
 - » There is one schema for defining the representation of the data type (state) and the respective state invariants
 - » For each operation, there is one corresponding schema which defines its input and output behavior as well as the state changes affected by the operation

Schema for the state and its invariants

Name

Library $stock : Copy \implies Book$ $issued : Copy \implies Reader$ shelved : F Copy readers : F ReaderDeclarations $shelved \cup dom issued = dom stock$ $shelved \cap dom issued = \emptyset$ $ran issued \subseteq readers$ Predicates

 $\forall r : readers \bullet \#(issued \rhd \{r\}) \leqslant maxloans$

Schema for an operation

- An operation is defined by a schema which has to obey certain conventions (i.e., Z does not introduce special-purpose "operation schemata")
- The operation is not declared explicitly!
- Operation name = Schema name
- Parameter:
 - » *x*? : Input parameter
 - » y! : Output parameter
- States:
 - » s: "Before" state of an operation
 - » s': "After" state of an operation
- All declarations and predicates for s and s' must be repeated in the operation schema
- To be introduced: Short-hand notation

Example: Lending a book

```
Issue
                                                                                            Operation
stock, stock' : Copy \Longrightarrow Book
                                                                                               name
issued, issued' : Copy \rightarrow Reader
shelved, shelved': F Copy
readers, readers': F Reader
                                                                                           Parameter
c?: Copy; r?: Reader
shelved \cup dom\ issued = dom\ stock
shelved' \cup dom\ issued' = dom\ stock'
shelved \cap dom \ issued = \emptyset; shelved' \cap dom \ issued' = \emptyset
ran issued \subseteq readers; ran issued' \subseteq readers'
                                                                                               Pre-
\forall r : readers \bullet \#(issued \triangleright \{r\}) \leq maxloans
                                                                                            conditions
\forall r : readers' \bullet \#(issued' \rhd \{r\}) \leqslant maxloans
c? \in shelved; r? \in readers; \#(issued \triangleright \{r\}) < maxloans
                                                                                               Post-
issued' = issued \oplus { c? \mapsto r? }; stock' = stock; readers' = readers
                                                                                            conditions
shelved' = shelved \setminus \{c?\}
```

Schema operators (1)

ΔS______ S S'

Schema decoration and Δ schema

Schema operators (2)

Schema disjunction $S_1 \vee S_2$

$$Pred_1 \wedge Pred_2$$

Schema conjunction

$$S_1 \wedge S_2$$

Schema operators (3)

Schema composition

- » Given: Schemata for two operations Op_1 and Op_2 on the same state State
- » Schema composition describes the sequential application of Op_1 and Op_2 :
 - $\Rightarrow Op_1['/'']$ denotes the schema which is derived from Op_1 by replacing variables v' with v''
 - \Rightarrow $Op_2[$ /''] denotes the schema which is derived from Op_2 by replacing variables v with v '
 - $\Rightarrow Op_1 \circ Op_2 = \exists State'' \bullet Op_1['/''] \land Op_2['']$

Precondition

- » Let *Op* be a schema for an operation on state *State* with output variables *Outs*!
- » pre Op returns the precondition under which Op is applicable:
 - \Rightarrow pre $Op = \exists State'; Outs! \bullet Op$

Example of a schema inclusion

```
LibDB
stock: Copy \rightarrow Book
readers : F Reader
LibLoans
issued : Copy → Reader
shelved : F Copy
shelved \cap dom\ issued = \emptyset
\forall r : readers \bullet \#(issued \triangleright \{r\}) \leq maxloans
Library_
LibDR
LibLoans
```

 $shelved \cup dom \ issued = dom \ stock$ ran $issued \subseteq readers$

Specification of a change operation with a Δ schema

Issue_____

∆*Library*

c? : *Copy*; *r*? : *Reader*

 $c? \in shelved; r? \in readers; \#(issued \triangleright \{r\}) < maxloans$ $issued' = issued \oplus \{c? \mapsto r?\}; stock' = stock; readers' = readers$ $shelved' = shelved \setminus \{c?\}$

