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Abstract A-posteriori integration of heterogeneous engi-
neering tools supplied by different vendors constitutes a chal-
lenging task. In particular, this statement applies to incremen-
tal development processes where small changes have to be
propagated — potentially bidirectionally — through a set of
inter-dependent design documents which have to be kept con-
sistent with each other. Responding to these challenges, we
have developed an approach to tool integration which puts
strong emphasis on software architecture and model-driven
development. Starting from an abstract description of a soft-
ware architecture, the architecture is gradually refined down
to an implementation level. To integrate heterogeneous engi-
neering tools, wrappers are constructed for abstracting from
technical details and for providing homogenized data access.
On top of these wrappers, incremental integration tools pro-
vide for inter-document consistency. These tools are based on
graph models of the respective document classes and graph
transformation rules for maintaining inter-document consis-
tency. Altogether, the collection of support tools and the re-
spective infrastructure considerably leverage the problem of
composing a tightly integrated development environment from
a set of heterogeneous engineering tools.

1 Introduction

Development processes in different engineering disciplines
are hard to support. Throughout the development process, a
large number of documents are created which constitute the
inputs and outputs of development tasks. These documents
describe the product to be developed from different perspec-
tives and at different levels of abstractions. They are con-
nected by manifold dependencies and have to kept consis-
tent with each other. In this respect, it has to be taken into
account that development processes often are highly incre-
mental: Rather than creating documents in a phase-oriented
order, activities in different phases are performed in an in-
tertwined way, implying that small changes have to be prop-
agated back and forth between inter-dependent documents.

While this constitutes a major challenge in its own, a further
complication results from the fact that different documents
may be processed by heterogeneous tools supplied by differ-
ent vendors. A-posteriori integration of heterogeneous tools
requires highly sophisticated modeling and implementation
techniques in order to construct a development environment
for incremental development processes with feasible effort.

In response to these challenges, we have developed an ap-
proach to tool integration which puts strong emphasis on soft-
ware architecture and model-driven development. The term
“approach” is not confined to the conceptual level, i.e., we
have not merely defined concepts for tool integration. Rather,
we have realized our approach by a collection of support tools
and a respective tool infrastructure. In this way, we consider-
ably leverage the problem of composing a tightly integrated
development environment from a set of heterogeneous engi-
neering tools. This is achieved through a model-based tool
construction process which consists of the following steps:

1. Architecture modeling and refinement (Section 3). The
software architecture of the integrated development en-
vironment to be constructed is modeled initially at a high
level of abstraction. The initial architecture is refined grad-
ually by means of architectural transformations which take
care of technical details and introduce technical compo-
nents such as tool wrappers required to make integration
work. The transformation process results in a concrete ar-
chitecture consisting of the components which need to be
implemented (either manually or automatically).

2. Modeling and construction of wrappers (Section 4). In
the case of a-posteriori integration, we have to deal with
tools supplied by different vendors, using different data
management systems, etc. To make use of these tools, we
have to provide components which abstract from techni-
cal details and make them available at a conceptual level.
These components, which are called wrappers, are con-
structed in a semi-automatic way with an interactive tool
which supports the exploration of the interface of the de-
velopment tool to be integrated.

3. Construction of executable models for incremental con-
sistency management (Section 5). By providing tool wrap-
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Fig. 1 Integrated tool environment

pers, we decompose the problem of tool integration into
manageable pieces. In the third (and final) step, we de-
velop integration tools for incremental consistency man-
agement which make use of the wrappers’ interfaces. Here,
we follow a model-based approach: First, the documents
to be integrated are described by corresponding document
models. Subsequently, an integration model is constructed
which defines correspondences between documents and
rules for maintaining inter-document consistency. The in-
tegration model, which is based on graphs and graph trans-
formations, is executable. In this way, we manage to con-
struct integration tools with acceptable effort.

The rest of this paper is structured as follows: Section 2
provides an overview of our approach. Sections 3–5, which
constitute the core part of this paper, are devoted to the steps
of the model-based tool construction process. Section 6 dis-
cusses related work. Finally, Section 7 concludes this paper.

2 Overview

2.1 Context

Although our tool integration approach is generic (it may be
applied in different engineering disciplines), it has been de-
veloped in the context of a research project which is con-
cerned with a specific domain. The Collaborative Research
center IMPROVE [NM97], a long-term research project car-
ried out at Aachen University of Technology, deals with de-
sign processes in chemical engineering. The mission of this
project is to develop models and tools for supporting design
processes in chemical engineering, focusing on early phases
(conceptual design and basic engineering).

Figure 1 illustrates the overall vision of IMPROVE with
respect to tool support for the engineering design process1.

1 In the sequel, we prefer the term “design” to the term “devel-
opment” when referring to chemical engineering because it is more
appropriate in that context. On the other hand, we will continue to
use the term “development” in the context of software engineering
(development of tools for chemical engineers).
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As in other disciplines, in chemical engineering many tools
are already available each of which supports a certain part of
the overall design process. However, these tools are provided
by different vendors and are not integrated with each other.
This is illustrated by the bottom layer of Figure 1, which
shows several tools for designing and simulating chemical
plants. These design tools are integrated into an overall en-
vironment for supporting engineering design processes. To
this end, an infrastructure for tool integration is provided (not
shown in the figure). Furthermore, new tools are developed
which compose the existing tools and add further innovative
functionality (top layer of Figure 1).

In the sequel, we will focus on one type of tools of the up-
per layer: incremental integration tools for maintaining inter-
document consistency. We will discuss the development of
integration tools using a specific example: a-posteriori inte-
gration of a tool for editing flowsheets (Comos PT) with a
tool for performing simulations (Aspen Plus).

2.2 Example

In chemical engineering, the flowsheet acts as a central doc-
ument for describing the chemical process. The flowsheet is
refined iteratively so that it eventually describes the chemi-
cal plant to be built. Simulations are performed in order to
evaluate design alternatives. Simulation results are fed back
to the flowsheet designer, who annotates the flowsheet with
flow rates, temperatures, pressures, etc. Thus, information is
propagated back and forth between flowsheets and simula-
tion models. Unfortunately, the relationships between them
are not always straightforward. To use a simulator such as
Aspen Plus, the simulation model has to be composed from
pre-defined blocks. Therefore, the composition of the simu-
lation model is specific to the respective simulator and may
deviate structurally from the flowsheet.

Figure 2 illustrates how an incremental integration tool
assists in maintaining consistency between flowsheets and
simulation models. The chemical process taken as example
produces ethanol from ethen and water. Flowsheet and sim-
ulation model are shown above and below the dashed line,
respectively. The integration document for connecting them
contains links which are drawn on the dashed line. The figure
illustrates a design process consisting of four steps:



Model-Based A-Posteriori Integration of Engineering Tools for Incremental Development Processes 3

1. An initial flowsheet is created in Comos PT. This flow-
sheet is still incomplete, i.e., it describes only a part of
the chemical process (heating of substances and reaction
in a plug flow reactor, PFR).

2. The integration tool is used to transform the initial flow-
sheet into a simulation model for Aspen Plus. Here, the
user has to perform two decisions. While the heating step
can be mapped structurally 1:1 into the simulation model,
the user has to select the most appropriate block for the
simulation to be performed. Second, there are multiple al-
ternatives to map the PFR. Since the most straightforward
1:1 mapping is not considered sufficient, the user decides
to map the PFR into a cascade of two blocks. These deci-
sions are made by selecting among the different possibil-
ities of rule applications the tool presents to the user.

