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Specification of Software Systems

Characterization

o Formal specification of abstract data types

o Model-oriented specification

o Data types are defined with the help of sets, relations, and functions
o Operations are specified with pre- and postconditions

o Proofs based on logic and set theory

o Specifications may be refined in an evolutionary way
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Specification of Software Systems

Introduction into the Z Notation
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Specification of Software Systems

Survey
o Zis based on set theory and predicate logic

o Sets may be defined in the following ways:
» Extensional: Enumeration of elements
» Intensional: Specification of a predicate

o Operations on sets: union, intersection, ...

o Base types for sets:
» Pre-defined type Z (for integers)

» User-defined types (abstract data types)

o Type constructors:
» Power set: P X denotes the set of all subsets of X

» Cartesian product: X X Y is the set of all pairs (x, y), where x e X
andye?Y

o Strong typing:
» All elements of a set must have the same type
» Operations require operands of the same type
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Specification of Software Systems

Running example: library

o A library lends books to readers
o For each book, there may be one or more copies
o Only registered users may borrow books from the library

o There is a maximal number of copies which may be issued to one
user

o Operations:
» Stock administration (addition and removal of copies)
» User administration (registration and deregistration of users)
» Issue (lending and returning of book copies)
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Specification of Software Systems

Examples of base types and constructed types

[Book, Copy, Reader) User-defined base types for books,
copies, and readers

Z Set of integers

Pz Set of all subsets of integers

Fz Set of all finite subsets of Z

Book x Copy Set of all pairs of books and copies
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Examples for the definition of sets

1,2,3,4,5,6,7,8,9, 10} Extensional definition of the set of
integers from 1 to 10

1..10 Interval notation

n:211<nArn<10} Intensional definition of the set of
integers from 1 to 10

{1,4,9, 16, 25, 36,49, 64, 81, 100} Extensional definition of the square

numbers 12 .. 102

m:211<nArn<10en Intensional definition of the square
numbers 17 .. 107
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Elements of Z specifications

readers : F Reader Variable declarations
shelved : F Copy

stock : F (Copy X Book)
issued : F (Copy X Reader)

max . 2

max > 0 Predicates

#stock < max

Stock == Constant definitions

{s : F (Copy X Book) |
Y ¢ : Copy; by, by : Book e
(c, b)) esn(c,by))es=b;=by}
=—=In:Z1n>0}
Ny=1n:Z21n>0}
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Type concept

o Types are maximal sets (e.g., 2)

0 Predicates for restricting these sets do not modify the type (e.g., N
does not define a new type)

o Sets constrained by predicates may be used in variable declarations

» Example:
max : N stands for max : Z; max > 0

o Strong typing: The operands of an operator (e.g., u) must have the
same type
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Notations for quantification and sets

¥ Decs o Pred Pred holds for all objects in Decs

¥ Decs | Constr ® Pred = Pred holds for all objects in Decs

Y Decs ® Constr = Pred meeting the constraint Constr

3 Decs o Pred There is an object in Decs which
meets the predicate Pred

3 Decs | Constr  Pred = There is an object in Decs which

3 Decs ® Constr A Pred meets both the constraint Constr
and the predicate Pred

{Decs | Pred! Set of all objects in Decs which meet
the predicate Pred

{Decs | Pred  Expr}, e.g. Set of all values of all expressions

m:Z211<nan<10en? Expr, where variables range over

objects from Decs satisfying the
predicate Pred
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Definition of enumeration types

BookKind ::= hardcover | paperback

stands for

[BookKind]

hardcover, paperback : BookKind
hardcover # paperback

Y bk : BookKind e bk = hardcover v bk = paperback
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Generic definitions

o There are polymorphic operators, which may be applied to operands
of different types

o Such operators may be defined as generic

o Unconstrained genericity: any type may replace a generic parameter

o Example:
Generlc Generlc
arameter def|n|t|on
[Xl I
_PPXxPX) KII)ecIaratlorl
VS, T:PXeScT& (Vx:XexeS=xeT) =
Predicate