Specification of a read operation with a Ξ schema

```
\Xi Library_{ot}
\Delta Library
NoChange \equiv
issued' = issued; stock' = stock;
shelved' = shelved; readers' = readers
.WhoHasCopy_
ELibrary
c? : Copy; r! : Reader
c? \in \text{dom } issued; r! = issued c?
```

Example of a schema disjunction (1)

AddKnownTitle_____

 $\Delta Library$ b? : Book

rep!: Report

 $b? \in \text{ran } stock$

 $\exists c : Copy \mid c \notin dom \ stock \bullet$ $stock' = stock \oplus \{c \mapsto b?\} \land$ $shelved' = shelved \cup \{c\}$ $issued' = issued; \ readers' = reader$ rep! = FurtherCopyAdded AddNewTitle_____

 $\Delta Library$

b?: Book

rep! : Report

b? ∉ ran *stock*

 $\exists c : Copy \mid c \notin dom \ stock \bullet$ $stock' = stock \oplus \{c \mapsto b?\} \land$ $shelved' = shelved \cup \{c\}$ $issued' = issued; \ readers' = reader$ rep! = New Title Added

 $AddCopy \cong AddKnownTitle \lor AddNewTitle$

Example of a schema disjunction (2)

```
AddCopy

ΔLibrary
b?: Book

rep!: Report

\exists c: Copy \mid c \notin dom\ stock \bullet
stock' = stock \oplus \{c \mapsto b?\} \land
shelved' = shelved \cup \{c\}
issued' = issued;\ readers' = reader
b? \in ran\ stock \Rightarrow rep! = FurtherCopyAdded
b? \notin ran\ stock \Rightarrow rep! = NewTitleAdded
```

Example of a schema conjunction

EnterNewCopy_____

 $\Delta Library$ b? : Book

 $\exists c : Copy \mid c \notin dom \ stock \bullet$ $stock' = stock \oplus \{c \mapsto b?\} \land$ $shelved' = shelved \cup \{c\}$ $issued' = issued; \ readers' = readers$ AddCopyReport____

 $Stock : Copy \longrightarrow Book$

b? : *Book*

rep!: Report

b? ∉ ran *stock*

 $\Rightarrow rep! = NewTitleAdded$

 $b? \in \text{ran } stock$

 $\Rightarrow rep! = FurtherCopyAdded$

 $AddCopy \cong EnterNewCopy \land AddCopyReport$

Example: Electronic dictionary

- Translation between two languages, called Native and Foreign
- Only orthographically correct words may be stored in the dictionary (OrthoNative and OrthoForeign, respectively)
- Each word of the native language is mapped onto a set of words of the foreign language (and vice versa)
- Operations to be provided:
 - » Insertion of a valid pair
 - » Output of all translations of a native word
 - » Output of all translations of a foreign word
 - » Testing the knowledge of a user:
 - ⇒ System selects a word randomly
 - ⇒ User supplies his translations
 - ⇒ System calculates the percentage of correct answers

Structure of the specification

- Base types and global definitions
- Abstract states
- Initialization
- Partial operations under normal conditions
- Calculation of preconditions
- Total operations (including error conditions)
- Summary and index

Syntax of Z

Base types and global definitions

Abstract states WellFormedVocab $Vocab: OrthoNative \leftrightarrow OrthoForeign$ NativeWordsKnown: F OrthoNative ForeignWordsKnown: F OrthoForeign (* Dictionary *) $NativeWordsKnown = dom\ Vocab$ $ForeignWordsKnown = ran\ Vocab$ RecordOfProgress_ CumuMaxMarks, CumuMarksScored, AveragePercent: \mathbb{N} $0 \le AveragePercent \le 100$ (* Testing of user *) AveragePercent = percent(CumuMarksScored, CumuMaxMarks) WordForWordWellFormedVocab (* Overall state *) *RecordOfProgress*

