
Graph-oriented Storage for Fujaba Applications

Erhard Schultchen, Ulrike Ranger, and Boris Böhlen
[schultchen|ranger|boehlen]@cs.rwth-aachen.de

Department of Computer Science 3
RWTH Aachen University

52074 Aachen, GERMANY

ABSTRACT
Fujaba supports the visual modeling of software applications
and the generation of according Java code. During its execu-
tion, the runtime state of the generated applications can be
saved and restored using the CoObRA framework. In this
paper, we present the graph-oriented database DRAGOS
for the persistent storage as alternative to CoObRA. Due
to the extensive functionality of DRAGOS, the database of-
fers the possibility for introducing new language features in
the Fujaba modeling language. Furthermore, the usage of
DRAGOS supports rapid prototyping of Fujaba specifica-
tions based on the UPGRADE framework.

Keywords
Graph Storage, Modeling Language, Rapid Prototyping

1. INTRODUCTION
Fujaba facilitates the modeling of software applications in a
visual way. For this purpose, the developer draws UML-like
diagrams, e.g. class diagrams for the static structure and
activity diagrams for the dynamic behavior of the software
application. Based on this specification, Fujaba generates
according Java code, which can be executed in a Fujaba
application.

Internally, the specified application is translated into a graph
transformation system, thus the generated code covers ap-
propriate data structures and graph transformations. At
runtime, the application’s host graph consists of Java ob-
jects representing the graph nodes. The execution of the
generated transformations leads to modifications of the host
graph. All Java objects together form the state of the appli-
cation, and are managed by the Java runtime environment.

Basically, the generated Java code does not provide any sup-
port for the persistent storage of the Java objects. To fill
this gap, CoObRA [6] can be used, which is a lightweight
framework for the storage of Java objects. By adapting the
Fujaba code generation to CoObRA, the state of a Fujaba
application is automatically stored persistently. A severe
drawback of the CoObRA approach is that only changes
made to objects are registered. CoObRA does not control
the access to objects, which is required e.g. for provid-
ing consistency in case of concurrent changes. To ensure
consistency, isolation of concurrent (both reading and writ-
ing) operations has to be ensured. For this, CoObRA only
provides the isolation level read uncommitted known from
databases. An application’s object structure may therefore

only be accessed by a single thread, otherwise the result is
not predictable. When the generated application is used by
several users concurrently, e.g. if it is part of a distributed
system, this restriction is not acceptable.

In this paper, we present the graph-oriented database sys-
tem DRAGOS1 [1] as alternative to CoObRA. DRAGOS has
been developed at our department, and is used by applica-
tions generated with the graph rewriting system PROGRES
[7]. As Fujaba also uses graph transformations internally,
we have realized the integration of DRAGOS in Fujaba.
DRAGOS can utilize existing database management sys-
tems (DBMS) for storing graphs. Besides, the DBMS’s func-
tionality can be used by DRAGOS, e.g. to allow concurrent
access with the DBMS’s isolation level . In addition to the
persistent storage of runtime data, DRAGOS enables new
features in Fujaba, like the evaluation of derived attributes.

The paper is structured as follows: Section 2 introduces the
DRAGOS architecture, and describes the mapping of the
application’s runtime data on the database. Based on the
functionality of DRAGOS, section 3 shows possible exten-
sions of the Fujaba modeling language. Additionally, the
graphical prototyping framework UPGRADE is presented,
which can be used for the visualization of Fujaba applica-
tions. A summary and an outlook on future work are given
in section 4.

2. GRAPH-ORIENTED DATABASE
The graph-oriented database DRAGOS is designed to store
typed, and attributed graphs in a repository. In this section,
we present DRAGOS and its integration in Fujaba. First,
the architecture of DRAGOS is described and an introduc-
tion to the basic functionality is given. Second, we present
the DRAGOS graph model describing the stored graphs.
Third, the integration in Fujaba is presented.