_
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(Binary) relations

X—Y=PXXY) Relation between X and Y
x—y=(xY) Pairs
domR={x:X|dy:Yex—yeR} Domain
ranR={y:Y|3Ix: Xex—yeR} Range

S<AR={x:X;y:YIxeSAx—yeRex—y} Domain restriction

R>T ={x:X;y:YlyeTArx—yeRex—y} |Range restriction

S<dR={x:X;y:YIxeSAx—yeRex—y} Domain subtraction

ReT ={x:X;y:YlyeTArx—yeRex—y} |Range subtraction

R'={x:X;y:Y|Ix—>ycRey—x Inverse relation

RgS= Composition
{x:X;y:Y,z:Zlx—yeRAny—zeSex—z}
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Functions (1)

Function Restrictions
Type Symbol dom f injective ran f
Partial —> cX cY
Total — =X cY
Partial and > cX + cY
injective
Total and —> =X + cY
injective
Partial and —+> cX =Y
surjective
Total and — = =Y
surjective
Bijective > =X + =
Partial and —> cX -
finite
Partial, finite, > cX + cY
injective
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Specification of Software Systems

Functions (2)

f: X< Yis afunction Functions are unique
Vx:X;y:Yiz:Zlx—>yefax—zefey=z relations

fx Application of a function f'to
an argument x

dom, <1, >, <4, &, [, fsg Operations which are
“inherited” from relations

Ax:X| Prede Term = Lambda notation for the
Ix:X| Pred e x — Term) definition of functions
feg=((domg)<df)ug Combination of functions

(g wins in case of a conflict)
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Sequences
(Reagan, Bush, Clinton, Bush) Notation for sequences
seqX =={f:N-»X|domf=1. #} Formal definition of
sequences
(Reagan, Bush, Clinton, Bush) = Example
{1 — Reagan, 2 — Bush, 3 — Clinton, 4 — Bush}
seq; X ==seq X\ {{)} Non-empty sequences
Vis:seq Xe Head and tail of a non-
heads=s1 Atails=An:1.#s—1es(n+1) empty sequence
head (Reagan, Bush, Clinton, Bush) = Reagan Example
tail {Reagan, Bush, Clinton, Bush) =
(Bush, Clinton, Bush)
Vs, t:seqXe Concatenation
s t=suU{n:1.#te(n+#s)—tn}
(Reagan, Bushy ~ (Clinton, Bush) = Example
(Reagan, Bush, Clinton, Bush)
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Schemata
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Specification of Software Systems

On schemata

o Schemata are specification units

0 A schema consists of a set of declarations and a set of (conjunctive)
predicates

o Schemata may be combined with the help of several operations,
including e.g. schema inclusion, schema conjunction and schema
disjunction)

o Data types are specified in a model-oriented way as follows:
» There is one schema for defining the representation of the data
type (state) and the respective state invariants
» For each operation, there is one corresponding schema which
defines its input and output behavior as well as the state changes
affected by the operation
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Specification of Software Systems

Schema for the state and its invariants

Name

_ Library

stock : Copy - Book

, d: C Read _

;feuzied- [?%VOAH caaer (Declaratlons]
: Py —_

readers : F Reader

shelved U dom issued = dom stock
shelved N dom issued = & ( Predicates ]
ran issued C readers T —

Y r: readers o #(issued 1> { r }) < maxloans
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Specification of Software Systems

Schema for an operation

o An operation is defined by a schema which has to obey certain
conventions (i.e., Z does not introduce special-purpose “operation
schemata®)

o The operation is not declared explicitly!
o Operation name = Schema name

o Parameter:
» x? . Input parameter
» y! . Output parameter

o States:
» s . ‘Before” state of an operation
» s . “After” state of an operation

o All declarations and predicates for s and s” must be repeated in the
operation schema

o To be introduced: Short-hand notation

Bernhard Westfechtel
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Specification of Software Systems

Example: Lending a book

_Issue & Operation
stock, stock” . Copy - Book name
issued, issued’ : Copy - Reader

shelved, shelved” : F Copy

readers, readers’ : F Reader r
c? : Copy; r? : Reader | Parameter]
CN—

shelved U dom issued = dom stock

shelved’” U dom issued” = dom stock’

shelved N dom issued = J; shelved” N dom issued = &
ran issued C readers; ran issued’ C readers’ —
V r: readers e #(issued > | r }) < maxloans Pr_e_'