Initialization

InitWord-For-Word_____

WordForWord'

 $Vocab' = \emptyset$

CumuMaxMarks' = CumuMaxMarksScored' = 0

Definition of partial operations (1)

 $AddPair \cong EnterPair \land ReportIfAlreadyKnown$ (* Insertion of a pair into the dictionary with return code *)

 $\Xi RecordOfProgress$

n? : *OrthoNative*; *f*? : *OrthoForeign*

 $Vocab' = Vocab \cup \{n? \mapsto f?\}$

(* Insertion of a pair *)

ReportIfAlreadyKnown

 $Vocab: OrthoNative \leftrightarrow OrthoForeign$

n?: OrthoNative; f?: OrthoForeign; rep!: Message

 $n? \mapsto f? \in Vocab \Rightarrow rep! = AlreadyKnownPair$ $n? \mapsto f? \notin Vocab \Rightarrow rep! = NewPairEntered$

(* Information if pair was already known *)

Definition of partial operations (2)

 $ToForeign \cong ForeignTranslations \land ReportIfKnownNative$ (* Translation of a word with return code *)

```
Foreign Translations\_
\Xi WordForWord
n? : OrthoNative; ftrans! : F OrthoForeign
ftrans! = ran(\{n?\} \triangleleft Vocab)
       (* Retrieval of translations *)
{\it ReportIfKnownNative}_{\it L}
\Xi Well Formed Vocab
n? : OrthoNative; rep! : Message
n? \in NativeWordsKnown \Rightarrow rep! = Ok
n? \notin NativeWordsKnown \Rightarrow rep! = UnknownNativeWord
```

(* Information whether there is a translation for the given word *)

Definition of partial operations (3)

```
VocabTestNtoF \cong SelectTestWordN \land CheckResponsesF \land UpdateScoreNtoF
        (* Test: Select word, check responses, update score *)
  SelectTestWordN
  WellFormedVocab
  TestWord! : OrthoNative
  Translations: \mathbb{F} OrthoForeign
  TransCount! \cdot N
  TestWord! \in NativeWordsKnown
  Translations = ran(\{TestWord!\} \triangleleft Vocab)
  TransCount! = \#Translations
        (* Selection of a word *)
```

Definition of partial operations (4)

```
CheckResponsesF_____
Translations, CorrectResponses! : F OrthoForeign
```

Responses?: seq Foreign

rep!: Message

 $CorrectResponses! = Translations \cap ran Responses?$

 $CorrectResponses! = \emptyset \Rightarrow rep! = NoCorrectResponses$

 $CorrectResponses! \neq \emptyset \Rightarrow rep! = Ok$

(* Correct responses included? *)

Definition of partial operations (5)

UpdateScoreNtoF

 $\Xi Well Formed Vocab$

 $\Delta RecordOfProgress$

 $Translations, \textit{CorrectResponses}! : \mathbb{F} \textit{ OrthoNative}$

TransCount!, *NewAverage!* : ℕ

CumuMaxMarks' = CumuMaxMarks + TransCount!

CumuMarksScored' = CumuMarksScored + #CorrectResponses!

NewAverage! = *AveragePercent'*

(* Output of the number of correct responses and new average percentage *)

Calculation of preconditions

Operation	Inputs and outputs	Preconditions
AddPair	n? : Native; f? : Foreign rep! : Message	$n? \in OrthoNative$ $f? \in OrthoForeign$
ToForeign	n? : Native ftrans! : F OrthoForeign rep! : Message	n? ∈ OrthoNative
VocabTestNtoF	Responses?: seq Foreign TestWord!: OrthoNative CorrectResponses!: F OrthoForeign TransCount!: N NewAverage!: N rep!: Message	Vocab ≠ Ø