2.1 DRAGOS Architecture
An overview of the DRAGOS architecture is given in fig-
ure 1. The DRAGOS Kernel offers the basic functionality,
which comprises defining, creating, modifying and querying
graphs. In detail, the DRAGOS Kernel consists of the follow-
ing components:

1DRAGOS is an acronym for Database Repository for Ap-
plications using Graph-Oriented Storage, and was formerly
called GRAS/GXL.

GXL
Graph Model

Event
Manager

Fujaba
Graph Model

Transaction
Manager

PROGRES
Graph Model

Commercial
DBMS

Incremental
Attr. Evaluation

Graph
Versioning

DRAGOS Extensions

Graph Model
& Schema

Event
Manager

Transaction
Manager

Graph
Storage

DRAGOS Kernel
Rule

Engine

Figure 1: DRAGOS architecture overview

• The Event Manager propagates events raised on graph
modifications to registered listeners. Users can choose
between different Event Manager implementations by
changing a configuration file. For example, building
a distributed system consisting of several DRAGOS in-
stances requires a special event manager. This manager
has to propagate events between the different DRAGOS
systems, which is not offered by the provided standard
implementation.

• Using the Rule engine, applications may register event-
condition-action rules to perform the defined actions
when selected events are raised.

• The Transaction Manager allows to start, commit and
rollback transactions. Analog to the Event Manager,
the provided implementation can be exchanged easily.

• The Graph Storage provides access to an underlying data
storage. For the persistent storage of graphs DRAGOS
uses relational DBMS like PostgreSQL, but can also
store volatile graphs in main memory2. Using existing
DBMS allows to use their functionality, such as transac-
tional operations with respect to the ACID properties.
The DRAGOS Transaction Manager controls the DBMS
transactions in this case.

• The Graph Model and the Graph Schema describe the
structure of the stored graphs. The graph model is pre-
sented in detail in section 2.2.

Above the DRAGOS Kernel, extensions to the basic function-
ality can be implemented by extension modules. Until now,
versioning of graphs (including the management of config-
urations) and an engine for the incremental evaluation of
derived attributes are available. This modularization of the
DRAGOS functionality allows applications to avoid unnec-
essary overhead, e.g. an application, which does not require
versioning, does not activate this extension. Furthermore,
DRAGOS can be easily extended by developing new exten-
sions, which can be combined with existing ones.

On top of the DRAGOS architecture, applications are in-
tegrated by specialized graph models. This is presented in

2The in-memory storage can be serialized to disk when clos-
ing the graph pool and thus enables persistent storage, too.

GraphPool

Graph

- role : String

Edge Node

GraphEntityClass
(from Schema)

- name : String
- abstract : boolean

type

*
instance

Attribute
(from Schema)

- name : String
- type : Serializable

AttributeValue

- value : Serializable
- valid : boolean

* *

*
manages

*
contains

GraphEntitiy

0..1

*
from

0..1

*
to

0..1

*

Relation

- directed : boolean

*
RelationEnd

Figure 2: DRAGOS graph model

section 2.3 considering the Fujaba graph model.

2.2 Graph Model
In order to represent a graph in volatile or persistent mem-
ory, a formal notation about the entities a graph consists of
is required. For this purpose, DRAGOS provides a general
graph model, which is shown in figure 2. The interface of the
Graph Storage (cf. fig. 1) is designed according to this graph
model. For example, methods to retrieve all GraphEntitys or
to get the source and target of an Edge are provided.

In the DRAGOS graph model, GraphPool contains a set of
Graphs. A Graph holds a collection of GraphEntity, which
is - according to the inheritance relation - either a Node, a
binary relation (Edge), an n-ary Relation or another Graph.
A Graph may be contained within another Graph, allowing
hierarchical structures. Edges and Relations can connect ar-
bitrary GraphEntitys, even if they are contained in different
graphs within the same GraphPool.