3. The simulation is performed in Aspen Plus, resulting in a
simulation model which is augmented with simulation re-
sults. In parallel, the flowsheet is extended with the chem-
ical process steps that have not been specified so far (flash-
ing and splitting).

4. Finally, the integration tool is used to synchronize the par-
allel work performed in the previous step. This involves
information flow in both directions. First, the simulation
results are propagated from the simulation model back
to the flowsheet. Second, the extensions are propagated
from the flowsheet to the simulation model. After these
propagations have been performed, mutual consistency is
re-established.

From this example, we may derive several features of the
kinds of integration tools that we are addressing. Concerning
the mode of operation, our focus lies on incremental integra-
tion tools rather than on tools which operate in a batch-wise
fashion. Rather than transforming documents as a whole, in-
cremental changes are propagated — in general in both direc-
tions — between inter-dependent documents. Often, the inte-
gration tool cannot operate automatically because the trans-
formation process is non-deterministic. Then, the user has
to resolve non-deterministic choices interactively. In general,
the user also maintains control on the time of activation, i.e.,
the integration tool is invoked to re-establish consistency when-
ever appropriate. Finally, it should be noted that integration
tools do not merely support transformations. In addition, they
are used for analyzing inter-document consistency or brows-
ing along the links between inter-dependent documents.

A-posteriori integration constitutes an important challenge
being addressed by our approach. For example, it is crucial
that chemical engineers may continue to use their favorite
tools for flowsheet design and simulation. In our case study,
we assume two wide-spread commercial tools, namely Co-
mos PT (for flowsheet design) and Aspen Plus (for simula-
tion). Both tools are fairly typical with respect to their techni-
cal features: Both maintain proprietary databases for storing
flowsheet designs and simulation models, respectively. In ad-
dition, they both offer COM interfaces for tool integration.
These interfaces allow to query the respective tool’s func-
tionality as well as to invoke operations to read and manipu-
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Fig. 3 Informal architecture of the integration tool

late the tool’s database, etc. Integration tools have to cooper-
ate harmoniously with such existing tools, adding the “glue”
which has been missing so far.

2.3 Tool Development Process

In the following, we will sketch the approach that we have
followed in order to solve the integration problems described
above. Please note that we have actually implemented this
approach, i.e., we have realized both the tools used for the
tool development process and the integration tool between
Comos PT and Aspen Plus [HMBG03b,BHWW02,Haa03].

2.3.1 Architecture Modeling and Refinement The generic ar-
chitecture of integration tools is sketched in an informal way
in the grey region at the center of Figure 3. Inter-document
links are stored in integration documents separately from the
native data structures used by the tools to be integrated. The
integration tool is driven by rules which are created in a cor-
respondency definition tool. The integrator core applies these
rules, modifying the integration document as well as the doc-
uments to be integrated. The document integration process
may be controlled through the user interface of the integration
tool. Tools and their documents are accessed via wrappers
which provide homogenized data access and abstract from
technical details. As a consequence, the integration tool may
focus on logical issues. Furthermore, the integrated tools may
be replaced without affecting the integration tool provided
that the wrapper interfaces need not be changed.

The first step of the tool integration process — architec-
ture modeling and refinement — is concerned with embed-
ding the integration tool to be developed into the architecture
of the overall environment depicted in Figure 1. Please note
that we will focus in this paper on just these integration as-
pects. We will consider neither the architecture of the overall
environment nor the architecture of integration tools in de-
tail. Rather, we will investigate the “gluing parts” needed for
performing the integration.
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To this end, we essentially refine the wrapper components
displayed in the informal architecture of Figure 3. In fact, it
turns out that the refinement results in a fairly sophisticated
subsystem which is designed systematically by applying ar-
chitectural transformations. Here, we distinguish between a
logical architecture abstracting from technical details and a
concrete architecture which realizes the logical architecture.
Starting from a high-level simple architectural configuration,
wrappers are introduced and decomposed, resulting in a re-
fined logical architecture (Figure 5). Subsequently, the logi-
cal architecture is further refined into a concrete architecture
which eventually takes care of all of the details of the under-
lying technical infrastructure (Figure 6).

2.3.2 Interactive Modeling and Construction of Wrappers
In the previous step, the architecture is refined such that the
problem of wrapper construction is decomposed into two lev-
els. Technical wrappers are responsible for hiding the tech-
nical details of the interfaces provided by the tools. For ex-
ample, the clients of technical wrappers are shielded from
the underlying communication infrastructure such as COM
or CORBA. This is illustrated in Figure 7 for the wrapper of
Aspen Plus, which provides a COM interface.

Apart from this abstraction, the operations provided by
the tools are mapped 1:1 onto the interface of the technical
wrapper. In contrast, the homogenizer wrapper located on top
of the technical wrapper realizes the data abstraction required
by the integration tool. In our running example, both flow-
sheets and simulation models can be mapped onto a common
meta model, namely process flow diagrams (PFDs) [Bay03].
The wrapper establishes a view which is based on the PFD
meta model. For example, Aspen Plus documents are mod-
eled in terms of ports and components (Figure 8).

The method implementations for the homogenizer wrap-
per may be constructed in a semi-automatic way in the case
of tools providing a COM interface (Figures 9–11). To this
end, the implementer of the wrapper executes a method in-
teractively through the COM interface. Method invocations
are traced and visualized by sequence diagrams, which the
implementer generalizes into method implementations.

2.3.3 Executable Models for Incremental Consistency Man-
agement So far, we have considered the development of
wrappers for accessing the tools to be integrated as well as
their documents. Now, we address the adaptation of the inte-
gration tool, which makes use of the homogenizer wrappers.
As illustrated in Figure 3, the integration tool consists of a
generic core which is driven by domain-specific rules. These
rules are defined with the help of the UML. Executable rules
are constructed as follows (Figure 13):

1. The integration tool is based on a generic meta model
which defines graph-based documents as well as the con-
tents of integration documents. If required, the meta model
may be extended to define base concepts for a specific do-
main. For the integration of COMOS PT and Aspen Plus,
we have defined the PFD meta model as a common meta

model. In this way, integration rules may be expressed in
terms of this meta model. Moreover, the PFD meta model
determines the interface of the homogenizer wrapper.

2. Documents are integrated on the type level by defining
link types which relate types of increments being parts
of the respective documents (Figure 15). To define these
link types, the type hierarchies of the related documents
are retrieved through the homogenizer interface and are
made available in the correspondency definition tool.

3. On the abstract instance level, link templates relate corre-
sponding patterns of the related documents. Initially, link
templates are modeled as object diagrams (static collab-
oration diagrams, Figure 16). Subsequently, they are re-
fined by adding dynamic information. In this way, linking
rules are constructed which describe graph transforma-
tions by dynamic collaboration diagrams (Figure 17).

4. Finally, linking rules are converted into an executable form.
Then, a generic integration algorithm realized as part of
the integrator core executes them (Figure 18). The inte-
gration algorithm operates interactively: The user of the
integration tool is provided with a set of applicable rules
to resolve conflicts and non-determinism; unique rules are
executed automatically to reduce user interactions.

2.3.4 Discussion So far, we have described the architecture-
and model-based integration tool development process in a
simplified way as a sequence of three steps. However, the ac-
tual process may deviate from this simplified structure in the
following ways:

Reuse. The development process need not be performed from
scratch for each integration tool to be developed. Rather,
results of previous processes may be reused. For exam-
ple, the architectural patterns created through architec-
tural modeling and refinement may be reused, in a po-
tentially adapted way, from previous developments.

Parallelism. Some steps of the development process may be
executed in parallel. For example, wrapper construction
(Step 2) and development of executable integration rules
(Step 3) may proceed in parallel after the interfaces of the
homogenizer wrappers have been negotiated and fixed.

