Specification of Software Systems

The Specification Language
Z

Bernhard Westfechtel Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Characterization

o Formal specification of abstract data types

o Model-oriented specification

o Data types are defined with the help of sets, relations, and functions
o Operations are specified with pre- and postconditions

o Proofs based on logic and set theory

o Specifications may be refined in an evolutionary way

Bernhard Westfechtel 2 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Introduction into the Z Notation

Bernhard Westfechtel 3 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Survey
o Zis based on set theory and predicate logic

o Sets may be defined in the following ways:
» Extensional: Enumeration of elements
» Intensional: Specification of a predicate

o Operations on sets: union, intersection, ...

o Base types for sets:
» Pre-defined type Z (for integers)

» User-defined types (abstract data types)

o Type constructors:
» Power set: P X denotes the set of all subsets of X

» Cartesian product: X X Y is the set of all pairs (x, y), where x e X
andye?Y

o Strong typing:
» All elements of a set must have the same type
» Operations require operands of the same type

Bernhard Westfechtel 4 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Running example: library

o A library lends books to readers
o For each book, there may be one or more copies
o Only registered users may borrow books from the library

o There is a maximal number of copies which may be issued to one
user

o Operations:
» Stock administration (addition and removal of copies)
» User administration (registration and deregistration of users)
» Issue (lending and returning of book copies)

Bernhard Westfechtel

5 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Examples of base types and constructed types

[Book, Copy, Reader) User-defined base types for books,
copies, and readers

Z Set of integers

Pz Set of all subsets of integers

Fz Set of all finite subsets of Z

Book x Copy Set of all pairs of books and copies

Bernhard Westfechtel 6 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Examples for the definition of sets

1,2,3,4,5,6,7,8,9, 10} Extensional definition of the set of
integers from 1 to 10

1..10 Interval notation

n:211<nArn<10} Intensional definition of the set of
integers from 1 to 10

{1,4,9, 16, 25, 36,49, 64, 81, 100} Extensional definition of the square

numbers 12 .. 102

m:211<nArn<10en Intensional definition of the square
numbers 17 .. 107

Bernhard Westfechtel 7 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Elements of Z specifications

readers : F Reader Variable declarations
shelved : F Copy

stock : F (Copy X Book)
issued : F (Copy X Reader)

max . 2

max > 0 Predicates

#stock < max

Stock == Constant definitions

{s : F (Copy X Book) |
Y ¢ : Copy; by, by : Book e
(c, b)) esn(c,by))es=b;=by}
=—=In:Z1n>0}
Ny=1n:Z21n>0}

Bernhard Westfechtel 8 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Type concept

o Types are maximal sets (e.g., 2)

0 Predicates for restricting these sets do not modify the type (e.g., N
does not define a new type)

o Sets constrained by predicates may be used in variable declarations

» Example:
max : N stands for max : Z; max > 0

o Strong typing: The operands of an operator (e.g., u) must have the
same type

Bernhard Westfechtel

9 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Notations for quantification and sets

¥ Decs o Pred Pred holds for all objects in Decs

¥ Decs | Constr ® Pred = Pred holds for all objects in Decs

Y Decs ® Constr = Pred meeting the constraint Constr

3 Decs o Pred There is an object in Decs which
meets the predicate Pred

3 Decs | Constr Pred = There is an object in Decs which

3 Decs ® Constr A Pred meets both the constraint Constr
and the predicate Pred

{Decs | Pred! Set of all objects in Decs which meet
the predicate Pred

{Decs | Pred Expr}, e.g. Set of all values of all expressions

m:Z211<nan<10en? Expr, where variables range over

objects from Decs satisfying the
predicate Pred

Bernhard Westfechtel 10 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Definition of enumeration types

BookKind ::= hardcover | paperback

stands for

[BookKind]

hardcover, paperback : BookKind
hardcover # paperback

Y bk : BookKind e bk = hardcover v bk = paperback

Bernhard Westfechtel 11 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Generic definitions

o There are polymorphic operators, which may be applied to operands
of different types

o Such operators may be defined as generic

o Unconstrained genericity: any type may replace a generic parameter

o Example:
Generlc Generlc
arameter def|n|t|on
[Xl I
_PPXxPX) KII)ecIaratlorl
VS, T:PXeScT& (Vx:XexeS=xeT) =
Predicate