Total operations (error handling)

```
TotalAidPair \cong AddPair \vee AddPairError

(* Total operation = normal operation + error handling *)

AddPairError

\cong WordForWord

n?: Native; f?: Foreign; rep!: Message

n? \in OrthoNative \wedge f? \notin OrthoForeign

\Rightarrow rep! = ErrorInForeignWord

n? \notin OrthoNative \wedge f? \in OrthoForeign

\Rightarrow rep! = ErrorInNativeWord

n? \notin OrthoNative \wedge f? \notin OrthoForeign

\Rightarrow rep! = ErrorInBothWords
```

Summary and index

```
AddPair \cong EnterPair \land ReportIfAlreadyKnown
ToForeign \cong ForeignTranslations \land ReportIfKnownNative
VocabTestNtoF \cong SelectTestWordN \land CheckResponsesF \land UpdateScoreNtoF
TotalAddPair \cong AddPair \lor AddPairError
...
```


Survey

- Foundations for proving specification properties:
 - » Proposition logic
 - » Predicate logic
 - » Set theory
- Example-based demonstration of
 - » Correctness of the initial state of a data type
 - » Simplification of a precondition of an operation
 - » Proving a property of an operation composition
- Not all used axioms will be introduced explicitly
- Example: Administration of soccer fans
 - » Each fan is registered under a unique identification number
 - » A subset of fans may be banned (hooligans)
 - » Operations for inserting, deleting, banning fans, etc.

Z specification of soccer fan administration (1)

```
[PERSON, ID]
         (* Given sets *)
  Fid
  members: ID \rightarrow PERSON
  banned: P ID
  banned \subset dom\ members
         (* State *)
  InitFid
  Fid'
  members' = \emptyset
  banned' = \emptyset
         (* Initial state (without members) *)
```

Z specification of soccer fan administration (2)

```
 \Delta Fid \\ applicant? : PERSON \\ id! : ID \\ \hline applicant? \notin \text{ran } members \\ id! \notin \text{dom } members \\ members' = members \cup \{ id! \mapsto applicant? \} \\ banned' = banned
```

DeleteMember_____

 ΔFid id? : ID

 $id? \in dom\ members$ $members' = \{id?\} \leq members$ $banned' = banned \setminus \{id?\}$

BanMember_____

 ΔFid ban? : ID

 $ban? \in dom\ members$ members' = members $banned' = banned \cup \{ban?\}$

Correctness of the initial state

```
\vdash \exists Fid' \bullet InitFid
\Leftrightarrow (Substitution of Fid' and InitFid)
\vdash \exists members' : ID \rightarrowtail PERSON; banned' : \mathbb{P} ID \mid
             banned' \subset dom\ members' \bullet
             members' = \emptyset \land banned' = \emptyset
\Leftrightarrow (\exists Decs \mid Constr \bullet Pred \equiv \exists Decs \bullet Constr \land Pred)
\vdash \exists members' : ID \rightarrowtail PERSON; banned' : \mathbb{P} ID \bullet
             banned' \subset dom\ members' \land members' = \emptyset \land banned' = \emptyset
This proposition holds because:
             -\varnothing:ID \Longrightarrow PERSON
             -Ø: ℙ ID
             -\varnothing\subset\varnothing
```

Simplification of a precondition (1)

 \Leftrightarrow (Expansion of Fid')

Simplification of a precondition (2)

⇔ (Elimination of existential quantifiers for members' and banned')

Simplification of a precondition (3)

 \Leftrightarrow (Fid \Rightarrow banned $\in \mathbb{P}$ ID)

Simplification of a precondition (4)

 \Leftrightarrow (dom $(R \cup S) = \text{dom } R \cup \text{dom } S$)

Simplification of a precondition (5)

 \Leftrightarrow (Fid \Rightarrow banned \subseteq dom members)

Simplification of a precondition (6)

```
\iff (members \in ID \rightarrowtail PERSON \land applicant? \notin ran members \land id! \notin dom members \Rightarrow members \cup \{id! \mapsto applicant?\} \in ID \rightarrowtail PERSON)
```

Simplification of a precondition (7)