3 Architecture Modeling and Refinement

3.1 Overview

Ordinarily, the term software architecture is defined as a de-
scription of “the structure of the components of a program/sys-
tem (and) their interrelationships” [GP95]. This description
serves different purposes, among other things e.g. analyzing
certain software qualities, such as adaptability, maintainabil-
ity, or portability, or managing the software development pro-
cess [BK99]. What this simple definition disregards, when
developing a large, complex system as it was introduced in
Subsection 2.1, more than one structural perspective together
with the dependencies among them will be necessary with
respect to the goals mentioned above. These structural views,
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for example, include a conceptual, a development, and a pro-
cess view [CN96]. Therefore, “high-level”-diagrams as in Fig-
ure 1 or Figure 3 are helpful to get a first impression of the
overall systems structure, but are not an adequate description
of a software system in the sense of a software architecture.
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Fig. 4 Logical architecture meta model (cutout)

In our modeling process, the architecture refinement pro-
cess is not performed in an ad-hoc manner, rather it is con-
trolled by domain-specific knowledge about a-posteriori in-
tegration. Therefore, we defined the relevant concepts in this
area, like e.g. Application, Wrapper, Application Programming
Interface, or Document, their relationships, and additional con-
straints and transformation rules by a graph-based (meta) mod-
el (see Figure 4 for a cutout of the meta model concern-
ing the logical architecture modeling part). This model again
was implemented using a programmed graph rewriting sys-
tem (PROGRES [SWZ99]). Using a framework for building
graph-based interactive tools (UPGRADE [BJSW02]) we fi-
nally implemented an architecture modeling tool, called Fire3
(Friendly Integration Refinement Environment [HMBG03a]).

In the following subsection 3.2 we demonstrate how the
coarse-grained “architecture” of the integration tool (see Fig-
ure 3) is stepwise refined towards a detailed architecture de-
scription considering aspects like decomposing components,
introducing wrappers, and distributing components via cer-
tain middleware-techniques. We call the first and the second
aspect logical architecture refinement, respectively; the third
aspect is called concrete architecture refinement.

3.2 Stepwise Architecture Refinement

3.2.1 Logical Architecture Refinement The system descrip-
tion sketched in Figure 3 serves as starting point for the ar-
chitecture refinement process. The structure described there
is modeled in Box 1 of Figure 5 with the concepts provided
by the logical architecture meta model (see Figure 4).

As the first refinement step the access to the application
to be integrated by the integration tool is defined2. This can

2 For the following explanations we will focus on the right�
Integrates � relation between Comos Aspen and Aspen Plus.

The left
�

Integrates � relation can be refined analogously.

be done either by accessing the application via an API (ap-
plication programming interface) (see Box 2a of Figure 5) or,
in the case no API is offered by the application, via the docu-
ments produced by the application (see Box 2b of Figure 5).
The latter refinement alternative is applicable e.g. when the
application is equipped with an XML import and export func-
tion and only data integration is intended. Mixtures of alter-
native 2a and 2b are possible, as well (not shown in Figure 5):
if the API, for example, is a read-only interface, as in earlier
releases of Aspen Plus, read access is realized via the API,
while for write access the document solution is used.

Choosing alternative 2a leads to the model shown in Box
2a of Figure 5: the � Application � Aspen Plus is extended
with an additional � ArchitectureComponent � representing
the API, that is used by the Comos Aspen API Accessor,
which is an � ArchitectureComponent � of the Integrator. This

� Uses � relation between the Comos Aspen API Accessor
and the Aspen API is subsequently refined in step 3 and 4:
An � ApplicationWrapper � is introduced (see Box 3 of Fig-
ure 5) which is subdivided into a so-called homogenizer wrap-
per (AspenHomWrapper) and a technical wrapper (Aspen-
TecWrapper) (see Box 4 of Figure 5). This is done for the fol-
lowing reasons: The integration tool expects the tool’s data
to be provided as attributed, directed, node- and edge-labeled
graphs (see Figure 13 and Figure 14). Therefore, the propri-
etary data model provided by the tool’s API has to be trans-
formed by the homogenizer wrapper into the graph model.
In this context the technical wrapper offers the homogenizer
wrapper a location- and implementation-independent access
to the tool’s API. How the homogenizer and the technical
wrapper can be further refined, will be explained in Section 4.

Please note that for the refinement steps shown in Box 2a
(or alternatively in Box 2b) user interactions are necessary:
it is the software engineer’s knowledge to decide how the

� Application � is accessed by the � Integrator � . After defin-
ing this, the transformations shown in Box 3 and Box 4 are
performed by the architecture modeling tool automatically.
When, for example, the software engineer decides later that
no homogenizer wrapper is necessary, he can delete this com-
ponent manually.

3.2.2 Concrete Architecture Refinement So far we have spec-
ified the logical architecture of our system. The next step is to
define the concrete architecture. Therefore, the logical struc-
ture is transformed in an isomorphic, concrete one (see Box 5
of Figure 6): instances of the classes Application and Inte-
grator, respectively instances of subclasses, are transformed
into instances of class ProcessNode. They represent a pro-
cess in the operating system sense. Instances of class Archi-
tectureComponent, respectively instances of subclasses, are
transformed into instances of class ComponentImplementa-
tion, respectively into instances of corresponding subclasses.
While the � Contains � relations are kept, the � Uses � re-
lations are as well transformed into equivalent � MethodIn-
vocation � or � Interprocess Call � relations. A � Method-
Invocation � represents a local communication, an � Inter-
process Call � represents a distributed one. The architecture
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Fig. 5 Logical architecture refinement

modeling tool again carries out these transformations auto-
matically.

Specifying how the � Interprocess Call � relations will
be implemented are the final steps of architecture refinement.
Because the Aspen API is implemented by the tool’s vendor
using COM (Component Object Model [Mic]), the � Inter-
process Call � relation between the AspenTecWrapper and
the Aspen API is simply refined into a � COM Call � and
additionally the Aspen API is transformed into an instance
of class � COM Interface � (see Box 5 of Figure 6). In the
case of the � Interprocess Call � relation between the Co-
mos Aspen API Accessor and the AspenHomWrapper, dif-
ferent alternatives are possible. Realizing the AspenWrapper
as an independent operating system process is one alterna-
tive3. The interprocess communication between the � Inte-
grator � and the � Wrapper � can be implemented e.g. us-
ing CORBA (Common Object Request Broker Architecture
[OMGa]). This alternative offers the opportunity to distribute
the � Integrator � and the � Application � to be integrated
over various nodes in a computing network. If the software
engineer decides so, the architecture is refined as shown in
Box 6a of Figure 6. If no distributed solution is desired, the

3 This alternative was already suggested by the initial transforma-
tion of the logical into the concrete architecture.

independent � ProcessNode � AspenWrapper is resolved, i.e.
the AspenWrapper is deleted, the AspenHomWrapper and the
AspenTecWrapper are realized as components of the integra-
tion tool, and the communication between them is refined to
a local � MethodInvocation � (see Box 6b of Figure 6).

4 Interactive Modeling and Construction of Wrappers

4.1 Overview

A wrapper acts as an adapter “convert(ing) the interface of a
class into another interface clients expect” [GHJV95]. There-
fore, application of wrappers enables the reuse of existing
software in a new context [Sne00].