Valid graph structures are defined by the graph schema,
which is not shown here for the lack of space. In contrast
to the graph model which defines the entities a graph con-
sists of, the schema provides the typing system. For this,
the graph schema defines classes for every element of the
graph model. In figure 2, the GraphEntity refers to a type
definition GraphEntityClass which is part of the schema. The
schema contains a dedicated Class element for every subclass
of GraphEntity.

The DRAGOS graph model allows all GraphEntitys to be
attributed. As AttributeValue, serializable Java objects (in-
cluding primitive data types) and references to other graph
entities are supported. Attribute definitions are also part of
the graph schema, as indicated by the (from Schema) mark-
ing in figure 2.

The DRAGOS graph model is based on the graph exchange
format GXL [8]. However, GXL does not treat graphs as
graph elements. As a consequence, e.g. edges are not al-

Instance Model

<<instance>>

<<nodeclass>>
Class*

*
<<edgeclass>>

<<edgeclass>>
Association

- isOrdered *

*

<<edge>>

<<edge>>
Link

- order
- srcQualifier
- trgQualifier

Schema Model

<<instance>>

<<node>>
Instance

Figure 3: Fujaba graph model and schema

lowed to connect two graphs, but only elements contained
in these graphs. In the DRAGOS graph model, a graph is
a graph entity, too, and may therefore be incident to edges
or relations. Furthermore, the DRAGOS model simplifies
the GXL model to enable a more efficient implementation.
For example, an attribute in the DRAGOS model cannot be
attributed by another attribute, which is allowed in GXL to
an arbitrary nesting depth. Following the GXL model, an
attribute value would have to be treated as a graph element
in order to identify it for attributing. In contrast to GXL,
the DRAGOS model does not provide ordered edges or rela-
tions to reduce overhead for applications not using them. As
we will present in the following, support for ordered edges
can easily be added.

2.3 Graph Model Mapping
DRAGOS supports graph-oriented applications from vari-
ous domains, and therefore does not tie applications to a
common graph model. A common model would either re-
strict the applications’ expressiveness or clutter applications
with elements not required. Hence, DRAGOS allows ap-
plications to use a specialized graph model, which can be
designed according to the applications’ needs. The special-
ized graph model for Fujaba is implemented by mapping the
Fujaba elements to the DRAGOS graph model. Using the
tool SUMAGRAM [4], this mapping can be partially mod-
eled graphically based on UML class diagrams.

For the support of Fujaba applications, we developed a spe-
cialized graph model reflecting object-oriented data in the
graph database (cf. fig. 3), comprising a schema model and
an instance model. The schema model is composed of Class
and Association elements and describes the structure of a
graph schema. The instance model consists of elements in-
stantiating the schema model.

The mapping of the specialized graph model on the DRAGOS
model is depicted by stereotypes enclosed in <<>>. Elements
of the instance model are mapped to the DRAGOS graph
model whereas elements of the schema model are mapped
to the DRAGOS graph schema.

As mentioned above, the DRAGOS graph model does not
provide ordered edges. As they are needed by Fujaba appli-
cations, these can be integrated into the specialized graph
model. For ordered associations, the creation of Link in-
stances automatically assigns an ordering index3. This be-

3We could have implemented the same behavior based on
edges, which connect links to indicate the ordering. How-
ever, this would have increased the overhead for insertion
and removal of these links.

haviour is implemented as a method in the specialized graph
model, which is depicted below in a simplified form:

public void createLink (Instance src , Instance trg ,
Association type , int index) {

Edge edge =
this.graph.createEdge (src.getDragosNode (),

trg.getDragosNode (),
type.getDragosEdgeClass ());

if (type.isOrdered ()) {
reorderEdgesForInsert(src , trg , type , index);
edge.setMetaAttribute(META_ATTR_ORDER , index);