Y r: readers’ o #(issued > {r}) < maxloans conditions
c? € shelved; r? € readers; #(issued 1> { r}) < maxloans {

Post-

issued = issued ® { c? — r? }; stock” = stock; readers’ = readers >
conditions |

shelved’ = shelved \ { ¢?}
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Specification of Software Systems

Schema operators (1)
—Sl—/v_S2 _S _S ’
5, Decls, - o ,
Decls, x: X y:Y; x Xy Y
P(x, y) P’ y7)
Schema inclusion
AS
S
Decls, S’
Decls,
Pred,
Pred, Schema decoration and A schema
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Specification of Software Systems

S — S,
Decls, Decls,
Pred, Pred,

~ S,

Decls, U Decls,

Pred, v Pred,

Schema disjunction
S, v S,

Bernhard Westfechtel
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Schema operators (2)

B\ P —S,
Decls, Decls,
Pred, Pred,

_S,

Decls, U Decls,

Pred, A Pred,

Schema conjunction
S, A S,
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Specification of Software Systems

Schema operators (3)

Schema composition
» Given: Schemata for two operations Op, and Op, on the same
state State
» Schema composition describes the sequential application of Op,
and Op,:
= Op,[’/""] denotes the schema which is derived from Op, by
replacing variables v’ with v”

= Op,[ /""] denotes the schema which is derived from Op, by
replacing variables v with v’
= Op, § Op, = 3 State”” @ Op,["/""] A Op,[ /"]

Precondition
» Let Op be a schema for an operation on state State with output
variables Outs!
» pre Op returns the precondition under which Op is applicable:

> pre Op = 3 State”; Outs! o Op
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Specification of Software Systems

Example of a schema inclusion

__LibDB
stock : Copy -~ Book
readers : F Reader

__LibLoans
issued : Copy -+ Reader
shelved : F Copy

shelved N dom issued = &
Y r: readers o #(issued > { r }) < maxloans

__Library
LibDB
LibLoans

shelved U dom issued = dom stock
ran issued C readers
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Specification of Software Systems

Specification of a change operation with a A schema

_Issue
ALibrary
c? : Copy; r? : Reader

c? € shelved,, r? € readers; #(issued > { r }) < maxloans
issued” = issued @ { c? — r? }; stock” = stock; readers’ = readers

shelved’ = shelved \ | ¢"?}
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Specification of Software Systems

Specification of a read operation with a & schema

X Library
ALibrary

NoChange =
issued’ = issued; stock’ = stock;
shelved’ = shelved; readers’ = readers

__WhoHasCopy.
ELibrary
c? : Copy; r! : Reader

c? e dom issued; r! = issued c?
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Specification of Software Systems

Example of a schema disjunction (1)

_AddKnownTitle __AddNewTitle

ALibrary ALibrary

b? : Book b? : Book

rep! : Report rep! . Report

b? € ran stock b? & ran stock

Jc: Copy | ¢ € dom stock e Jc: Copy | ¢ € dom stock e
stock’= stock ® {c — b? } A stock’= stock ® {c — b? } A
shelved’ = shelved U {c} shelved’ = shelved U {c}

issued’ = issued; readers’ = reader issued’ = issued; readers’ = reader

rep! = FurtherCopyAdded rep! = NewTitleAdded

AddCopy = AddKnownTitle v AddNewTitle
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Example of a schema disjunction (2)

—_AddCopy
ALibrary
b? : Book
rep! : Report

Jc: Copy | ¢ € dom stock e
stock’= stock ® {c — b? } A
shelved’ = shelved U {c}
issued’ = issued; readers’ = reader
b? € ran stock = rep! = FurtherCopyAdded
b? ¢ ran stock = rep! = NewTitleAdded
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Specification of Software Systems