Developing a wrapper includes several tasks: the syntax
and the semantics of the given tool’s interface to be wrapped,
the source interface, as well as of the interface required by the
client, the target interface, have to be specified. Furthermore,
the transformation of the source into the target interface has
to be defined. According to these tasks a wrapper is not a
monolithic component, rather it is a subsystem consisting of
several subcomponents. Our architecture takes this into con-
sideration by dividing a wrapper into a technical wrapper, re-
alizing the access to the source interface, and a homogenizer
wrapper, realizing the target interface (see Box 4 of Figure 5).
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Fig. 6 Concrete architecture refinement

In Subsection 4.2 we present the modeling of the techni-
cal and the homogenizer wrappers’ interfaces and an example
of our approach to interactively specify the transformation of
the source into the target interface.

4.2 Interface modeling and interactive exploration

As described in the previous section, in our scenario Aspen
Plus, the tool to be integrated, contains an API implemented

using COM. The syntax of such a COM interface is doc-
umented in a standardized way through a so-called type li-
brary. A type library contains a static description of the classes
and their attributes and operations offered by the interface in
form of signatures. By simply parsing this type library our ar-
chitecture can automatically be refined as shown in Figure 74.

4 The figure shows a simplified model of the COM interface. The
COM interface of Comos PT, for example, consists of 101 classes
with a total of 7680 methods.
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This class diagram defines the internal data model of Aspen
Plus.

Figure 2 shows an example of an Aspen Plus simulation
model. As this example illustrates, a simulation model con-
sists of several components, e.g. blocks, representing chem-
ical devices, streams, connecting blocks, or ports, modeling
the connection between a block and a stream. Each of these
components has its own type, for example a block represents
a heater or reactor.

refinement

+GetTree() : IHNode

«COM_Class»
IHapp

«COM_Interface»
Aspen API

«ImplementedBy»

«ImplementedBy» «ImplementedBy»

+GetElements() : IHNodeCol
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+GetItemName(in index : Integer) : String

«COM_Class»
IHNodeCol
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«COM_Interface»
Aspen API

«WrapperImpl»
AspenTecWrapper

Fig. 7 Technical wrapper refinement

According to the requirements of the integration tool, the
internal data model of Aspen Plus has to be transformed into
a graph model in conformity with the graph layer in Fig-
ure 14. Therefore, an Aspen Plus simulation model compo-
nent is modeled as a Node containing an attribute meta type,
which is the component’s meta type, e.g. block, stream or
port, and an attribute type, which is the component’s concrete
type, e.g., in the case of a block, heater or reactor (see Fig-
ure 8)5. The necessary operations to access instances of this
model are offered by the export interface of the homogenizer
wrapper. An example for such an operation is shown in Fig-
ure 8.

«WrapperImpl»
AspenHomWrapper refinement +type : String

+metatype : String

«Node»
Node

+GetNodes(in type : String)

«WrapperImpl»
AspenHomWrapper «Creates»

Fig. 8 Homogenizer wrapper refinement

So far, we have modeled the internal, static data struc-
tures of the technical and the homogenizer wrapper. Now we
have to define the transformation between these two struc-
tures. This is usually done by implementing it manually. To
support the software engineer carrying out this implementa-
tion, we have developed a tool allowing the exploration of the
dynamic behavior of an application offering a COM interface
at runtime interactively. Using this tool, parts of the code to
be implemented can be generated automatically.

The following example illustrates how the internal data
model of the homogenizer wrapper is materialized. There-
fore, specifications for the internal operations of the homog-
enizer wrapper realizing this materialization are created with

5 For the following example we use this simplified model of the
real model. It is simplified in the sense that the relations between the
nodes are not considered.

the help of our tool in the following way: Firstly, the tool
generates specifications for basic operations by tracing user
interactions. Subsequently, these operation specifications are
generalized and extended6.

After parsing the type library of a COM interface, the
tool starts the underlying application as an operating system
process via a generic start operation that every COM inter-
face implements. The return value of this operation is a ref-
erence to the initial object of the COM interface. The tool
determines the object’s class and, based upon the static infor-
mation parsed out of the type library, a GUI (graphical user
interface) for the given COM object is generated by the tool.
Using this GUI, the software engineer can query the values
of object attributes or can invoke the object’s methods.

An attribute value or a return value of a method can be ei-
ther an atomic value, like a string or an integer, or a reference
to another COM object. In this case another GUI according to
the referenced object is generated allowing to inspect the ref-
erenced object. In this way the software engineer can explore
the COM interface of an application interactively.

«COM_Class»
 : IHNode

«COM_Class»
 : IHNodeCol

«COM_Class»
 : IHNode

«COM_Class»
 : IHNodeCol

«COM_Class»
 : IHNode

«COM_Class»
 : IHapp

«WrapperImpl»
 : AspenHomWrapper

GetTree()

GetElements()

GetItem(Data)

GetElements()

GetItem(Blocks)

GetElements()

Fig. 9 Specification of operation GetAspenBlocks

Furthermore, the user’s interactions are traced by the tool
and can be visualized as UML sequence diagrams. The trace
shown in Figure 9, for example, illustrates how to access the
collection of blocks included in an Aspen Plus simulation
model using the operations offered by the tool’s API. This
trace serves as a specification for an internal operation called
GetAspenBlocks of the homogenizer wrapper7.

By composing such traces we get further specifications
for internal operations, e.g. for retrieving the number of blocks
included in the simulation model (see the left sequence dia-
gram of Figure 10) or for accessing the (concrete) type of a
single block (see the right sequence diagram of Figure 10)8.

By substituting the constant 2 with a parameter and spec-
ifying the range of the parameter (the range is given through
the specification of the operation NumberOfBlocks) we get

6 At the moment the latter has to be done by the software engineer
manually. Extending our tool in this way is our current work.

7 With respect to our previous explanations the homogenizer
wrapper communicates with the COM objects via the technical
wrapper, which is not shown to keep the figure simple.

8 These UML sequence diagrams as well as their composition are
generated by the tool automatically.
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Fig. 10 Specification of operation NumberOfBlocks (left sequence
diagram) and of operation GetAspenBlockType (right sequence di-
agram)
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SetType(GetAspenBlockType(i))

Fig. 11 Generalization of operation GetAspenBlockType (left se-
quence diagram) and specification of operation CreateBlockNodes
(right sequence diagram)

a generalized specification for accessing the (concrete) type
of any block included in an Aspen Plus simulation model
(see the left sequence diagram of Figure 11). In contrast to
the traced operation GetAspenBlockType():String, the gener-
alized operation has the signature GetAspenBlockType(index:-
Integer):String. Based upon this operation, we can finally spec-
ify an operation (see the right sequence diagram of Figure 11)
that instantiates the Node classes. This operation materializes
the internal data model of the homogenizer wrapper regarding
the blocks in an Aspen Plus simulation model. Analogously,
operations to handle streams and ports can be specified.

5 Executable Models for Incremental Consistency
Mangement

5.1 Overview

Whereas in Section 3 the overall architecture of an integrated
system was discussed, in this section we describe how the
consistency management between existing tools is performed
in detail. In Figure 5 a class Comos Aspen was contained
in the coarse-grained architecture of the system, connecting
Comos PT and Aspen Plus. This class is a placeholder for
an incremental integration tool, which in general supports in-
cremental transformation and change propagation, browsing,
and consistency check between dependent documents. In our
running example, the integration tool in question supports
the consistency management between flowsheets in Comos
PT and simulation models in Aspen Plus with focus on the

bidirectional, incremental transformation and change propa-
gation between the two documents.

Unlike other approaches to rule-based consistency man-
agement which first check for inconsistencies and then apply
inconsistency resolving rules, our approach is transformation-
centered: New elements and changes of existing ones in one
document are detected and propagated to the other one.