_

Bernhard Westfechtel 12 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

(Binary) relations

X—Y=PXXY) Relation between X and Y
x—y=(xY) Pairs
domR={x:X|dy:Yex—yeR} Domain
ranR={y:Y|3Ix: Xex—yeR} Range

S<AR={x:X;y:YIxeSAx—yeRex—y} Domain restriction

R>T ={x:X;y:YlyeTArx—yeRex—y} |Range restriction

S<dR={x:X;y:YIxeSAx—yeRex—y} Domain subtraction

ReT ={x:X;y:YlyeTArx—yeRex—y} |Range subtraction

R'={x:X;y:Y|Ix—>ycRey—x Inverse relation

RgS= Composition
{x:X;y:Y,z:Zlx—yeRAny—zeSex—z}

Bernhard Westfechtel 13 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Functions (1)

Function Restrictions
Type Symbol dom f injective ran f
Partial —> cX cY
Total — =X cY
Partial and > cX + cY
injective
Total and —> =X + cY
injective
Partial and —+> cX =Y
surjective
Total and — = =Y
surjective
Bijective > =X + =
Partial and —> cX -
finite
Partial, finite, > cX + cY
injective

Bernhard Westfechtel 14 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Functions (2)

f: X< Yis afunction Functions are unique
Vx:X;y:Yiz:Zlx—>yefax—zefey=z relations

fx Application of a function f'to
an argument x

dom, <1, >, <4, &, [, fsg Operations which are
“inherited” from relations

Ax:X| Prede Term = Lambda notation for the
Ix:X| Pred e x — Term) definition of functions
feg=((domg)<df)ug Combination of functions

(g wins in case of a conflict)

Bernhard Westfechtel 15 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Sequences
(Reagan, Bush, Clinton, Bush) Notation for sequences
seqX =={f:N-»X|domf=1. #} Formal definition of
sequences
(Reagan, Bush, Clinton, Bush) = Example
{1 — Reagan, 2 — Bush, 3 — Clinton, 4 — Bush}
seq; X ==seq X\ {{)} Non-empty sequences
Vis:seq Xe Head and tail of a non-
heads=s1 Atails=An:1.#s—1es(n+1) empty sequence
head (Reagan, Bush, Clinton, Bush) = Reagan Example
tail {Reagan, Bush, Clinton, Bush) =
(Bush, Clinton, Bush)
Vs, t:seqXe Concatenation
s t=suU{n:1.#te(n+#s)—tn}
(Reagan, Bushy ~ (Clinton, Bush) = Example
(Reagan, Bush, Clinton, Bush)

Bernhard Westfechtel 16 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Schemata

Bernhard Westfechtel 17 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

On schemata

o Schemata are specification units

0 A schema consists of a set of declarations and a set of (conjunctive)
predicates

o Schemata may be combined with the help of several operations,
including e.g. schema inclusion, schema conjunction and schema
disjunction)

o Data types are specified in a model-oriented way as follows:
» There is one schema for defining the representation of the data
type (state) and the respective state invariants
» For each operation, there is one corresponding schema which
defines its input and output behavior as well as the state changes
affected by the operation

Bernhard Westfechtel

18 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Schema for the state and its invariants

Name

_ Library

stock : Copy - Book

, d: C Read _

;feuzied- [?%VOAH caaer (Declaratlons]
: Py —_

readers : F Reader

shelved U dom issued = dom stock
shelved N dom issued = & (Predicates]
ran issued C readers T —

Y r: readers o #(issued 1> { r }) < maxloans

Bernhard Westfechtel 19 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Schema for an operation

o An operation is defined by a schema which has to obey certain
conventions (i.e., Z does not introduce special-purpose “operation
schemata®)

o The operation is not declared explicitly!
o Operation name = Schema name

o Parameter:
» x? . Input parameter
» y! . Output parameter

o States:
» s . ‘Before” state of an operation
» s . “After” state of an operation

o All declarations and predicates for s and s” must be repeated in the
operation schema

o To be introduced: Short-hand notation

Bernhard Westfechtel

20 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Example: Lending a book

_Issue & Operation
stock, stock” . Copy - Book name
issued, issued’ : Copy - Reader

shelved, shelved” : F Copy

readers, readers’ : F Reader r
c? : Copy; r? : Reader | Parameter]
CN—

shelved U dom issued = dom stock

shelved’” U dom issued” = dom stock’

shelved N dom issued = J; shelved” N dom issued = &
ran issued C readers; ran issued’ C readers’ —
V r: readers e #(issued > | r }) < maxloans Pr_e_'

