
Transformation-based operationalization of
Graph Languages

Erhard Weinell

RWTH Aachen University, Department of Computer Science 3,
Ahornstrasse 55, D-52074 Aachen, Germany,

Weinell@cs.rwth-aachen.de

Abstract

Graph Languages1 emerged during the seventies from the necessity to process
data structures with complex interrelations. Nowadays, various variants of these
languages can be found for querying [1][2], in-place transforming [3][4], and trans-
lating graph structures [5][6]. Still, new graph languages supporting different
paradigms and usage scenarios are proposed regularly. In fact, languages tai-
lored for a dedicated application domain can be restricted to a concise and clear
syntax representation, thus reducing effort to learn and apply them. Effectively
aiding the development of graph languages, even though considering the already
existing ones, therefore remains an important working topic.

Constructing specialized graph languages, considering them as special case of
domain-specific modeling languages, is supported by various frameworks and so-
called Meta-CASE tools, e.g. [7]. Operational implementations of these languages
is usually achieved by customizing template-based code generators. However,
graph languages, in contrast to purely static modeling languages, are inherently
complex to implement due to the required pattern matching facility, and the
possibly required non-deterministic execution engine.

As alternative to the usual code generation approach, I propose a solution
to implement graph languages by transformation. The approach is based on an
extensible core graph language, to which rules modeled in a specialized graph
language are transformed. Extensions can be added to the core language to ap-
proximate both languages’s conceptual levels, and thus to narrow their “semantic
gap”. In contrast, a code generation module would have to span a significantly
larger gap from a high-level specification language to an imperative or object-
oriented programming language.

A coarse-grained overview on the presented approach is given in Figure 1.
Technically, this platform is built on top of the graph-oriented database DRA-
GOS [8]. Thanks to DRAGOS’ exchangeable backends, language implementa-
tions gain access to established storage solutions like relational databases or
model repositories.

1 The term Graph Language subsumes languages for querying and transforming
graphs, and especially from the overlapping of these areas.

To construct a new graph language, developers usually build an editor based
on the language’s concrete syntax model, be that a textual or visual one. Based
on this, a partly generic export facility transfers instances of this language, e.g.
entered by the user at runtime, into the graph database as abstract syntax trees
(ASTs). This intermediate storage facility decouples further processing from the
actual concrete syntax and from the applied editing technology.

Afterwards, as the first curved arrow suggests, the ASTs are transformed into
instances of the provided core graph language, DRAGULA. This transformation,
which needs to precisely capture the specialized language’s intended semantics,
can be modeled in a rule-based way. For this purpose, a simple uni-directional
model transformation language is provided. Technically, this language’s rule in-
stances are stored in an additional repository in the database, and are trans-
formed to the core language, too.

Finally, the generated core language rules can be evaluated by the corre-
sponding engine, thereby referring to the database’s data repository. Both the
rule engine and the data repository are subject to user interaction, e.g. to select
rules for invocation or to directly inspect the stored graphs. This talk primarily
discusses the first curved arrow, whereas the second one has been described in
[9], and the core language’s extensibility in [10].

Backend implementation (exchangeable)
DRAGOS

DRAGULA Language EngineGraph Language Editor

Export Filter

concrete
syntax

transfer

Relational Database
(PostgreSQL, DerbyDB, ...)

OO Database
(JDO, ...)

Model Repository
(EMF, MDR, ...)

rule-based
translation

execution /
evaluation

Specialized Language Repository

conforms to

Meta-Model

Syntactic Model
(AST)

conforms to

DRAGULA Language Repository

conforms to

Meta-Model

Semantic Model
(operational rules)

user interaction

Data Repository

Graph schema

Instance graph

conforms to

Fig. 1. Architectural overview

Summary. The proposed solution eases operational implementations of graph
languages, using a rule-based transformation approach. The DRAGULA lan-
guage is well-suited to implement different kinds of languages, e.g. for queries
and transformations. Extensions allow to capture additional functionality.

Related work. Modeling a domain-specific language’s dynamic semantics is of-
fered by some meta-case tools, e.g. presented in [11]. In contrast to the present
work relying on a core graph language as target domain, the authors apply petri
nets for this purpose. Though restricting their approach in expressing graph
languages, petri nets naturally provide valuable analytical properties.

Existing core graph languages can also be found in the literature, such as the
lately proposed GP [12]. GP offers core functionality for a basic graph model,
whilst DRAGULA is tailored towards complex models including hierarchical
graphs and hypergraphs. Furthermore, DRAGULA focusses on extensibility to
allow concise mapping of specialized graph languages [10]. Like GP already does,
DRAGULA will soon support non-deterministic rule application.

References

1. Consens, M., Mendelzon, A.: GraphLog: a visual formalism for real life recursion.
In: Proc. of the ACM Symp. on Principles of Database Systems. (1990) 404–416

2. Kullbach, B., Winter, A.: Querying as an enabling technology in software reengi-
neering. In: Proc. of the 3rd Europ. Conf. on Software Maintenance and Reengi-
neering, IEEE Computer Society Press (1999) 42–50

3. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and
environment. [13] 487–550

4. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and environ-
ment. [13] 551–603

5. Agrawal, A., et al.: The design of a language for model transformations. Software
and Systems Modeling 5(3) (September 2006) 261–288

6. Balogh, A., Varró, D.: Advanced model transformation language constructs in the
VIATRA2 framework. In: ACM Symp. on Applied Computing (SAC 2006), ACM
Press (2006) 1280–1287

7. Ebert, J., Süttenbach, R., Uhe, I.: Meta-CASE in practice: a case for KOGGE.
In: Advanced Information Systems Engineering, Proc. 9th Int. Conf. (CAiSE’97).
Volume 1250 of Lect. Notes in Comp. Sci., Springer (1997) 203–216

8. Böhlen, B.: Ein parametrisierbares Graph-Datenbanksystem für Entwick-
lungswerkzeuge. PhD thesis, RWTH Aachen (2006)

9. Weinell, E.: Adaptable Support for Queries and Transformations for the DRAGOS
Graph-Database. In Schürr, A., Nagl, M., Zündorf, A., eds.: Proc. of the 3rd Intl.
Workshop on Applications of Graph Transformation with Industrial Relevance
(AGTIVE). Volume 5088 of Lect. Notes in Comp. Sci., Springer (2008) 369–411

10. Weinell, E.: Extending graph query languages by reduction. [14]
11. de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models. In

Fiadeiro, J.L., Inverardi, P., eds.: FASE. Volume 4961 of Lect. Notes in Comp. Sci.,
Springer (2008) 77–92

12. Manning, G., Plump, D.: The GP programming system. [14]
13. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph

Grammars and Computing by Graph Transformation: Applications, Languages,
and Tools. Volume 2. World Scientific (1999)

14. Ermel, C., Heckel, R., de Lara, J., eds.: Graph Transformation and Visual Modeling
Techniques, 7th Intl. Workshop. Volume 10 of Elec. Comm. of the EASST. (2008)