The propagation works rule based, with the rules being
defined in a special modeling environment called rule editor.
The set of rules controlling an integration tool in general is
neither complete nor unambiguous w.r.t. the documents that
are to be integrated. As a result of that integration tools do
not work batch-wise but rely on two different kinds of user
interaction: First, if a rule is missing for a given situation,
transformation can be performed manually. Second, if multi-
ple rules are applicable and their execution is conflicting, one
of the rules has to be chosen for execution by the user.

The main idea behind the realization of our consistency
management approach is to keep track of the fine-grained
inter-dependencies between the contents of dependent docu-
ments. The resulting inter-document relationships are explic-
itly stored, which is an essential prerequisite for incremental
change propagation between the documents. This is done in
an additional document which is called integration document.

An integration document contains a set of links which
represent the relationships mentioned above. Each link re-
lates a set of syntactic elements (increments) belonging to
one document with a corresponding set belonging to another
document. The integration is controlled by rules: One link is
created by the execution of one integration rule. If a link has
to be further structured, this can be done by adding sublinks
to a link. A sublink relates subsets of the increments refer-
enced by its parent link and is created during the same rule
execution as its parent.9

Figure 12 shows the structure of links in a UML class di-
agram. Most constraints needed for a detailed definition are
omitted, only examples are shown. An increment can have
different roles w.r.t. a referencing link: Increments can be
owned by a link or be referenced as context increments. While
an increment can be referenced by at most one link as owned
increment, it can be referenced by an arbitrary number of
links as context increments. Owned increments can be cre-
ated during rule execution, whereas only existing increments
can be referenced by new links as context increments. Con-
text increments are needed when the execution of a rule de-
pends on increments created by an existing link, for instance
to embed newly created edges. Owned increments can be fur-
ther divided into dominant and normal increments. Dominant
increments play a special role in the execution of integration
rules (see Subsection 5.3). Each link can have at most one
dominant increment in each document. A link can relate an
arbitrary number of normal increments.

9 The usage of sublinks could be avoided by creating additional
links by additional rules but this often leads to integration rules that
are hard to understand.
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Fig. 12 Structure of links

Please note that there is additional information stored at a
link like its state and information about possible rule applica-
tions. This information is needed by the integration algorithm
but not for the definition of integration rules.

The documents’ contents are provided as attributed, di-
rected, node- and edge-labeled graphs by the tool wrappers
introduced in Section 4. The integration document forms an
additional graph with inter-graph edges leading to the nodes
in the other documents. To simplify the integration, it is per-
formed on the union of all single graph documents and the
inter-graph edges (otherwise, distributed graph transforma-
tions [TKFV99] would have to be used). The execution of
integration rules dealing with the graph structure is done by
using graph transformations. Rule definition and execution is
inspired by the triple graph approach [Sch95] [LS96] which
was modified to fit the practical requirements in our domain
of application [BW03a]. Our approach supports transforma-
tion and consistency check of node attributes as well, but in
this paper, we only present the structural part of the integra-
tion.

If an integration tool is started for the first time for two
documents, a new integration document is created. Then, all
integration rules that are unambiguously applicable are ap-
plied to the documents, modifying them and creating new
links in the integration document. After that, a list of all rules
that are applicable but conflicting to other rules is presented
to the user, who has to select a rule that is to be executed.
Again, unambiguously applicable rules are applied and de-
cisions are made by the user until there are neither decisions
nor unambiguous rules. Now, the user can manually complete
the integration if the result is not satisfying, yet.

When the integration tool is activated again, each existing
link in the integration document is checked for consistency
first. I.e. the referenced increments are checked for modifica-
tions that violate the rule that created this link. Then, incon-
sistency resolving rules are applied to all inconsistent links,
which can lead to user interaction, too. Next, integration rules
are applied to the new increments which are not referenced by
a link, yet, as when started for the first time.

In this paper, we will focus on the presentation of the defi-
nition and enactment of integration rules. A detailed descrip-
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Fig. 13 Levels of modeling

tion of the realization of the integration tool is provided in
[BHWW02]. The rest of this section is structured as follows:
In Subsection 5.2 our approach for the definition of integra-
tion rules using UML is presented, and Subsection 5.3 gives
an overview of how integration rules can be executed using a
graph transformation system.

5.2 UML-based Modeling of Integration Rules

For the definition of integration rules, we follow a multi-
layered approach as postulated by OMG’s meta object facil-
ity (MOF) [OMGc]. Figure 13 provides an overview of the
different modeling levels and their contents for the running
example. Using MOF as meta-meta model, on the meta level
the existing UML meta model is extended by additional el-
ements that form a language to define models of the docu-
ments to be integrated and to express all aspects concerning
the documents’ integration. The meta model itself is layered,
too, which will be explained in detail below.

On the model level, we distinguish between a type (or
class) level and an instance level, like standard UML does.
On the type level, class hierarchies describing the different
types of documents and link types constraining which incre-
ments can be related by a link are defined using UML class
diagrams. The instance level is divided into an abstract and a
concrete level. On abstract instance level, link templates and
linking rules are specified using collaboration diagrams. Link
templates are instances of link types relating a pattern (which
is a set of increments and their interrelations) that may exist
in one document to a corresponding pattern in another docu-
ment. Link templates can be annotated to define linking rules.
The annotations provide information about which objects in
the patterns are to be matched against existing objects in con-
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Fig. 14 Extension of the UML meta model

crete documents and which have to be created, comparable
to graph transformations. On the concrete instance level, ex-
isting documents and integration documents can be modeled,
which is not further described here. In this paper we will give
a coarse overview of our modeling approach only, for a de-
tailed description including more examples, the reader is re-
ferred to [BW03b]10.

The modeling process to define a concrete integration tool
is enacted as follows: First, if needed, specific meta model
extensions for the types of documents to be integrated have
to be created (see Subsection 5.2.1). Next, document models
and link types have to be defined. To define the meta model
extensions and link types on type level, domain knowledge
like contained in the conceptual data model for chemical en-
gineering CLiP [Bay03] is required. The document models
can be generated with the help of the tool wrappers described
in Section 4. Now, the integration tool could be applied in the
domain of application, because link templates and integration
rules can be defined on the fly [BW03b]. Nevertheless, a ba-
sic set of integration rules should be defined first to keep the
additional effort low for the user. Therefore, link templates
are to be modeled, which are consistency checked against the
link types. From each link template a set of standard linking
rules is automatically derived. All rules are stored in a rule
base and finally, are interpreted by the integration tool at run-
time, using the algorithm described in Subsection 5.3.

5.2.1 Meta Model To extend the UML meta model, we make
use of restrictive meta model extension as described in [SW01].
The meta classes introduced by our meta model extension
are referred to by stereotypes on the model level. Figure 14
depicts an excerpt of the meta model underlying our model-
ing formalism that shows its layered structure. It is presented

10 Please note that we changed our terminology: In former publi-
cations we used association instead of link type and correspondency
instead of link template.

using MOF, but a lot of details are omitted. The top layer
contains the standard UML meta model which is extended
by the next lower layer to a meta model for attributed, di-
rected, node- and edge-labeled graphs. Replaces-constraints,
in the figure depicted as dashed arrows marked with � r � , en-
sure that the model elements of different layers cannot be
used together in an unwanted fashion, e. g. resulting in an
Edge connecting a Node and a UML Class.