Y r: readers’ o #(issued > {r}) < maxloans conditions
c? € shelved; r? € readers; #(issued 1> { r}) < maxloans {

Post-

issued = issued ® { c? — r? }; stock” = stock; readers’ = readers >
conditions |

shelved’ = shelved \ { ¢?}

Bernhard Westfechtel 21 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Schema operators (1)
—Sl—/v_S2 _S _S ’
5, Decls, - o ,
Decls, x: X y:Y; x Xy Y
P(x, y) P’ y7)
Schema inclusion
AS
S
Decls, S’
Decls,
Pred,
Pred, Schema decoration and A schema

Bernhard Westfechtel 22 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

S — S,
Decls, Decls,
Pred, Pred,

~ S,

Decls, U Decls,

Pred, v Pred,

Schema disjunction
S, v S,

Bernhard Westfechtel

23

Schema operators (2)

B\ P —S,
Decls, Decls,
Pred, Pred,

_S,

Decls, U Decls,

Pred, A Pred,

Schema conjunction
S, A S,

Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Schema operators (3)

Schema composition
» Given: Schemata for two operations Op, and Op, on the same
state State
» Schema composition describes the sequential application of Op,
and Op,:
= Op,[’/""] denotes the schema which is derived from Op, by
replacing variables v’ with v”

= Op,[/""] denotes the schema which is derived from Op, by
replacing variables v with v’
= Op, § Op, = 3 State”” @ Op,["/""] A Op,[/"]

Precondition
» Let Op be a schema for an operation on state State with output
variables Outs!
» pre Op returns the precondition under which Op is applicable:

> pre Op = 3 State”; Outs! o Op

Bernhard Westfechtel 24 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Example of a schema inclusion

__LibDB
stock : Copy -~ Book
readers : F Reader

__LibLoans
issued : Copy -+ Reader
shelved : F Copy

shelved N dom issued = &
Y r: readers o #(issued > { r }) < maxloans

__Library
LibDB
LibLoans

shelved U dom issued = dom stock
ran issued C readers

Bernhard Westfechtel 25 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Specification of a change operation with a A schema

_Issue
ALibrary
c? : Copy; r? : Reader

c? € shelved,, r? € readers; #(issued > { r }) < maxloans
issued” = issued @ { c? — r? }; stock” = stock; readers’ = readers

shelved’ = shelved \ | ¢"?}

Bernhard Westfechtel 26 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Specification of a read operation with a & schema

X Library
ALibrary

NoChange =
issued’ = issued; stock’ = stock;
shelved’ = shelved; readers’ = readers

__WhoHasCopy.
ELibrary
c? : Copy; r! : Reader

c? e dom issued; r! = issued c?

Bernhard Westfechtel 27 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Example of a schema disjunction (1)

_AddKnownTitle __AddNewTitle

ALibrary ALibrary

b? : Book b? : Book

rep! : Report rep! . Report

b? € ran stock b? & ran stock

Jc: Copy | ¢ € dom stock e Jc: Copy | ¢ € dom stock e
stock’= stock ® {c — b? } A stock’= stock ® {c — b? } A
shelved’ = shelved U {c} shelved’ = shelved U {c}

issued’ = issued; readers’ = reader issued’ = issued; readers’ = reader

rep! = FurtherCopyAdded rep! = NewTitleAdded

AddCopy = AddKnownTitle v AddNewTitle

Bernhard Westfechtel 28 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Example of a schema disjunction (2)

—_AddCopy
ALibrary
b? : Book
rep! : Report

Jc: Copy | ¢ € dom stock e
stock’= stock ® {c — b? } A
shelved’ = shelved U {c}
issued’ = issued; readers’ = reader
b? € ran stock = rep! = FurtherCopyAdded
b? ¢ ran stock = rep! = NewTitleAdded

Bernhard Westfechtel 29 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Example of a schema conjunction

__EnterNewCopy __AddCopyReport
ALibrary Stock : Copy - Book
b? : Book b? : Book
rep! : Report

Jc: Copy | ¢ € dom stock e

stock’= stock ® {c — b? } A b? & ran stock

shelved’ = shelved U {c} = rep! = NewTitleAdded
issued’ = issued; readers’ = readers b? e ran stock