PreAddMember_______Fid

applicant?: PERSON

∃ id!: ID •

applicant? ∉ ran members ∧

id! ∉ dom members

⇔ (Remove first subexpression from the existential quantifier)

Simplification of a precondition (8)

PreAddMember
Fid
applicant? : PERSON
applicant? ∉ ran members ∧
$\exists id! : ID \bullet id! \notin dom\ members$
⇔ (Elimination of the existential quantifier)
PreAddMember
Fid applicant? : PERSON
applicant? ∉ ran members ∧
$dom members \neq ID$

Proving a property of the specification (1)

Sequential execution of AddMember (with output id!) and DeleteMember (with input id?) does not change the state:

```
AddandDelete.
\Lambda Fid
applicant?: PERSON
id?: ID; id!: ID
\exists Fid'' \bullet
       applicant? ∉ ran members ∧
       id! \notin dom\ members \land
       members'' = members \cup \{id! \mapsto applicant?\} \land
       banned'' = banned \land
       id? \in dom\ members'' \land
       members' = \{id?\} \triangleleft members'' \land
       banned' = banned'' \setminus \{id?\} \land
       id! = id?
```

Proving a property of the specification (2)

 \Leftrightarrow (Expansion of Fid'')

```
AddandDelete.
\Lambda Fid
applicant?: PERSON
id? : ID; id! : ID
\exists members'' : ID \rightarrowtail PERSON; banned'' : \mathbb{P} ID •
        banned'' \subset dom\ members'' \land
       applicant? ∉ ran members ∧
        id! \notin dom\ members \land
       members'' = members \cup \{id! \mapsto applicant?\} \land
        banned'' = banned \land
        id^{\gamma} \in \text{dom } members'' \land
       members' = \{id?\} \triangleleft members'' \land
       banned' = banned'' \setminus \{id?\} \land
       id! = id?
```

Proving a property of the specification (3)

⇔ (Elimination of existential quantifiers for banned" and members")

```
AddandDelete
\Lambda Fid
applicant?: PERSON
id? : ID; id! : ID
members \cup \{id! \mapsto applicant?\} \in ID \rightarrowtail PERSON \land
banned \in \mathbb{P} ID \wedge
banned \subseteq dom\ members \cup \{id! \mapsto applicant?\} \land
applicant? ∉ ran members ∧
id! \notin dom\ members \land
id? \in dom\ members \cup \{id! \mapsto applicant?\} \land
members' = \{id?\} \triangleleft (members \cup \{id! \mapsto applicant?\}) \land
banned' = banned \setminus \{id?\} \land
id! = id?
```

Proving a property of the specification (4)

Calculation of *members*':

```
members' = \\ \{id?\} \triangleleft (members \cup \{id! \mapsto applicant?\}) = \qquad (id! = id?) \\ \{id!\} \triangleleft (members \cup \{id! \mapsto applicant?\}) = \qquad (R \triangleleft (S \cup T) = (R \triangleleft S) \cup (R \triangleleft T)) \\ (\{id!\} \triangleleft members) \cup \{id!\} \triangleleft \{id! \mapsto applicant?\} = \qquad (Definition von \triangleleft) \\ (\{id!\} \triangleleft members) \cup \varnothing = \\ \{id!\} \triangleleft members = \qquad (id! \not\in dom members) \\ members
```

Proving a property of the specification (5)

Calculation of banned':

```
banned' = banned \setminus \{id?\} = (id! = id?)
banned \setminus \{id!\} = (id! \notin dom \ members \land banned \subseteq dom \ members)
banned
members' = members \land banned' = banned \Rightarrow
Fid' = Fid \Rightarrow
\Xi \ Fid
```


Goal and approach

- Starting point: abstract specification with an abstract state and abstract operations
- Goal: transformation into a concrete specification which is nearer to the final implementation
- Refinement may be performed multiple times (i.e., multiple levels)
- Definition of a refinement:
 - » Relation between abstract and concrete states, where each concrete state is mapped onto at most one abstract state
 - » Each concrete initial state must be mapped onto a correct abstract initial state
 - » Each concrete operation is mapped onto a corresponding abstract operation
 - » The behavior of the concrete operation must be consistent with the behavior of the abstract operation