Example of a schema conjunction

__EnterNewCopy __AddCopyReport
ALibrary Stock : Copy - Book
b? : Book b? : Book
rep! : Report

Jc: Copy | ¢ € dom stock e

stock’= stock ® {c — b? } A b? & ran stock

shelved’ = shelved U {c} = rep! = NewTitleAdded
issued’ = issued; readers’ = readers b? e ran stock

= rep! = FurtherCopyAdded

AddCopy = EnterNewCopy A AddCopyReport
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Sample Specification
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Specification of Software Systems

Example: Electronic dictionary

o Translation between two languages, called Native and Foreign

o Only orthographically correct words may be stored in the dictionary
(OrthoNative and OrthoForeign, respectively)

o Each word of the native language is mapped onto a set of words of
the foreign language (and vice versa)

o Operations to be provided:
» Insertion of a valid pair
» Output of all translations of a native word
» Output of all translations of a foreign word
» Testing the knowledge of a user:

= System selects a word randomly
= User supplies his translations
= System calculates the percentage of correct answers
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Specification of Software Systems

Structure of the specification

o Base types and global definitions

o Abstract states

o Initialization

o Partial operations under normal conditions
o Calculation of preconditions

o Total operations (including error conditions)

o0 Summary and index
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Specification of Software Systems

<specification>

<paragraph> ::=

Bernhard Westfechtel

Syntax of Z

::= (<paragraph>)* (* Specification consists of paragraphs *)

"[" <ident> ("," <ident>)* "]" (* Base types *)
<axiomatic-box> (* Declarations plus optional predicates *)
<generic-box> (* ... plus generic parameters *)
<schema-box> (* "graphical" schema definition *)
<schema-name> [<gen-formals>] = <schema-expr>

(* linear schema definition *)
<def-lhs> "==" <expr> (* Constant declaration *)

<ident> "::=" <branch> ("|" <branch>)+ (* Enumeration type *)

<predicate> (* Predicate for global variables *)
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Specification of Software Systems

Base types and global definitions

[Native, Foreign]
(* All character strings in the respective alphabets *)

OrthoNative : P Native
OrthoForeign : P Foreign

(* Orthographically correct words *)

Message ::= Ok | AlreadyKnownPair | NewPairEntered

| ErrorinForeignWord | ErrorInNativeWord | ErrorinBothWords
| UnknownNativeWord | UnknownForeignWord
| VocablsEmpty | NoCorrectResponses

(* Return codes for operations *)
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Specification of Software Systems

Abstract states

— WellFormedVocab
Vocab : OrthoNative <— OrthoForeign
NativeWordsKnown : | OrthoNative

ForeignWordsKnown : F OrthoForeign

(* Dictionary *)

NativeWordsKnown = dom Vocab
ForeignWordsKnown = ran Vocab

__RecordOfProgress
CumuMaxMarks, CumuMarksScored, AveragePercent : N

0 < AveragePercent < 100 (* Testing of user *)

CumuMarksScored < CumuMaxMarks
AveragePercent = percent(CumuMarksScored, CumuMaxMarks)

WordForWord.
WellFormedVocab ) | .
RecordOfProgress (* Overall state *)

Lehrstuhl fiir Informatik 1ll, RWTH Aachen
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Specification of Software Systems

Initialization

_ InitWord-For-Word
WordForWord’

Vocab” = &
CumuMaxMarks” = CumuMaxMarksScored” = 0
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Specification of Software Systems

Definition of partial operations (1)

AddPair = EnterPair n ReportlfAlreadyKnown
(* Insertion of a pair into the dictionary with return code *)

_ EnterPair
AWellFormedVocab

HRecordOfProgress
n? : OrthoNative; [? . OrthoForeign

Vocab” = Vocab U { n? — f?}

(* Insertion of a pair *)

__ReportlfAlreadyKnown
Vocab : OrthoNative < OrthoForeign
n? : OrthoNative; f? : OrthoForeign; rep! : Message

n? — f? € Vocab = rep! = AlreadyKnownPair
n? — 71 & Vocab = rep! = NewPairEntered

(* Information if pair was already known *)
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Specification of Software Systems

Definition of partial operations (2)

ToForeign = ForeignTranslations A ReportlfKnownNative
(* Translation of a word with return code *)