= rep! = FurtherCopyAdded

AddCopy = EnterNewCopy A AddCopyReport

Bernhard Westfechtel 30 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Sample Specification

Bernhard Westfechtel 31 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Example: Electronic dictionary

o Translation between two languages, called Native and Foreign

o Only orthographically correct words may be stored in the dictionary
(OrthoNative and OrthoForeign, respectively)

o Each word of the native language is mapped onto a set of words of
the foreign language (and vice versa)

o Operations to be provided:
» Insertion of a valid pair
» Output of all translations of a native word
» Output of all translations of a foreign word
» Testing the knowledge of a user:

= System selects a word randomly
= User supplies his translations
= System calculates the percentage of correct answers

Bernhard Westfechtel 32 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Structure of the specification

o Base types and global definitions

o Abstract states

o Initialization

o Partial operations under normal conditions
o Calculation of preconditions

o Total operations (including error conditions)

o0 Summary and index

Bernhard Westfechtel 33 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

<specification>

<paragraph> ::=

Bernhard Westfechtel

Syntax of Z

::= (<paragraph>)* (* Specification consists of paragraphs *)

"[" <ident> ("," <ident>)* "]" (* Base types *)
<axiomatic-box> (* Declarations plus optional predicates *)
<generic-box> (* ... plus generic parameters *)
<schema-box> (* "graphical" schema definition *)
<schema-name> [<gen-formals>] = <schema-expr>

(* linear schema definition *)
<def-lhs> "==" <expr> (* Constant declaration *)

<ident> "::=" <branch> ("|" <branch>)+ (* Enumeration type *)

<predicate> (* Predicate for global variables *)

34 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Base types and global definitions

[Native, Foreign]
(* All character strings in the respective alphabets *)

OrthoNative : P Native
OrthoForeign : P Foreign

(* Orthographically correct words *)

Message ::= Ok | AlreadyKnownPair | NewPairEntered

| ErrorinForeignWord | ErrorInNativeWord | ErrorinBothWords
| UnknownNativeWord | UnknownForeignWord
| VocablsEmpty | NoCorrectResponses

(* Return codes for operations *)

Bernhard Westfechtel 35 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Abstract states

— WellFormedVocab
Vocab : OrthoNative <— OrthoForeign
NativeWordsKnown : | OrthoNative

ForeignWordsKnown : F OrthoForeign

(* Dictionary *)

NativeWordsKnown = dom Vocab
ForeignWordsKnown = ran Vocab

__RecordOfProgress
CumuMaxMarks, CumuMarksScored, AveragePercent : N

0 < AveragePercent < 100 (* Testing of user *)

CumuMarksScored < CumuMaxMarks
AveragePercent = percent(CumuMarksScored, CumuMaxMarks)

WordForWord.
WellFormedVocab) | .
RecordOfProgress (* Overall state *)

Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Bernhard Westfechtel 36

Specification of Software Systems

Initialization

_ InitWord-For-Word
WordForWord’

Vocab” = &
CumuMaxMarks” = CumuMaxMarksScored” = 0

Bernhard Westfechtel 37 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Definition of partial operations (1)

AddPair = EnterPair n ReportlfAlreadyKnown
(* Insertion of a pair into the dictionary with return code *)

_ EnterPair
AWellFormedVocab

HRecordOfProgress
n? : OrthoNative; [? . OrthoForeign

Vocab” = Vocab U { n? — f?}

(* Insertion of a pair *)

__ReportlfAlreadyKnown
Vocab : OrthoNative < OrthoForeign
n? : OrthoNative; f? : OrthoForeign; rep! : Message

n? — f? € Vocab = rep! = AlreadyKnownPair
n? — 71 & Vocab = rep! = NewPairEntered

(* Information if pair was already known *)

Bernhard Westfechtel 38 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Definition of partial operations (2)

ToForeign = ForeignTranslations A ReportlfKnownNative
(* Translation of a word with return code *)

_ForeignTranslations

EWordForWord
n? : OrthoNative; ftrans! : F OrthoForeign

ftrans! =ran ({n?} < Vocab)

(* Retrieval of translations *)

—ReportlfKnownNative
EWellFormedVocab
n? : OrthoNative; rep! : Message

n? € NativeWordsKnown = rep! = Ok
n? & NativeWordsKnown = rep! = UnknownNativeWord

(* Information whether there is a translation for the given word *)