}
}

The method createLink gets two Instance objects and an
Association object from the specialized graph model as pa-
rameters. In addition, the parameter index is passed as
the insertion index for ordered associations; it is not con-
sidered for unordered ones. To create the link, according
elements of the DRAGOS model are determined using the
methods getDragosNode and getDragosEdgeClass. Using
the returned elements of the DRAGOS model as parame-
ters, the method createEdge is invoked on the graph object
representing the application’s runtime graph. A new edge
of the given type is created between the two nodes by this
method. If the association is ordered, existing instances con-
nected to the same src or trg are reordered according to the
insertion position index. After reordering, the insertion in-
dex is stored as a meta attribute of the new edge. Please
note, although a Link class is depicted in figure 3, we do not
create a link object corresponding to the edge object from
the DRAGOS model. To fully reflect the depicted special-
ized graph model, the method createLink would have to
create and return a new instance of the Link class. The rea-
son this was omitted is efficency, as the Fujaba generated
code does not use these objects. In fact, another method
retrieveLink can be used to create these objects when re-
quired. This method is called by the UPGRADE framework
(c.f. sec. 3.2). We omit to explain the support of qualified
associations in this paper, as the implementation is similar
to ordered associations.

2.4 Specialized code generation
With the specialized graph model, Fujaba applications can
store their runtime state in the DRAGOS database. As next
step, we have to modify the code generation to make use of
DRAGOS. Based on CodeGen2 [3], we developed a plug-in
for this purpose.

As basic idea, we aim to change the code generation as little
as possible to preserve compatibility with existing applica-
tions. For example, we retain the accessor methods for at-
tributes and associations, but change their implementation
according to the specialized graph model. As an example,
we present the set-method for a many–to–one association.
With DRAGOS in use for storing the runtime state, the
code is generated as follows4:

4Code required for exception handling and transaction man-
agement has been excluded here.

public boolean setAR (AR value) { [...]
if (value != null) {

RepositoryManagerFactory.
getDefaultRepository ().
createLink(this , "cR",

value , "aR",
"RM.CR:cR-aR:RM.AR");

} else {
[...] }

This code block retrieves the Repository representing the
runtime graph of the application. The Repository provides
the method createLink for connecting two objects (this
and value). As Fujaba uses role names to distinguish be-
tween the source and the target of a link, these are passed
too (cR and aR). The association’s name is passed as last
parameter, which is constructed from the attached classes
and the corresponding role names. The createLink method
creates the desired edge regarding uniqueness constraints
defined by the schema. If such a constraint is violated, an
existing link of the same type is automatically removed. As
the method setAR(AR) is also used to remove connections
between objects by passing null as value, deletion of links
has to be handled in the else part of the if-statement.

The current code generation creates accessor methods for
attributes and associations. These methods could be com-
pletely abolished by using DRAGOS. Thus activity diagrams
would solely utilize the methods provided by the specialized
graph model for pattern matching and graph modifications.
The generated code would become clearer because a large
number of methods would not be created. However, other
parts of the Fujaba environment such as the support for
path expressions or the assignment of attributes rely on ac-
cessor methods. So, discarding accessors would require far
reaching changes to the code generation. Hence we chose
the more compatible approach by exchanging the accessors’
implementations only.

3. APPLICATION AREAS
The usage of DRAGOS as underlying database for Fujaba
applications enables several extensions. On the one hand,
new features for the Fujaba modeling language can be sup-
ported, which are described in section 3.1. On the other
hand, the modeled application can be visualized using the
UPGRADE framework leading to a configurable graphical
user interface shown in section 3.2.

3.1 Language Extensions
At runtime, Fujaba can only handle one host graph consist-
ing of connected objects. I.e. separate graphs within one
application and even isolated objects within one graph are
not supported. This restriction is founded on the fact that
Fujaba uses the Java runtime environment for managing its
objects. Consequently, Fujaba only supports the search of
object structures5 consisting of connected objects. Addition-
ally, these object structures need at least one defined entry
object for their processing. For example, an entry object is
given by the this-object or by a method parameter.