The layer below consists of a generic integration meta
model with all elements being subclasses of the elements
from the graph layer. As a result of that, documents that are
to be integrated and integration documents can both be re-
garded as being graphs, and they can be dealt with using
graph techniques like graph transformations. The tool wrap-
pers described in Section 4 provide us with access to the doc-
uments’ contents via an interface that conforms to the graph
layer of the meta model during the integration process. The
constraints and multiplicities in Figure 12 concerning links
and their associations to increments are contained in the meta
model but not explicitly visible because they have to be de-
fined as constraints on the meta model restricting the associ-
ations’ cardinalities on the type level.

The meta model layers presented so far are fixed for all
integration models and tools. That is, our implementation of
the integration framework and the modeling formalism relies
on this model. If needed, on the layers below extensions for
specific types of documents can be made, which are inter-
preted by all our tools.

In our running example, we deal with Comos PT flow-
sheets and Aspen Plus simulation models. The overall struc-
ture of both types of documents is rather similar, because both
describe technical systems consisting of pieces of equipment
that are connected by via connection ports. We call these
types of documents PFD-like (process flow diagram like).
Therefore, we defined a common meta model for PFD-like
documents, to make the modeling of rules more user-friendly.
The definition of the meta model for chemical engineering is
based on the conceptual data model CLiP [Bay03]. Here, both
documents to be integrated are instances of PDF-like docu-
ments but in general, our approach supports the integration of
documents being instances of different specific meta models.
The PFD-like metamodel is provided by the tool wrappers
when importing the tools’ document models into the rule ed-
itor model.

5.2.2 Type Level Detailed document models are specified
on the type level using UML class diagrams. Here, the incre-
ment types and their intra-document relations are defined. In-
crement types are modeled as classes in the documents’ class
hierarchies, their intra-document relations are modeled as as-
sociations. Increments can be attributed but in this paper we
only deal with the structural aspects of the integration. Most
parts of the document models can be directly imported from
the tools’ internal type systems using the tool wrappers.

Using the increment types from the detailed document
models, link types are defined. Because all link templates
have to be instances of link types, link types constrain the
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types of increments that can be related by a link template.
They also define whether a link template can be further struc-
tured by sublinks and which types of increments can be re-
lated by them. Figure 15 shows an example of a link type def-
inition. Increments and links are modeled as classes and their
inter-relations as associations. Instances of the new link type
StreamLink can relate one stream in a Comos PT flow sheet
(an increment of type PhaseSystem) with one stream in an
Aspen Plus simulation model (an increment of type Material-
Stream). The stream increments are the dominant increments
in both documents for the StreamLink. Additionally, up to two
ports connected to the stream in each document can be ref-
erenced by the link as normal increments. In most flowsheets
and simulation models, streams have one input and one out-
put port, where other pieces of equipment can be connected.
To map the corresponding ports on both sides of the link, up
to two sub links of type StreamPortMapping can be added
to the StreamLink. The sample link type definition described
here is rather concrete because it is specifically tailored to
relate streams. Other link types can be defined that are more
generic. For instance, in [BW03b] a link type is presented that
allows to link any pattern in a flowsheet to any other pattern
in a simulation model.

5.2.3 Abstract Instance Level Link templates relate corre-
sponding patterns of the documents. A pattern is an abstract
description of a situation that may occur in a concrete docu-
ment. From a semantic point of view, link templates describe

that if the patterns are present in the documents they may be
related by a link. There is no information about how this link
is established or whether parts of the patterns are generated.
Link templates are modeled as (static) UML collaboration di-
agrams containing instances of link and sublink types that are
connected via UML links with instances of increment types.
Additional constraints can be defined concerning attributes
and their values.

Figure 16 depicts a link template if the constraints are not
taken into account. This link template is an instance of the
link type in Figure 15. A StreamLink relates a PhaseSystem
and a Material Stream and their input and output ports. Two
sublinks map the input and the output ports, which is needed
for handling connections between ports during the transfor-
mation of documents as explained below. Please note that
all object names are placeholders and no concrete identifiers
belonging to existing documents. The instances’ stereotypes
referencing the meta model elements are not explicitly shown
in the figure, but they can be derived from the instances ab-
stractions on type level.

Link templates are purely declarative, but they can be
extended to executable linking rules. Therefore, UML con-
straints are added, for example � new � marks an object of the
template that currently is not present and has to be created.
Other constraints are � not � for objects that are not present and

� delete � for objects that have to be present and are deleted.
By applying these constraints to the objects of a link tem-
plate, a graph transformation rule is created. The execution
of linking rules is presented in the next subsection.

Comparable to the triple graph grammar approach, dif-
ferent linking rules can be automatically derived from a link
template. A forward transformation rule finds an increment
structure in the source document (here: the flowsheet) and
creates a corresponding structure in the target document (here:
the simulation model). Both structures are then related by a
link. To derive a forward transformation rule, all increments,
links, and sublinks are marked with the constraint � new � , ex-
cept the context increments of all documents and the owned
increments in the flowsheet document. Association instances
that have a least one end outside the flowsheet document are
marked with � new � , too. The linking rule in Figure 16 is
the resulting forward transformation rule. Please note that in
this example link template there are no context increments. A
backward transformation rule and other rules can be derived
similarly. For special needs, link templates can be manually
extended to rules.

Another linking rule is presented in Figure 17. Please note
that the corresponding link type definition is not shown. In
flowsheets and simulation models, pieces of equipment are
connected via their ports by special increments called con-
nection. The depicted rule is used to ensure that, if two sub-
structures of a source document are connected and are trans-
formed to a target document, the resulting substructures are
connected according to the original topology. It is a forward
transformation rule propagating a connection in the flowsheet
to the simulation model. The rules that transformed the two
substructures already established sublinks to map the corre-
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sponding ports of the source and the target structures. The
rule in Figure 17 references the ports and the sublinks that
map them as context (dashed lines). With the help of this in-
formation the rule is able to locate the ports in the target docu-
ment that have to be connected by creating a new connection.
The new link references the connections in both documents
as dominant increment and the ports and sublinks as context
increments.

The integration rules presented so far reference rather sim-
ilar structures of the two documents. In general, rules can re-
late arbitrary substructures of the documents. For instance,
the rule used in the running example (Section 2) in step 2 to
transform the reactor relates a reactor in the flowsheet to a
cascade of two reactors in the simulation model. Beside link-
ing rules, there are inconsistency repair rules that can be ap-
plied after an existing link has become inconsistent because
of modifications in the documents. Another aspect of integra-
tion not presented in this paper is the transformation of at-
tribute values. This is done executing special scripts defined
for each link template [BHWW02].

5.3 Execution of Integration Rules

In this subsection an overview of our approach for the exe-
cution of integration rules is given. A detailed description is
provided in [Loh04].

Although the integration rules presented so far can be in-
terpreted as graph transformations, they cannot be executed
straightforward by simply translating each rule to one graph
transformation rule. Instead, the integration rules are executed
by a complex algorithm consisting of rule-independent and
rule-specific steps. This is necessary for several reasons:

– The sequence of rule applications has to be determined.
– Different rule applications may be possible for a given set

of increments.
– The sets of increments used by two rule applications may

intersect.
– To resolve conflicts and ambiguities, user interaction is

necessary.

Figure 18 shows the integration algorithm for new links.
As stated in Subsection 5.1, existing links are dealt with in a
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[ no
decisions ]

[ decisions pending ]

overlappings

Fig. 18 The integration algorithm

different phase of the overall integration algorithm which is
not presented here. The algorithm is presented using a UML
activity diagram. The activities are informally grouped into
three phases by rectangles. Activities that are rule-specific
are filled gray whereas rule-independent activities are filled
white. The rule-specific activities are derived from the spec-
ification of the linking rules. In the algorithm’s first phase
(create), information about all potential rule applications is
collected. In the second phase (select), all potential rule ap-
plications are checked for their applicability and then one rule
is automatically or manually chosen for application. The third
phase (execute and cleanup) consists of the application of the
chosen rule and some cleanup activities adapting the informa-
tion gathered in the create-phase to the changes made during
the execution of the chosen rule. Then the execution is contin-
ued in the second phase until there are neither user decisions
nor rules that can be executed automatically. In the following
paragraphs, the three phases will be explained in more detail.

