The Graph Rewriting Language and
Environment PROGRES

Ulrike Ranger and Erhard Weinell

RWTH Aachen University of Technology
Department of Computer Science 3 (Software Engineering)
Ahornstrafle 55, D-52074 Aachen, Germany
Ranger|Weinell@cs.rwth-aachen.de
http://se.rwth-aachen.de/progres

Introduction: PROGRES (PROgrammed Graph REwriting Systems) [1]
has been developed since the late 1980s, and thus constitutes one of the eldest
implemented graph rewriting languages and environments. It is based on the
logic-oriented approach to graph grammars. The PROGRES language allows to
model the structure and the behavior of software applications in a visual and
declarative way. Thereby, it is not tied to a specific application domain, but may
be used for arbitrary software applications (see [2] for a simple example). Besides
an extensive language, PROGRES offers an integrated modeling environment,
including a syntax-directed editor, an interpreter, and a debugger. Furthermore,
the environment supports rapid prototyping by generating executable source
code from a specification. The code can be embedded into a visual prototype.

The graph language PROGRES: PROGRES offers language constructs
for defining graph schemas and graph transformation rules. Thereby, it uses
directed, attributed, node and edge labeled graphs as underlying data model.

Graph Schema: A PROGRES graph schema consists of node types and edge
types where the edge types model relations between the node types. Following
the object oriented programming paradigm, attributes and graph transforma-
tion rules may be defined for every node type. For modeling complex naviga-
tions through a host graph, paths may be defined in the schema describing such
navigations by using operators like the Kleene star. Furthermore, a schema may
contain integrity constraints imposing advanced restrictions on valid host graphs.

Graph Transformation Rules: In PROGRES, graph transformation rules are
distinguished into simple rules and combined rules. A simple rule describes a
graph transformation in a visual way, consisting of a left-hand side (LHS) and a
right-hand side (RHS). The LHS specifies a graph pattern for which an accord-
ing match has to be found in the host graph. If such a match could be found,
it is transformed according to the RHS. For modeling variable coherences, rules
may contain optional, negative or even set-valued nodes and negative edges. Fur-
thermore, embedding clauses may be used for integrating the transformed sub
graph into the remaining host graph. In contrast to a simple rule, a combined
rule composes several rules by textual control structures, e.g. loops and con-
ditions. Thus, a complex transformation may be modeled by a combined rule.
PROGRES also comprises an OCL-like language for formulating constraints in
transformation rules or paths.

~ v = Generic graph view

File View Options Layout Transformations Other

tion_name edge_name edge_guard predecessar

nodet action_n %
2 [V IX] g 2) |) |) |
| Generic | Transaction

P1 = callDriver -> $4 =

|
¥

;_'

b

[34 = (D2 </ askhelp /= [D3 </ cancel &> D1a))]
- T T
) -
& e ! I
[DecisionNods] \D3:cancpilA\enr> ¢ [Dia :aaaeaanacr\pt\on»Dm\ :
4 Else } Etantsl) ¥
o Allv[= csP Text View i D0 =E]
s e
2 Transaction N P

bl

P1 = callDriver -> 54
54 = (D2 </ askhelp /> (D2 </ cancel /> D1a))|| LET=F21F1172

D2 = E1 T -

-

D3 = cancelAlert -> €2

31 + ==
Dla = assessDescription -> D1b F3 = getServiceFormat -> JG\ \F'\ = getMaplLocation -> J’\‘
El1=F3 || F1||F2 T T

! €2 = SKIP
<) b H 1bi6 - £1 | ,

getServiceFormat| | processAlert] | [F1 = getMapLocation —> J1 J3 = process.join > K| J1 = process.oin - SKIP_J1|
} F2 = processAlert ->)2
iy 2 _a—|}|F3 = getServiceFormat -> |3
B J1 = processjoin -> SKIP_J1 K1=SKIP

2 = processjoin -> SKIP_J2

) 13 = processjoin -> K1
K1 = SKIP

Lol

Fig. 1. Screenshot of a generated prototype

Environment: As example for the extensive PROGRES environment, the
rapid prototyping framework UPGRADE is sketched here. Using the code gener-
ated from a PROGRES specification, UPGRADE is able to display host graphs
and to invoke the specified transformation rules on them. As host graphs tend to
become too incomprehensible for inspection, UPGRADE offers a display mech-
anism which is highly user-configurable: Filters allow to hide instances of node
and edge types not relevant to the user. They also allow to collapse edge-node-
edge constructs into a single attributed edge. Display attributes modify colors,
fonts, and shapes of nodes and edges. All attributes can be refined by conditions,
e.g. to mark a node red if one of its attributes exceeds a certain threshold. Label
attributes assign labels to the displayed graph entities, such as type information
or node attributes. All of these attributes can be assigned to each type, or the
type’s hierarchy.

Figure 1 shows a prototypical editor created for the case study presented in
[2]. Besides the graphical representation, a textual view window displays contents
derived from the according nodes labels. UPGRADE supports the development
of such customized views by a set of extendable base classes.

References

1. Schiirr, A., et al.: The PROGRES approach: Language and environment. In Ehrig,
H., et al., eds.: Handbook on Graph Grammars and Computing by Graph Trans-
formation. Vol. 2. 1°* edn. World Scientific, Singapore (1999) 487-550

2. Varrd, D., et al.: Graph Transformation Tools Contest on the Transformation of
UML Models to CSP. In: this volume. (2008)