_ForeignTranslations

EWordForWord
n? : OrthoNative; ftrans! : F OrthoForeign

ftrans! =ran ({n?} < Vocab )

(* Retrieval of translations *)

—ReportlfKnownNative
EWellFormedVocab
n? : OrthoNative; rep! : Message

n? € NativeWordsKnown = rep! = Ok
n? & NativeWordsKnown = rep! = UnknownNativeWord

(* Information whether there is a translation for the given word *)
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Specification of Software Systems

Definition of partial operations (3)

VocabTestNtoF = SelectTestWordN A CheckResponsesF A UpdateScoreNtoF
(* Test: Select word, check responses, update score *)

__SelectTestWordN.
WellFormedVocab

TestWord! : OrthoNative
Translations . F OrthoForeign
TransCount! : N

TestWord! € NativeWordsKnown
Translations = ran ({ TestWord! } < Vocab )
TransCount! = #Translations

(* Selection of a word *)
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Definition of partial operations (4)

__CheckResponsesF.
Translations, CorrectResponses! : | OrthoForeign
Responses? : seq Foreign
rep! : Message

CorrectResponses! = Translations N ran Responses?
CorrectResponses! = & = rep! = NoCorrectResponses
CorrectResponses! # O = rep! = Ok

(* Correct responses included? *)

Bernhard Westfechtel
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Definition of partial operations (5)

__UpdateScoreNtoF'
EWellFormedVocab
ARecordOfProgress
Translations, CorrectResponses! : F OrthoNative
TransCount!, NewAverage! : N

CumuMaxMarks” = CumuMaxMarks + TransCount!
CumuMarksScored” = CumuMarksScored + #CorrectResponses!
NewAverage! = AveragePercent’

(* Output of the number of correct responses and new average percentage *)
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Calculation of preconditions

Operation Inputs and outputs Preconditions

AddPair n? : Native; [? : Foreign n? € OrthoNative
rep! : Message f? € OrthoForeign

ToForeign n? : Native n? € OrthoNative

ftrans! : F OrthoForeign
rep! : Message

VocabTestNtoF | Responses? : seq Foreign Vocab # &
TestWord! : OrthoNative
CorrectResponses! : F OrthoForeign
TransCount! : N

NewAverage! : N

rep! : Message
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Total operations (error handling)

TotalAidPair = AddPair v AddPairError
(* Total operation = normal operation + error handling *)

__AddPairError
ZWordForWord
n? : Native; f? : Foreign; rep! : Message

n? € OrthoNative A f? & OrthoForeign
= rep! = ErrorinForeignWord

n? & OrthoNative A f? € OrthoForeign
=> rep! = ErrorInNativeWord

n? & OrthoNative A f? & OrthoForeign
= rep! = ErrorIlnBothWords
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Summary and index

AddPair = EnterPair A ReportlfAlreadyKnown
ToForeign = ForeignTranslations A ReportlfKnownNative

VocabTestNtoF = SelectTestWordN A CheckResponsesF A UpdateScoreNtoF
TotalAddPair = AddPair v AddPairError

Bernhard Westfechtel
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Proving of Specification Properties
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Survey

o Foundations for proving specification properties:
» Proposition logic
» Predicate logic
» Set theory

o Example-based demonstration of
» Correctness of the initial state of a data type
» Simplification of a precondition of an operation
» Proving a property of an operation composition

o Not all used axioms will be introduced explicitly

o Example: Administration of soccer fans
» Each fan is registered under a unique identification number
» A subset of fans may be banned (hooligans)
» Operations for inserting, deleting, banning fans, etc.
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Z specification of soccer fan administration (1)

[PERSON, ID]
(* Given sets *)

__Fid
members : ID ~» PERSON
banned : P ID

banned < dom members

(* State *)

_InitFid
Fid’

members’ = &
banned’ = &

(* Initial state (without members) *)
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Z specification of soccer fan administration (2)