Formal definition of a refinement

□ *AS*, *CS* Schemata for abstract and concrete states

InitAS, *InitCS* Schemata for initial states

Retr(ieve)
 Schema for the correlation of abstract and

concrete states

Retr_______AS
CS
RelASCS

■ Each schema *AO* for an abstract operation is mapped onto a schema *CO* for the corresponding concrete operation

Theorems to be proved

Initialization theorem

Each concrete initial state represents an abstract initial state: $InitCS \land Retr' \vdash InitAS$

Applicability theorems

If an abstract operation is applicable in an abstract state, the corresponding concrete operation is applicable in the corresponding concrete state:

pre $AOp \land Retr \vdash pre COp$

Correctness theorems

If an abstract operation is applicable and the corresponding concrete operation is applied, the behavior is latter is consistent with the behavior of the former:

 $pre\ AOp \land Retr \land COp \land Retr' \vdash AOp$

Abstract state of the soccer fan administration

FidScheme
$members: ID \rightarrowtail PERSON$
$banned: \mathbb{P} ID$
$banned \subseteq dom\ members$
#members ≤ maxmems
(* Abstract state, now with maximal number of members <i>maxmems</i> *)
InitFidScheme
Fid'
$members' = \emptyset$
$banned' = \emptyset$
(* Initial state (without members) *)

Concrete state: array-based realization

Z specification for the concrete state

```
iseq[X] == seq X \cap (\mathbb{N} \rightarrowtail X)
         (* Representation of arrays by injective sequences *)
  CFidScheme
  membarr: iseq[ID \times PERSON]
  banarr: iseq[\mathbb{N}]
  ran\ membarr \in ID \rightarrowtail PERSON
  ran \ banarr \subset 1.\#membarr
  \#membarr \leqslant maxmems
         (* Concrete state, with maximal number of members maxmems *)
  InitCFidScheme
  CFidScheme'
  membarr' = \langle \rangle
  banarr' = \langle \rangle
         (* Initial state (without members) *)
```

Relation between abstract and concrete states

```
Retr\_
FidScheme
CFidScheme
members = ran \ membarr
banned = dom ( ran ( ran \ banarr < membarr ) )
```

(* Members are pairs occurring as elements of *membarr*. The identifiers of banned persons are obtained as the first components of pairs which are marked by indices in *banarr*. *)

Initialization theorem

To demonstrate:

```
InitCFidScheme \land Retr' \vdash InitFidScheme
members' = ran \ membarr' = ran \ \langle \ \rangle = \varnothing
banned' = dom \ (ran \ (ran \ banarr' \lhd membarr' \ ))
= dom \ (ran \ (ran \ \langle \ \rangle \lhd \langle \ \rangle))
= \varnothing
```

Abstract and concrete operation

```
AddMember
\Lambda FidScheme
applicant?: PERSON
id!:ID
applicant? ∉ ran members
id! ∉ dom members
members' = members \cup \{id! \mapsto applicant?\}
banned' = banned
CAddMember
\Lambda CFidScheme
applicant?: PERSON
id! : ID
applicant? ∉ ran (ran membarr)
id! ∉ dom (ran membarr)
membarr' = membarr \cap \langle (id!, applicant?) \rangle
banarr' = banarr
```

Preconditions

```
PreAddMember
FidScheme
applicant?: PERSON
applicant? ∉ ran members
dom\ members \neq ID
#members < maxmems
PreCAddMember_____
CFidScheme
applicant?: PERSON
applicant? ∉ ran (ran membarr)
dom (ran membarr) \neq ID
#membarr < maxmems
```