Bernhard Westfechtel 39 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Definition of partial operations (3)

VocabTestNtoF = SelectTestWordN A CheckResponsesF A UpdateScoreNtoF
(* Test: Select word, check responses, update score *)

__SelectTestWordN.
WellFormedVocab

TestWord! : OrthoNative
Translations . F OrthoForeign
TransCount! : N

TestWord! € NativeWordsKnown
Translations = ran ({ TestWord! } < Vocab)
TransCount! = #Translations

(* Selection of a word *)

Bernhard Westfechtel 40 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Definition of partial operations (4)

__CheckResponsesF.
Translations, CorrectResponses! : | OrthoForeign
Responses? : seq Foreign
rep! : Message

CorrectResponses! = Translations N ran Responses?
CorrectResponses! = & = rep! = NoCorrectResponses
CorrectResponses! # O = rep! = Ok

(* Correct responses included? *)

Bernhard Westfechtel

41 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Definition of partial operations (5)

__UpdateScoreNtoF'
EWellFormedVocab
ARecordOfProgress
Translations, CorrectResponses! : F OrthoNative
TransCount!, NewAverage! : N

CumuMaxMarks” = CumuMaxMarks + TransCount!
CumuMarksScored” = CumuMarksScored + #CorrectResponses!
NewAverage! = AveragePercent’

(* Output of the number of correct responses and new average percentage *)

Bernhard Westfechtel 42 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Calculation of preconditions

Operation Inputs and outputs Preconditions

AddPair n? : Native; [? : Foreign n? € OrthoNative
rep! : Message f? € OrthoForeign

ToForeign n? : Native n? € OrthoNative

ftrans! : F OrthoForeign
rep! : Message

VocabTestNtoF | Responses? : seq Foreign Vocab # &
TestWord! : OrthoNative
CorrectResponses! : F OrthoForeign
TransCount! : N

NewAverage! : N

rep! : Message

Bernhard Westfechtel 43 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Total operations (error handling)

TotalAidPair = AddPair v AddPairError
(* Total operation = normal operation + error handling *)

__AddPairError
ZWordForWord
n? : Native; f? : Foreign; rep! : Message

n? € OrthoNative A f? & OrthoForeign
= rep! = ErrorinForeignWord

n? & OrthoNative A f? € OrthoForeign
=> rep! = ErrorInNativeWord

n? & OrthoNative A f? & OrthoForeign
= rep! = ErrorIlnBothWords

Bernhard Westfechtel 44 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Summary and index

AddPair = EnterPair A ReportlfAlreadyKnown
ToForeign = ForeignTranslations A ReportlfKnownNative

VocabTestNtoF = SelectTestWordN A CheckResponsesF A UpdateScoreNtoF
TotalAddPair = AddPair v AddPairError

Bernhard Westfechtel

45 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving of Specification Properties

Bernhard Westfechtel 46 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Survey

o Foundations for proving specification properties:
» Proposition logic
» Predicate logic
» Set theory

o Example-based demonstration of
» Correctness of the initial state of a data type
» Simplification of a precondition of an operation
» Proving a property of an operation composition

o Not all used axioms will be introduced explicitly

o Example: Administration of soccer fans
» Each fan is registered under a unique identification number
» A subset of fans may be banned (hooligans)
» Operations for inserting, deleting, banning fans, etc.

Bernhard Westfechtel 47 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Z specification of soccer fan administration (1)

[PERSON, ID]
(* Given sets *)

__Fid
members : ID ~» PERSON
banned : P ID

banned < dom members

(* State *)

_InitFid
Fid’

members’ = &
banned’ = &

(* Initial state (without members) *)

Bernhard Westfechtel 48 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Z specification of soccer fan administration (2)

__AddMember.
AFid
applicant? : PERSON
id! . ID

applicant? & ran members

id! ¢ dom members

members’ = members U { id! — applicant? }
banned” = banned

__DeleteMember __ BanMember
AFid AFid
id? : ID ban? : ID
id? e dom members ban? € dom members
members’ ={id? } < members members’ = members
banned’ = banned \ {id? } banned’ = banned U { ban? }

Bernhard Westfechtel 49 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Correctness of the initial state

- 3 Fid’" e InitFid
< (Substitution of Fid" and InitFid)

F A members’ : ID >» PERSON;, banned’ : P ID |
banned’ € dom members’ o
members’ = O A banned’ = &