During the first activity in the create phase (create half-
links), for each increment, that could be the dominant in-
crement for at least one rule, a link referencing this incre-
ment as dominant is created (half link). The linking rules
as presented in the previous subsections can be regarded as
graph transformation rules with both sides of the transforma-
tion being compressed into one diagram. They can be divided
into a left-hand side containing a graph pattern that has to be
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matched against the host graph before the transformation and
a right-hand side describing the transformation result for the
matched pattern. In the next activity (find potential rule appli-
cations), which is the first rule-specific activity, for each half
link the left-hand sides of all rules that comply to the domi-
nant increment are tried to be matched against the graph con-
sisting of the documents to be integrated and the integration
document. All possible matchings are stored at the half link.
Please note that the context increments are not matched, yet,
because these increments may still be created later by other
rule applications. The other rule-specific activities are carried
out similarly based on parts of the graph transformations de-
scribed by the linking rules. In the next activity (detect over-
lappings), all intersections between the mapped increments
of possible rule applications belonging to different links are
found and stored in the graph.

In the first activity of the select phase, the context incre-
ments for all potential rule applications are tried to match and
the result is stored in the graph. By doing this in this phase,
the context increments are checked after each rule execution.
Next, a potential rule application is searched that can be ex-
ecuted unambiguously. This is the case if all context incre-
ments are mapped, the rule is the only potential rule applica-
tion connected to its half link, and there is no potential appli-
cation residing at another half link with intersecting normal
or dominant increments. If there is at least one unambigu-
ous rule application, one of them is executed automatically.
If there is no such rule, all ambiguities are collected and pre-
sented to the user, who can now manually select a potential
rule application for execution. If there are no decisions, the
algorithm terminates.

In the third phase (execute and cleanup), the selected rule
is executed by replacing the already mapped left side in the
host graph by its right side (execute rule). The next activities
propagate the consequences of the changes to the data struc-
ture created during the create phase: First, all half links are
deleted that cannot be made consistent because their domi-
nant increment is now used by the executed rule. Next, all
potential rule applications are deleted that became impos-
sible because increments they needed are used by the exe-
cuted rule. Last, all overlappings that are obsolete because
one of the overlapping potential rule application involved was
deleted are removed. Afterwards, the execution returns to the
check context activity in the select phase.

The loop of the last two phases is continued until no un-
ambiguous rules and no user decisions are present. It is possi-
ble that the integration is not completed after the termination
of the algorithm. In such cases, the user has to complete the
integration by modifying the documents and manually adding
links to the integration document. From manually modified
links, link templates can be interactively derived as is ex-
plained in [BW03b].

6 Related Work

We use UML [OMGe] to express both the architectural re-
finement model and the multi-layered integration model. There-

fore, extensions to the UML meta model have to be made
[SW01] using the MOF [OMGc]. Extensions of the OCL
concerning graph transformation concepts like proposed in
[Sch02] will be used in future work to extend the modeling
formalism.

6.1 Architecture Modeling and Refinement

The observation that specifying the structure of a software
system as coupled units with precise interfaces is a major con-
tributing factor for developing a software system is almost as
old as the software engineering discipline itself [Par72]. Due
to the definition of a software architecture given in Subsec-
tion 3.1 it is not surprising that graph grammars were iden-
tified as a simple and natural way to model software archi-
tectures. Consequently, the rules and constraints for the dy-
namic evolution of the architecture, e.g. adding or removing
components and relations between them, can be defined as
graph transformations. Following this idea we use PROGRES
[SWZ99] to describe these both aspects in an unified way.

Several related approaches are described in literature: Le
Métayer [Le 98] uses graph grammars to specify the static
structure of a system. However, the dynamic evolution of an
architecture has to be defined independently by a so-called
coordinator. A uniform description language based on graph
rewriting covering both aspects is presented by Hirsch et al.
[HIM99]. But in contrast to PROGRES this approach is lim-
ited to the use of context-free rules for specifying dynamic
aspects. Similarly to us, Fahmy and Holt [FH00] also applies
PROGRES to specify software architectural transformations.

Despite of this, these and other approaches for architec-
ture modeling [Kle01] claim to be usable to specify univer-
sal architectures independent from the domain and do not
consider the needs for domain-specific architectures [MG92].
Therefore, PsiGene [RKS99] allows to combine design pat-
terns as presented in [BMR � 96] and to apply them to class
diagrams. A technique to specify patterns in the area of dis-
tributed applications and to combine them to a suitable soft-
ware architecture is shown in [Rad00].

While these approaches offer solutions for architectural
patterns on a technical level, e.g. distributing components and
defining patterns for their communication, they do not over-
come the problem of semantic heterogeneity. This problem
is addressed by numerous standardization efforts to define
domain-specific interfaces based on corresponding architec-
tural frameworks, e.g., OMG domain specifications [OMGb],
ebXML (electronic business using eXtensible Markup Lan-
guage [ebX]) or OAGIS (Open Applications Group [OAG]).
However, to adapt legacy systems to such standards they have
to be wrapped. In this paper, we have shown how wrapping
can be performed systematically at the architectural level.

6.2 Interactive Modeling and Construction of Wrappers

An architecture-based approach for developing wrappers, sim-
ilar to the one of us, is described by Gannod et al. [GML00]:
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interfaces to command line tools are specified as architectural
components by using ACME [GMW97], a generic architec-
ture description language. Subsequently, based upon the spec-
ification the wrapper source code for the interface is synthe-
sized. In comparison with our method presented in Section 4,
Gannod et al. only cover the construction of the technical
wrapper; any kind of data homogenization is not considered.

To enrich the expressiveness of a given interface to be
wrapped, Jacobsen and Krämer modified CORBA IDL (in-
terface definition language) [OMGa] for adding specifica-
tions of semantic properties, so that a wrapper’s source code
can be extended by additional semantic checks automatically
[JK98]. When wrapping tools in an a-priori manner, i.e. the
semantics of the tool’s interface is well-known, such descrip-
tions are applicable for synthesizing the wrapper. Unfortu-
nately, in the context of a-posteriori integration the seman-
tic properties to be specified for generating the wrapper are
unknown. This was one reason for developing our interface
exploration tool.

Other attempts to discover the structure and behavior of
a software system automatically come from the field of soft-
ware reengineering. Cimitile et al. [CdLdC98] describe an
approach that involves the use of data flow analysis in or-
der to determine various properties of the source code to be
wrapped. A necessary prerequisite for this and the most other
techniques in the area of software reengineering is the avail-
ability of the source code that is to be analyzed. Again, a-
posteriori integration as presented in this paper does not sat-
isfy this constraint.

The solution we have chosen is an application of the “pro-
gramming by example” principle [Lie01]. Several approaches
for wrapping semi-structured data sources, e.g. web pages,
following this principle can be found in literature. Turquoise
[MM99] is a prototype of an intelligent web browser creating
scripts to combine data from different web pages. The scripts
are demonstrated by the user’s browsing and editing actions,
which Turquoise traces and generalizes into a program. Simi-
lar, NoDoSE [Ade98] combines automatic analysis with user
input to specify grammars for unstructured text documents.
An automation of the generalization step, necessary in every
programming by example approach, is presented in [Kus00].
For a set of web pages single wrappers are specified manu-
ally, then an automatic learning algorithm generates a gener-
alized wrapper by induction.