__AddMember.
AFid
applicant? : PERSON
id! . ID

applicant? & ran members

id! ¢ dom members

members’ = members U { id! — applicant? }
banned” = banned

__DeleteMember __ BanMember
AFid AFid
id? : ID ban? : ID
id? e dom members ban? € dom members
members’ ={id? } < members members’ = members
banned’ = banned \ {id? } banned’ = banned U { ban? }
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Correctness of the initial state

- 3 Fid’" e InitFid
< (Substitution of Fid" and InitFid)

F A members’ : ID >» PERSON;, banned’ : P ID |
banned’ € dom members’ o
members’ = O A banned’ = &

< (d Decs | Constr ® Pred = 3 Decs ® Constr A Pred)

F 3 members’ : ID > PERSON; banned” : P ID e
banned’ € dom members’ A members’ = O A banned’ = &

This proposition holds because:
- ID >» PERSON

-J:PID
-Dcd
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Simplification of a precondition (1)

__PreAddMember
Fid
applicant? : PERSON

AFid"; id! . ID e
applicant? & ran members A
id! ¢ dom members A
members’ = members U { id! — applicant? } A
banned” = banned

< (Expansion of Fid")
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Simplification of a precondition (2)

_PreAddMember
Fid
applicant? : PERSON

d members’ : ID ~» PERSON; banned’ : P ID; id! : ID e
banned’ € dom members’ A
applicant? & ran members A
id! € dom members A
members’ = members U { id! — applicant? } A
banned’ = banned

< (Elimination of existential quantifiers for members” and banned”)
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Simplification of a precondition (3)

_PreAddMember
Fid
applicant? : PERSON

did! 1 ID e
members U { id! — applicant? } € ID > PERSON A
banned € P ID A
banned < dom members U { id! — applicant? } A
applicant? & ran members A
id! ¢ dom members

< (Fid = banned € P ID)
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Simplification of a precondition (4)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
members U { id! — applicant? } € ID > PERSON A
banned < dom members U {id! — applicant? } A
applicant? & ran members A
id! € dom members

< (dom (R U S) = dom R U dom S)
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Simplification of a precondition (5)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
members U { id! — applicant? } € ID > PERSON A
banned < dom members U dom { id! — applicant? } A
applicant? & ran members A
id! € dom members

< (Fid = banned < dom members)
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Simplification of a precondition (6)

_ PreAddMember
Fid
applicant? : PERSON

did! . ID e
members U { id! — applicant? } € ID > PERSON A
applicant? & ran members A
id! ¢ dom members

= (members € ID >» PERSON A
applicant? & ran members A
id! € dom members =
members U { id! — applicant? } € ID > PERSON)
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Simplification of a precondition (7)

__PreAddMember
Fid
applicant? : PERSON

Jid! . ID e
applicant? & ran members A
id! ¢ dom members

= (Remove first subexpression from the existential quantifier)
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Simplification of a precondition (8)

__PreAddMember
Fid
applicant? : PERSON

applicant? & ran members A
3id! : ID e id! # dom members

< (Elimination of the existential quantifier)

__PreAddMember
Fid
applicant? : PERSON

applicant? & ran members A
dom members # ID
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Proving a property of the specification (1)

Sequential execution of AddMember (with output id!) and DeleteMember (with
input id?) does not change the state:

AddandDelete = AddMember § DeleteMember | id! = id? + ZFid

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

dFid"" e
applicant? ¢ ran members A
id! ¢ dom members A
members’ = members U { id! — applicant? } A
banned’” = banned A
id? e dom members’” A
members’ =1{id? } 9 members’ A
banned’ = banned’ " \{id?} A
id! = id?
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Proving a property of the specification (2)
< (Expansion of Fid"")

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

d members’’ : ID ~» PERSON; banned’” : P ID e
banned’~ < dom members’’ A
applicant? & ran members A
id! ¢ dom members A
members’~ = members U {id! — applicant? } A
banned’” = banned A
id? e dom members’” A
members” = {id? } <9< members’” A
banned’ = banned’ "\ {id? } A
id! = id?
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Proving a property of the specification (3)

< (Elimination of existential quantifiers for banned”™ and members”")