5To execute a graph transformation specified within a
Fujaba activity, a certain object structure (pattern) has to
be found within the host graph. This structure consists of all
objects, which are either obligatory or have to be destroyed
within the activity.

Using DRAGOS as underlying database, these limitation
can be easily removed: DRAGOS supports the handling
of different graphs simultaneously and of isolated objects
within one host graph. For example, isolated objects can
be found by querying the database for all objects of the
requested object’s type. This mechanism also enables the
search of objects structures without any specific entry ob-
ject. Another solution to enable isolated objects is to in-
troduce a hidden (singleton) class referencing all objects.
However, consistency of these references would have to be
assured by the code generation.

Another limitation of Fujaba is the support of only intrinsic
attributes within classes, whose concrete values are directly
assigned within activities. This does not exploit the capabil-
ities of using graphs as underlying data structure, as these
also offer the possibility to define more complex attributes
like derived attributes in PROGRES.

The values of derived attributes are not assigned directly,
but are computed according to other graph objects and their
attributes. These computations can be arbitrarily complex
and refer to the entire host graph. The attribute is evalu-
ated only on graph modifications, which impact the current
attribute value. With the DRAGOS extension Incremental
Attribute Evaluation, derived attributes can be easily inte-
grated in Fujaba.

Fujaba allows the definition of paths, which aggregate an ar-
bitrary number of associations (edges) of possible different
types. Unfortunately, the usage of paths affects largely the
runtime efficiency of the Fujaba application, as they have to
be evaluated on every employment. The Incremental At-
tribute Evaluation extension also enables the definition of
static paths, so that frequently used paths can be materi-
alized in the database. Thus, the path is only evaluated on
graph modifications, which change the path, improving the
runtime efficiency.

With the support of isolated nodes, the abolishment of nec-
essary entry objects, and the definition of derived attributes,
DRAGOS offers new and useful modeling elements in the
Fujaba language. Furthermore, the introduction of static
paths improves the runtime efficiency of Fujaba applications.

3.2 Rapid Prototyping
Fujaba provides DOBS for executing the generated code and
for visually representing the runtime state. However, DOBS
allows only little customization to the representation and
the user interface.

At our department, we developed the UPGRADE frame-
work [2]. UPGRADE allows rapid prototyping by executing
code generated from a PROGRES specification. The run-
time graph of the generated application is presented visu-
ally. Furthermore, users can execute graph transformations
and view their affects on the runtime graph. UPGRADE
is highly customizable using configuration files, and can be
extended through a programming interface. In addition,
UPGRADE provides a filter stack to separate the user’s
view from the underlying data. This filter stack can be
customized by the user. New filters can be implemented
using the provided API. For layouting the graph structure,

UPGRADE includes a set of layout algorithms: E.g. the
sugiyama layout for hierarchical graph structures and the
nicolay layout for constraint-based layout.

As UPGRADE offers a lot of functionality, adapting it for
Fujaba generated code is desirable. Until now, this was not
possible because Fujaba applications do not offer an explicit
graph model and schema. Concerning the graph schema,
node types are provided through generated Java classes, but
associations are not explicitly available. DOBS solves this
problem by inferring associations from the respective access
methods generated in the incident classes. This behavior
would have to be re-implemented in UPGRADE. Concern-
ing the graph model, UPGRADE requires methods to re-
trieve a list of all nodes and edges from the graph. Fujaba
generated applications do not provide direct access to the
graph’s nodes because the Java runtime environment does
not allow to list its objects. Appropriate support like an
extra class referencing all objects would have to be added
to the generated code. Accessing the graph’s edges would
require even more extensive changes to the generated code.

In addition to the graph model, UPGRADE requires events
to be raised upon changes to the runtime graph for incre-
mentally updating the display. With the standard Fujaba
generated code, these events can only be obtained by regis-
tering a change listener at each node of the runtime graph.
This approach is not efficient for large graphs, especially
if only an excerpt of them is displayed. This might also
cause memory leaks when change listeners are not properly
removed from deleted nodes.