< (d Decs | Constr ® Pred = 3 Decs ® Constr A Pred)

F 3 members’ : ID > PERSON; banned” : P ID e
banned’ € dom members’ A members’ = O A banned’ = &

This proposition holds because:
- ID >» PERSON

-J:PID
-Dcd

Bernhard Westfechtel 50 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (1)

__PreAddMember
Fid
applicant? : PERSON

AFid"; id! . ID e
applicant? & ran members A
id! ¢ dom members A
members’ = members U { id! — applicant? } A
banned” = banned

< (Expansion of Fid")

Bernhard Westfechtel 51 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (2)

_PreAddMember
Fid
applicant? : PERSON

d members’ : ID ~» PERSON; banned’ : P ID; id! : ID e
banned’ € dom members’ A
applicant? & ran members A
id! € dom members A
members’ = members U { id! — applicant? } A
banned’ = banned

< (Elimination of existential quantifiers for members” and banned”)

Bernhard Westfechtel 52 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (3)

_PreAddMember
Fid
applicant? : PERSON

did! 1 ID e
members U { id! — applicant? } € ID > PERSON A
banned € P ID A
banned < dom members U { id! — applicant? } A
applicant? & ran members A
id! ¢ dom members

< (Fid = banned € P ID)

Bernhard Westfechtel 53 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (4)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
members U { id! — applicant? } € ID > PERSON A
banned < dom members U {id! — applicant? } A
applicant? & ran members A
id! € dom members

< (dom (R U S) = dom R U dom S)

Bernhard Westfechtel 54 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (5)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
members U { id! — applicant? } € ID > PERSON A
banned < dom members U dom { id! — applicant? } A
applicant? & ran members A
id! € dom members

< (Fid = banned < dom members)

Bernhard Westfechtel 55 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (6)

_ PreAddMember
Fid
applicant? : PERSON

did! . ID e
members U { id! — applicant? } € ID > PERSON A
applicant? & ran members A
id! ¢ dom members

= (members € ID >» PERSON A
applicant? & ran members A
id! € dom members =
members U { id! — applicant? } € ID > PERSON)

Bernhard Westfechtel 56 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (7)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
applicant? & ran members A
id! ¢ dom members

= (Remove first subexpression from the existential quantifier)

Bernhard Westfechtel 57 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Simplification of a precondition (8)

__PreAddMember
Fid
applicant? : PERSON

applicant? & ran members A
3id! : ID e id! # dom members

< (Elimination of the existential quantifier)

__PreAddMember
Fid
applicant? : PERSON

applicant? & ran members A
dom members # ID

Bernhard Westfechtel 58 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving a property of the specification (1)

Sequential execution of AddMember (with output id!) and DeleteMember (with
input id?) does not change the state:

AddandDelete = AddMember § DeleteMember | id! = id? + ZFid

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

dFid"" e
applicant? ¢ ran members A
id! ¢ dom members A
members’ = members U { id! — applicant? } A
banned’” = banned A
id? e dom members’” A
members’ =1{id? } 9 members’ A
banned’ = banned’ " \{id?} A
id! = id?

Bernhard Westfechtel 59 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving a property of the specification (2)
< (Expansion of Fid"")

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

d members’’ : ID ~» PERSON; banned’” : P ID e
banned’~ < dom members’’ A
applicant? & ran members A
id! ¢ dom members A
members’~ = members U {id! — applicant? } A
banned’” = banned A
id? e dom members’” A
members” = {id? } <9< members’” A
banned’ = banned’ "\ {id? } A
id! = id?

Bernhard Westfechtel 60 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving a property of the specification (3)

< (Elimination of existential quantifiers for banned”™ and members”")

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

members U { id! — applicant? } € ID > PERSON A
banned € P ID A

banned < dom members U {id! — applicant? } A
applicant? & ran members A

id! € dom members A

id? € dom members U { id! — applicant? } A

members’ = {id? } < (members U { id! — applicant? }) A
banned’ = banned \ {id? } A

id! = id?