Applicability theorem

To demonstrate:

```
PreAddMember \land Retr \vdash PreCAddMember \Leftrightarrow
FidScheme; applicant? : PERSON; CFidScheme |
        applicant? ∉ ran members
                                                           (H1)
        dom\ members \neq ID
                                                           (H2)
        #members < maxmems
                                                           (H3)
                                                           (H4)
        members = ran membarr
        banned = dom ( ran ( ran banarr <math> oldown membarr ) )
                                                          (H5)
        applicant? ∉ ran (ran membarr)
                                                          (G1)
        dom (ran membarr) \neq ID
                                                          (G2)
        #membarr < maxmems
                                                          (G3)
```

Proof of the applicability theorem

```
Proof of (G1):
applicant? ∉ ran members
                                                 (H1)
        \Rightarrow applicant? \notin ran (ran membarr)
                                                 (H4)
Proof of (G2):
dom (ran membarr)
        = dom members
                                                 (H4)
        \neq ID
                                                 (H2)
Proof of (G3):
#membarr = #(ran membarr)
                                                 (membarr is injective)
        = #members
                                                 (H4)
                                                 (H3)
        < maxmems
```

Correctness theorem

To demonstrate:

```
PreAddMember \land Retr \land CAddMember \land Retr' \vdash AddMember \Leftrightarrow
```

 $PreAddMember \land Retr \land CAddMember \land Retr'$

```
applicant? ∉ ran members (G1)
```

 $id! \notin dom \ members$ (G2)

 $members' = members \cup \{id! \mapsto applicant?\}$ (G3)

banned' = banned (G4)

Proof of the correctness theorem

```
Proof of (G1):
applicant? ∉ ran members
                                                      (PreAddMember)
Proof of (G2):
id! \notin dom (ran membarr)
                                                      (CAddMember)
         \Leftrightarrow id! \notin dom\ members
                                                      (Retr)
Proof of (G3):
members'
         = ran membarr'
                                                      (Retr')
         = ran (membarr ^ \langle (id!, applicant?) \rangle)
                                                      (CAddMember)
         = \operatorname{ran} membarr \cup \{(id!, applicant?)\}
                                                      (Properties of ran and ^)
         = members \cup \{ id! \mapsto applicant? \}
                                                      (Retr)
Proof of (G4):
banned'
         = dom(ran (ran banarr' \triangleleft membarr'))
                                                                                  (Retr')
         = dom(ran (ran banarr < (membarr ^ (id!, applicant?)))))
                                                                                  (CAddMember)
                                                                                  (CFidScheme)
         = dom(ran (ran banarr \triangleleft membarr))
         = banned
                                                                                  (Retr)
```


Advantages of Z

- Based on theoretical foundations (logic and set theory) which should be known at least to mathematically trained users
- Very general approach
- Compact specifications
- Model-oriented specification is easier to understand/construct than behavioral specification
- Proofs with the help of predicate logic and set theory
- Step-wise refinement of specifications is supported

Disadvantages of Z

- Complex notation with many, many operators
- Abstract data types are modeled only implicitly, relying on certain conventions
- Modeling of operations with \(\Delta \) schemata is hard to understand at first glance
- Notations and methods for structuring large specifications are missing (schemata are too fine-grained for this purpose)
- Transition from the specification to the implementation is difficult
- Often, Z is used only as a documentation aid

Literature

- B. Potter, J. Sinclair, D. Till: An Introduction to Formal Specification and
 Z, International Series in Computer Science, Prentice Hall (1991)
 Introductory textbook, on which this chapter is based.
- J.B. Wordsworth: Software Development with Z, International Computer Science Series, Addison-Wesley (1992) Another textbook.
- J.M. Spivey: The Z Notation: A Reference Manual, Second Edition, International Series in Computer Science, Prentice Hall (1992) Reference Manual including the language definition. Not appropriate as a textbook.
- J. Bowen: **Formal Specification & Documentation Using Z**; International Thomson Computer Press (1996)

 Textbook with a brief introduction into Z, followed by many case studies.