With the introduction of DRAGOS, this problem can be
easily solved, as direct access to the graph elements and
a central event manager are provided. A simple adapter
class has to be implemented, so that UPGRADE can access
the Fujaba graph model. This adapter is currently under
development.

4. CONCLUSION
In this paper, we have presented the graph-oriented database
DRAGOS for persistently storing the runtime data of Fujaba
applications. For this purpose, we have shortly described
the architecture of DRAGOS and its integration into Fujaba.
With DRAGOS as underlying database, we have introduced
possible extensions of Fujaba. This includes on the one hand
extending the Fujaba modeling language, and on the other
hand the generation of configurable graphical user interfaces
for Fujaba applications.

DRAGOS can be used as an alternative to the existing
CoObRA framework. The database offers more function-
ality than CoObRA, but still has problems in its runtime
efficiency. Therefore, we are optimizing and improving the
database. Additionally, we are investigating, how the pre-
sented language extensions can be integrated best into the
Fujaba modeling language.

In addition to UPGRADE, we have also experimented with
the re-engineering tool RePLEX, which is currently devel-
oped in the ECARES [5] project. The tool is implemented
as a plug-in for the Eclipse IDE, using a hand-written GEF-
based user interface and a Fujaba specification for the ap-

plication logic. We generated code from the Fujaba spec-
ification using the modified code generation for DRAGOS.
Furthermore, we modified the GEF edit parts so that change
observers are no longer registered at the model objects di-
rectly, but at the DRAGOS event manager. This simplifies
the management of these observers as already explained for
the event management of UPGRADE. So, we provided Re-
PLEX with a DRAGOS based persistency support with low
implementation effort.

5. REFERENCES
[1] B. Böhlen. Specific graph models and their mappings to

a common model. In J. L. Pfaltz, M. Nagl, and
B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance, 2nd Intern.
Workshop, AGTIVE 2003, volume 3062 of Lect. Notes
in Comp. Sci., pages 45–60. Springer-Verlag, 2004.

[2] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel.
UPGRADE: A framework for building graph-based
interactive tools. In T. Mens, A. Schürr, and
G. Taentzer, editors, Graph-Based Tools (GraBaTs
2002), volume 72 of Electr. Notes in Theor. Comp. Sci.
Elsevier Science, 2002.

[3] L. Geiger, C. Schneider, and C. Reckord. Template-
and modelbased code generation for MDA-tools. In
H. Giese and A. Zündorf, editors, Proceedings of the
Fujaba Days 2005, volume tr-ri-05-259 of Technical
Report. University of Paderborn, Germany, 2005.

[4] E. C. Maes. Development of a supporter for the
mapping of graph models for GRAS/GXL. Master’s
thesis, University of Utrecht, May 2005. Nr.:
INF/SCR-04-66.

[5] C. Mosler. E-CARES Project: Reengineering of
Telecommunication Systems. In R. Lämmel, J. Saraiva,
and J. Visser, editors, Proceedings of the Summer
School on Generative and Transformational Techniques
in Software Engineering (GTTSE’05), number 4143 in
LNCS, pages 437–448, Braga, Portugal, 2006.
Springer-Verlag.

[6] C. Schneider, A. Zündorf, and J. Niere. CoObRA - a
small step for development tools to collaborative
environments. In J. Grundy, R. Welland, and
H. Stoeckle, editors, Proceedings of the Workshop on
Directions in Software Engineering Environments, 26th

International Conference on Software Engineering,
2004.

[7] A. Schürr. Operationales Spezifizieren mit
programmierten Graphersetzungssystemen. Dissertation,
RWTH Aachen, 1991.

[8] A. Winter. Exchanging graphs with GXL. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Graph Drawing –
9th Interational Symposium, GD 2001, volume 2265 of
Lect. Notes in Comp. Sci., pages 485–500.
Springer-Verlag, 2001.