Bernhard Westfechtel 61 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving a property of the specification (4)

Calculation of members”:

members’ =

1id? } 9 (members U { id! — applicant? }) = (id! = id?)

lid! } < (members U { id! — applicant? }) = Ra4lSuD=R<aS)U(R<4D)
({id' } < members) U {id! | <{id! — applicant? |} = (Definition von <)

({id! } €@ members) U D =

{id! } <« members = (id! € dom members)

members

Bernhard Westfechtel 62 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proving a property of the specification (5)

Calculation of banned :

banned” =

banned \ { id? |} = (id! = id?)

banned\ {id!} = (id! € dom members A
banned < dom members)

banned

members’ = members A banned = banned =

Fid = Fid =
= Fid

Bernhard Westfechtel 63 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Refinement of Specifications

Bernhard Westfechtel 64 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Goal and approach

o Starting point: abstract specification with an abstract state and
abstract operations

o Goal: transformation into a concrete specification which is nearer to
the final implementation

o Refinement may be performed multiple times (i.e., multiple levels)

o Definition of a refinement:

» Relation between abstract and concrete states, where each
concrete state is mapped onto at most one abstract state

» Each concrete initial state must be mapped onto a correct
abstract initial state

» Each concrete operation is mapped onto a corresponding
abstract operation

» The behavior of the concrete operation must be consistent with
the behavior of the abstract operation

Bernhard Westfechtel 65 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

lllustration
Abstract 2 Alternative]
. A4S successor state
AS, AOp,, > AS, AOp,, > AS,
? ! ? v

Retr

Retr .State Retr
refinement

parameter parameter

Concrete
operation

Concrete
state

Bernhard Westfechtel 66 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Formal definition of a refinement

o A4S, CS Schemata for abstract and concrete states
InitAS, InitCS Schemata for initial states
Q Retr(ieve) Schema for the correlation of abstract and
concrete states
Retr
AS
CS
RelASCS

o Each schema A0 for an abstract operation is mapped onto a schema
CO for the corresponding concrete operation

Bernhard Westfechtel 67 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Theorems to be proved

o Initialization theorem

Each concrete initial state represents an abstract initial state:
InitCS A Retr’” V+ InitAS

o Applicability theorems
If an abstract operation is applicable in an abstract state, the
corresponding concrete operation is applicable in the corresponding

concrete state:
pre AOp A Retr+ pre COp

o Correctness theorems
If an abstract operation is applicable and the corresponding concrete
operation is applied, the behavior is latter is consistent with the

behavior of the former:
pre AOp A Retr A COp A Retr’ F AOp

Bernhard Westfechtel 68 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Abstract state of the soccer fan administration

_FidScheme
members : ID >~ PERSON
banned : P ID

banned € dom members
#members < maxmems

(* Abstract state, now with maximal number of members maxmems *)

_InitFidScheme
Fid’

members’ = &
banned’ = &

(* Initial state (without members) *)

Bernhard Westfechtel 69 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Concrete state: array-based realization

membarr
Y- index ID PERSON
index 1 N 1 WW8901 Tom Cobbley
2 WW8903 Bill Vandal
! 4 3 WW9001 | Daisy Widden
2 3 4 Www9002 Joe Hooly
3 2 5 WW9004 | Sandra Skintight
6 wwao007 Joan Brewer

Bernhard Westfechtel 70 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Z specification for the concrete state

iseqlX] == seq X N (N »» X)
(* Representation of arrays by injective sequences *)
__CFidScheme

membarr : iseqlID X PERSON]
banarr : iseq[N]

ran membarr € ID > PERSON
ran banarr C 1. #membarr
#membarr < maxmems

(* Concrete state, with maximal number of members maxmems *)

_ InitCFidScheme
CFidScheme’

membarr’ = {)
banarr’ = ()

(* Initial state (without members) *)

Bernhard Westfechtel 71 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Relation between abstract and concrete states

__ Retr
FidScheme
CFidScheme

members = ran membarr
banned = dom (ran (ran banarr < membarr))

(* Members are pairs occurring as elements of membarr.

The 1dentifiers of banned persons are obtained as the first components of pairs
which are marked by indices in banarr. *)

Bernhard Westfechtel 72 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Initialization theorem

To demonstrate:
InitCFidScheme A Retr’ v InitFidScheme
members’ = ran membarr’ =ran{) =

banned” = dom (ran (ran banarr” < membarr’))
=dom (ran (ran{)<1()))
=

Bernhard Westfechtel 73 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Abstract and concrete operation
__AddMember