__AddandDelete
AFid
applicant? : PERSON
id? . ID; id! : ID

members U { id! — applicant? } € ID > PERSON A
banned € P ID A

banned < dom members U {id! — applicant? } A
applicant? & ran members A

id! € dom members A

id? € dom members U { id! — applicant? } A

members’ = {id? } < (members U { id! — applicant? }) A
banned’ = banned \ {id? } A

id! = id?
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Proving a property of the specification (4)

Calculation of members”:

members’ =

1id? } 9 (members U { id! — applicant? }) = (id! = id?)

lid! } < (members U { id! — applicant? }) = Ra4lSuD=R<aS)U(R<4D)
({id' } < members) U {id! | <{id! — applicant? |} = (Definition von <)

({id! } €@ members) U D =

{id! } <« members = (id! € dom members)

members

Bernhard Westfechtel 62 Lehrstuhl fiir Informatik 1ll, RWTH Aachen



Specification of Software Systems

Proving a property of the specification (5)

Calculation of banned :

banned” =

banned \ { id? |} = (id! = id?)

banned\ {id!} = (id! € dom members A
banned < dom members)

banned

members’ = members A banned = banned =

Fid = Fid =
= Fid
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Refinement of Specifications
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Goal and approach

o Starting point: abstract specification with an abstract state and
abstract operations

o Goal: transformation into a concrete specification which is nearer to
the final implementation

o Refinement may be performed multiple times (i.e., multiple levels)

o Definition of a refinement:

» Relation between abstract and concrete states, where each
concrete state is mapped onto at most one abstract state

» Each concrete initial state must be mapped onto a correct
abstract initial state

» Each concrete operation is mapped onto a corresponding
abstract operation

» The behavior of the concrete operation must be consistent with
the behavior of the abstract operation
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lllustration
Abstract 2 Alternative ]
. A4S successor state
AS, AOp,, > AS, AOp,, > AS,
? ! ? v

Retr

Retr .State Retr
refinement

parameter parameter

Concrete
operation

Concrete
state
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Formal definition of a refinement

o A4S, CS Schemata for abstract and concrete states
InitAS, InitCS Schemata for initial states
Q Retr(ieve) Schema for the correlation of abstract and
concrete states
Retr
AS
CS
RelASCS

o Each schema A0 for an abstract operation is mapped onto a schema
CO for the corresponding concrete operation
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Theorems to be proved

o Initialization theorem

Each concrete initial state represents an abstract initial state:
InitCS A Retr’” V+ InitAS

o Applicability theorems
If an abstract operation is applicable in an abstract state, the
corresponding concrete operation is applicable in the corresponding

concrete state:
pre AOp A Retr+ pre COp

o Correctness theorems
If an abstract operation is applicable and the corresponding concrete
operation is applied, the behavior is latter is consistent with the

behavior of the former:
pre AOp A Retr A COp A Retr’ F AOp
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Abstract state of the soccer fan administration

_FidScheme
members : ID >~ PERSON
banned : P ID

banned € dom members
#members < maxmems

(* Abstract state, now with maximal number of members maxmems *)

_InitFidScheme
Fid’

members’ = &
banned’ = &

(* Initial state (without members) *)

Bernhard Westfechtel 69 Lehrstuhl fiir Informatik 1ll, RWTH Aachen



Specification of Software Systems

Concrete state: array-based realization

membarr
Y- index ID PERSON
index 1 N 1 WW8901 Tom Cobbley
2 WW8903 Bill Vandal
! 4 3 WW9001 | Daisy Widden
2 3 4 Www9002 Joe Hooly
3 2 5 WW9004 | Sandra Skintight
6 wwao007 Joan Brewer

Bernhard Westfechtel 70 Lehrstuhl fiir Informatik 1ll, RWTH Aachen



Specification of Software Systems

Z specification for the concrete state

iseqlX] == seq X N (N »» X)
(* Representation of arrays by injective sequences *)
__CFidScheme

membarr : iseqlID X PERSON]
banarr : iseq[N]

ran membarr € ID > PERSON
ran banarr C 1. #membarr
#membarr < maxmems

(* Concrete state, with maximal number of members maxmems *)

_ InitCFidScheme
CFidScheme’

membarr’ = {)
banarr’ = ()

(* Initial state (without members) *)
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Relation between abstract and concrete states

__ Retr
FidScheme
CFidScheme

members = ran membarr
banned = dom ( ran ( ran banarr < membarr ) )

(* Members are pairs occurring as elements of membarr.