While these “programming by example” approaches con-
centrate on data integration, we are moreover interested in
function and event integration, e.g. for offering the integra-
tion tool a visualized browsing functionality between inte-
grated documents in the future.

6.3 Consistency Management

Our approach to consistency Management is based on differ-
ent foundations in computer sciences:

The idea of relating dependent pieces of information by
links is borrowed from hypertexts [Con87]. The Chimera sys-

tem [ATW00] is an application of hypertext concepts to soft-
ware engineering. In most hypertext systems — including
Chimera — links have to be established manually. Some ap-
proaches to traceability, e.g. [RJ01], follow the same princi-
ples.

Execution and definition of integration rules is based on
graph transformation [EEKR99,SWZ99], in particular pair
grammars [Pra71] and triple graph grammars [Sch95]. Early
work at our department concerning integration in software
engineering [LS96] was carried out on the basis of these tech-
niques during the construction of the integrated software en-
gineering environment IPSEN [Nag96]. We adapted the re-
sults to our current domain of application and extended the
original approach: now, we are dealing with the problem of a-
posteriori integration, the rule definition formalism was mod-
ified to the UML-based one described in this contribution
(see Section 5.2) and the rule execution algorithm was fur-
ther elaborated (see Section 5.3).

Related areas of interest in computer science are (in-)
consistency checking [SZ01] and model transformation. Con-
sistency checkers apply rules to detect inconsistencies be-
tween models which then can be resolved manually or by
inconsistency repair rules. Model transformation deals with
consistent translations between heterogeneous models. Both
fields of research recently gained increasing importance be-
cause of the model driven approaches for software develop-
ment like the model driven architecture (MDA) [OMGd]. In
[GLR � 02] the need for model transformations in the con-
text of the MDA is described, some basic approaches are
compared, and requirements on transformation languages and
tools are proposed. In [KS03] requirements for mapping lan-
guages between different models are elaborated.

Without claiming the list to be exhaustive, here are some
references to important projects in these areas:

XlinkIt [NCEF02,NEF03] is a project dealing with con-
sistency checks. XML technology is used to check for incon-
sistencies and to repair them. Because of the structure of the
documents in our domain, we believe that UML and graph
grammars are better suited to model and execute integration
functionality.

The ViewPoint framework [FKG90] dates back to the early
nineties. Its main idea is to identify different perspectives
(view points) of a product that is to be developed and to exam-
ine their inter-relations. This framework is applied as a basis
in [EHG � 02] using the formalism of distributed graph trans-
formations [TKFV99] to detect and repair inconsistencies. To
the best of our knowledge, this approach does not support
conflicting rules and user interaction.

In the context of the Fujaba project, a consistency man-
agement approach was developed [WGN03]. It checks intra-
model as well as inter-model consistency. Parts of the inter-
model consistency check [Wag01], which can be used to trans-
form models, are based on the triple graph grammar approach
[Sch95] like ours, but offer restricted transformation func-
tionality only, w.r.t. the detection of conflicting rules and user
interaction.



16 Simon M. Becker et al.

As part of the Kent Modeling Framework, in [AKP03] a
relational approach to the definition and implementation of
model transformations is proposed. The definition of trans-
formation rules is accomplished using UML class diagrams
enriched with OCL constraints. This approach has the formal
background of mathematical relations. It is not applicable in
our domain of application because the rules are not intuitively
understandable.

The QVT Partner’s proposal [ACR � 03] to the QVT RFP
of the OMG [OMG02] is very similar to Kent’s approach but
complements it with graphical definition of patterns and op-
erational transformation rules. It does not support incremen-
tality and user interaction.

BOTL [BM03] is a transformation language based on UML
object diagrams. A BOTL rule consists of a left hand side dia-
gram being matched in the source document and a right hand
side diagram being created in the target document if a left
hand side matching was found. The transformation process is
neither incremental nor interactive.

In general, it can be observed that most approaches from
the area of consistency management support an incremental
mode of operation and user interaction, whereas most model
transformation approaches work batch-wise. In our domain
of application, chemical engineering, incremental transfor-
mation between models is urgently needed. But unlike MDA,
in chemical engineering a complete and unambiguous defi-
nition of the translation between for instance flowsheets and
simulation models is not feasible. Instead, a lot of decisions
have to be made by the user and a lot of situations have to be
dealt with manually. Consistency checking approaches with
repair actions could be used for transformation, but there are
problems like conflicting transformation rules and termina-
tion of the transformation process, which require further ex-
tensions of the approaches. We address these problems with
the integration algorithm described in Section 5.3.

The advantage of our integration approach is that it uses
standard UML for intuitive definition of integration rules and
supports an incremental mode of operation as well as bidi-
rectional transformation including conflict detection and user
interaction.

7 Conclusion

We have presented an architecture-based and model-driven
approach to the a-posteriori integration of engineering tools
for incremental development processes. We have realized this
approach in the context of the CRC 476 IMPROVE, which is
concerned with models and tools for supporting design pro-
cesses in chemical engineering. The case study presented in
this paper — an integration tool for consistency management
between flowsheets and simulation models — demonstrates
that tight integration can be achieved even in the case of a-
posteriori integration of heterogeneous tools developed by
different vendors. Furthermore, since the tool development
process is strongly architecture- and model-driven, the pro-
cess can be performed at a fairly high level of abstraction
with considerably reduced effort.

An important goal of IMPROVE is to transfer research
into industrial practice. The work reported in this paper con-
stitutes a contribution towards this goal. The integration tool
between Comos PT and Aspen Plus has been developed in
close cooperation with innotec, a software company which
develops and sells Comos PT. Tool development has been
performed in close cooperation with innotec, taking the re-
quirements of the industrial partner into account. Thus, the
integration tool developed in this cooperation provides a test
case for our approach to tool development. The experiences
we have gained so far are promising, but clearly further work
on practical applications will have to be performed to obtain
substantial feedback on the advantages and drawbacks of our
approach to tool development.
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tegration tools. In Nagl [Nag96], pages 324–334.

[MG92] Erik Mettala and Marc H. Graham. The domain-
specific software architecture program. Technical Re-
port CMU/SEI-92-SR-009, Carnegie Mellon Univer-
sity, Software Engineering Institute (SEI), 1992.

[Mic] Microsoft. The component object model spec-
ification. Available from World Wide Web:
http://www.microsoft.com/com/
resources/comdocs.asp [cited Nov. 2003].

[MM99] Robert C. Miller and Brad A. Myers. Creating dynamic
world wide web pages by demonstration. Technical
Report CMU-CS-97-131, Carnegie Mellon University,
School of Computer Science, 1999.

[Nag96] Manfred Nagl, editor. Building Tightly-Integrated
Software Development Environments: The IPSEN Ap-
proach. LNCS 1170. Springer, Berlin, Germany, 1996.

[NCEF02] Christian Nentwich, Licia Capra, Wolfgang Em-
merich, and Anthony Finkelstein. xlinkit: A con-
sistency checking and smart link generation service.
Transactions on Internet Technology, 2(2):151–185,
2002.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and An-
thony Finkelstein. Consistency management with re-
pair actions. In Proc. of Intl. Conf. on Software Engi-
neering (ICSE), pages 455–464. ACM, 2003.

[NM97] Manfred Nagl and Wolfgang Marquardt. SFB-476 IM-
PROVE: Informatische Unterstützung übergreifender
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