AFidScheme
applicant? : PERSON
id! : ID

applicant? & ran members

id! € dom members

members’ = members U { id! — applicant? }
banned’ = banned

__CAddMember
ACFidScheme
applicant? : PERSON
id! : ID

applicant? & ran (ran membarr)

id! dom (ran membarr)

membarr’ = membarr ~ { (id!, applicant?))
banarr’ = banarr

Bernhard Westfechtel 74 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Preconditions

_ PreAddMember
FidScheme
applicant? : PERSON

applicant? & ran members
dom members # ID
#members < maxmems

_ PreCAddMember
CFidScheme
applicant? : PERSON

applicant? & ran (ran membarr)
dom (ran membarr) # ID
#membarr < maxmems

Bernhard Westfechtel 75 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Applicability theorem

To demonstrate:
PreAddMember A Retr + PreCAddMember <

FidScheme; applicant? : PERSON; CFidScheme |

applicant? ¢ ran members (HI)
dom members # ID (H2)
#members < maxmems (H3)
members = ran membarr (H4)
banned = dom (ran (ran banarr < membarr)) (HS)
|_
applicant? & ran (ran membarr) (GI)
dom (ran membarr) # ID (G2)
#membarr < maxmems (G3)

Bernhard Westfechtel 76 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proof of (G1):
applicant? & ran members

= applicant? & ran (ran membarr)

Proof of (G2):

dom (ran membarr)
= dom members

= ID
Proof of (G3):

#membarr = #(ran membarr)
= #members
< maxmems

Bernhard Westfechtel

77

(H1)
(H4)

(H4)
(H2)

Proof of the applicability theorem

(membarr is injective)

(H4)
(H3)

Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Correctness theorem

To demonstrate:
PreAddMember A Retr n CAddMember A Retr’ + AddMember <

PreAddMember A Retr n CAddMember A Retr’

I_
applicant? & ran members (GI)
id! ¢ dom members (G2)
members’ = members U { id! — applicant? } (G3)
banned’ = banned (G4)

Bernhard Westfechtel 78 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Proof of the correctness theorem

Proof of (G1):
applicant? & ran members (PreAddMember)
Proof of (G2):
id! ¢ dom (ran membarr) (CAddMember)
< id! ¢ dom members (Retr)
Proof of (G3):
members’
= ran membarr’ (Retr’)

= ran (membarr ~ { (id', applicant?))) (CAddMember)
= ran membarr U { (id!, applicant?) } (Properties of ran and ~)

= members U { id! — applicant? } (Retr)

Proof of (G4):

banned’
= dom(ran (ran banarr’ < membarr”)) (Retr’)
= dom(ran (ran banarr <\ (membarr ~ { (id', applicant?))))) (CAddMember)
= dom(ran (ran banarr < membarr)) (CFidScheme)
= banned (Retr)

Bernhard Westfechtel 79 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Summary

Bernhard Westfechtel 80 Lehrstuhl fiir Informatik Ill, RWTH Aachen

Specification of Software Systems

Advantages of Z

0 Based on theoretical foundations (logic and set theory) which should
be known at least to mathematically trained users

o Very general approach
o Compact specifications

o Model-oriented specification is easier to understand/construct than
behavioral specification

o Proofs with the help of predicate logic and set theory

o Step-wise refinement of specifications is supported

Bernhard Westfechtel 81 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Disadvantages of Z

o Complex notation with many, many operators

o Abstract data types are modeled only implicitly, relying on certain
conventions

o Modeling of operations with A schemata is hard to understand at first
glance

o Notations and methods for structuring large specifications are
missing (schemata are too fine-grained for this purpose)

o Transition from the specification to the implementation is difficult

o Often, Z is used only as a documentation aid

Bernhard Westfechtel 82 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

Specification of Software Systems

Literature

o B. Potter, J. Sinclair, D. Till: An Introduction to Formal Specification and
Z, International Series in Computer Science, Prentice Hall (1991)
Introductory textbook, on which this chapter is based.

o J.B. Wordsworth: Software Development with Z, International Computer
Science Series, Addison-Wesley (1992)
Another textbook.

o J.M. Spivey: The Z Notation: A Reference Manual, Second Edition,
International Series in Computer Science, Prentice Hall (1992)
Reference Manual including the language definition. Not appropriate as a
textbook.

o J. Bowen: Formal Specification & Documentation Using Z; International
Thomson Computer Press (1996)
Textbook with a brief introduction into Z, followed by many case studies.

Bernhard Westfechtel 83 Lehrstuhl fiir Informatik 1ll, RWTH Aachen