The 1dentifiers of banned persons are obtained as the first components of pairs
which are marked by indices in banarr. *)
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Initialization theorem

To demonstrate:
InitCFidScheme A Retr’ v InitFidScheme
members’ = ran membarr’ =ran{) =

banned” = dom ( ran ( ran banarr” < membarr’ ) )
=dom (ran (ran{)<1()))
=
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Abstract and concrete operation
__AddMember

AFidScheme
applicant? : PERSON
id! : ID

applicant? & ran members

id! € dom members

members’ = members U { id! — applicant? }
banned’ = banned

__CAddMember
ACFidScheme
applicant? : PERSON
id! : ID

applicant? & ran (ran membarr)

id!  dom (ran membarr)

membarr’ = membarr ~ { (id!, applicant?) )
banarr’ = banarr
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Preconditions

_ PreAddMember
FidScheme
applicant? : PERSON

applicant? & ran members
dom members # ID
#members < maxmems

_ PreCAddMember
CFidScheme
applicant? : PERSON

applicant? & ran (ran membarr)
dom (ran membarr) # ID
#membarr < maxmems
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Applicability theorem

To demonstrate:
PreAddMember A Retr + PreCAddMember <

FidScheme; applicant? : PERSON; CFidScheme |

applicant? ¢ ran members (HI)
dom members # ID (H2)
#members < maxmems (H3)
members = ran membarr (H4)
banned = dom ( ran ( ran banarr < membarr)) (HS)
|_
applicant? & ran (ran membarr) (GI)
dom (ran membarr) # ID (G2)
#membarr < maxmems (G3)
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Proof of (G1):
applicant? & ran members

= applicant? & ran (ran membarr)

Proof of (G2):

dom (ran membarr)
= dom members

= ID
Proof of (G3):

#membarr = #(ran membarr)
= #members
< maxmems

Bernhard Westfechtel
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(H1)
(H4)

(H4)
(H2)

Proof of the applicability theorem

(membarr is injective)

(H4)
(H3)
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Correctness theorem

To demonstrate:
PreAddMember A Retr n CAddMember A Retr’ + AddMember <

PreAddMember A Retr n CAddMember A Retr’

I_
applicant? & ran members (GI)
id! ¢ dom members (G2)
members’ = members U { id! — applicant? } (G3)
banned’ = banned (G4)
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Proof of the correctness theorem

Proof of (G1):
applicant? & ran members (PreAddMember)
Proof of (G2):
id! ¢ dom (ran membarr) (CAddMember)
< id! ¢ dom members (Retr)
Proof of (G3):
members’
= ran membarr’ (Retr’)

= ran (membarr ~ { (id', applicant?) ) ) (CAddMember)
= ran membarr U { (id!, applicant?) } (Properties of ran and ~ )

= members U { id! — applicant? } (Retr)

Proof of (G4):

banned’
= dom(ran (ran banarr’ < membarr”)) (Retr’)
= dom(ran (ran banarr <\ (membarr ~ { (id', applicant?) ) ))) (CAddMember)
= dom(ran (ran banarr < membarr)) (CFidScheme)
= banned (Retr)
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Summary
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Advantages of Z

0 Based on theoretical foundations (logic and set theory) which should
be known at least to mathematically trained users

o Very general approach
o Compact specifications

o Model-oriented specification is easier to understand/construct than
behavioral specification

o Proofs with the help of predicate logic and set theory

o Step-wise refinement of specifications is supported
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Disadvantages of Z

o Complex notation with many, many operators

o Abstract data types are modeled only implicitly, relying on certain
conventions

o Modeling of operations with A schemata is hard to understand at first
glance

o Notations and methods for structuring large specifications are
missing (schemata are too fine-grained for this purpose)

o Transition from the specification to the implementation is difficult

o Often, Z is used only as a documentation aid
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