
Softw Syst Model
DOI 10.1007/s10270-006-0045-5

SPECIAL SECTION PAPER

A graph-based algorithm for consistency maintenance
in incremental and interactive integration tools

Simon M. Becker · Sebastian Herold ·
Sebastian Lohmann · Bernhard Westfechtel

Received: 19 February 2005 / Revised: 31 October 2006 / Accepted: 14 December 2006
© Springer-Verlag 2007

Abstract Development processes in engineering
disciplines are inherently complex. Throughout the
development process, the system to be built is mod-
eled from different perspectives, on different levels of
abstraction, and with different intents. Since state-of-
the-art development processes are highly incremental
and iterative, models of the system are not constructed
in one shot; rather, they are extended and improved
repeatedly. Furthermore, models are related by man-
ifold dependencies and need to be maintained mutu-
ally consistent with respect to these dependencies. Thus,
tools are urgently needed which assist developers in
maintaining consistency between inter-dependent and
evolving models. These tools have to operate incremen-
tally, i.e., they have to propagate changes performed on
one model into related models which are affected by
these changes. In addition, they need to support user
interactions in settings where the effects of changes can-
not be determined automatically and deterministically.

Communicated by Dr. Francesco Parisi-Presicce.

This paper is an extended version of [6].

S. M. Becker (B) · S. Herold · S. Lohmann
RWTH Aachen University, Computer Science III,
Ahornstr. 55, 52074 Aachen, Germany
e-mail: sbecker@i3.informatik.rwth-aachen.de

B. Westfechtel
University of Bayreuth, Applied Computer Science I,
95440 Bayreuth, Germany
e-mail: Bernhard.Westfechtel@uni-bayreuth.de

S. Herold
e-mail: herold@i3.informatik.rwth-aachen.de

S. Lohmann
e-mail: slohmann@i3.informatik.rwth-aachen.de

We present an algorithm for incremental and interac-
tive consistency maintenance which meets these require-
ments. The algorithm is based on graphs, which are used
as the data model for representing the models to be inte-
grated, and graph transformation rules, which describe
the modifications of the graphs to be performed on a
high level of abstraction.

Keywords Incremental consistency maintenance ·
Graph transformation · Triple graph grammars

1 Introduction

1.1 Background

Development processes in engineering disciplines are
inherently complex. Throughout the development pro-
cess, the product to be developed is modeled from differ-
ent perspectives, on different levels of abstraction, and
with different intents. In general, a model is an abstrac-
tion of some real world object; here, a model refers
to the product which is the subject of engineering. For
example, in software engineering models are created to
represent the requirements, the design, or the imple-
mentation of a software system; furthermore, we may
distinguish between structural and behavioral models.

Models are related by manifold dependencies. For
example, the design of a software system depends on
its requirements, and the implementation depends on
the design. A model m1 depends on some model m2 if
the contents of m1 are constrained by rules which relate
elements of m1 to elements of m2. If these constraints
are satisfied, m1 is said to be consistent with m2. With
respect to consistency, we have to distinguish between

S. M. Becker et al.

intra-model consistency, which refers to the correctness
of the contents of some model with respect to local rules,
and inter-model consistency, which refers to the correct-
ness of the relationships between inter-dependent mod-
els with respect to cross-model rules. In the context of
this paper, we will focus on inter-model rather than on
intra-model consistency.

Development processes may be viewed as multi-
phase transformation processes from the initial problem
statement to the final solution. However, this is a sim-
plified view suggesting a waterfall-like process, where
each phase is entered only when the preceding phase
has been completed. In contrast, current development
processes are highly incremental and iterative. In an
incremental development process, the product is not
developed in one shot; rather, it is developed in smaller
parts called increments. In an iterative process, activities
are executed repeatedly until the goals of development
are reached eventually. Furthermore, development does
not always proceed in forward direction (forward engi-
neering). Rather, it may also involve activities working
in backward direction (reverse engineering). Combin-
ing forward and reverse engineering results in round-
trip engineering, where developers opportunistically mix
both modes of development.

Maintaining inter-model consistency is a demanding
task which requires sophisticated tool support. In this
paper, we will subsume all kinds of tools for maintaining
inter-model consistency under the notion of integration
tool. These tools may be classified as follows:

– A transformation tool processes a source model and
transforms it into a target model.

– A consistency analysis tool takes inter-dependent
models and checks inter-model consistency.

– A hyperlink tool creates and maintains links
between elements of inter-dependent models.

– A browsing tool traverses inter-model links.

Transformation tools have been studied extensively.
For example, consider the Model Driven Architecture
[32] initiative launched by the OMG. The mission of
MDA is to generate platform-specific code from archi-
tectural models. Often, transformation tools of this kind
are run in batch mode, processing the whole architec-
tural model without requiring any user interactions. In
this way, development effort may be reduced
significantly.

Batch transformers are not always adequate, which
is also recognized in the context of MDA [23].1 For

1 In the cited reference, Chap. 7 lists desirable features of trans-
formation tools which closely match the features listed below.

example, consider the transition from requirements to
design, which involves moving from the problem space
to the solution space. The design cannot be generated
automatically from the requirements. Rather, the
designer has to make deliberate design decisions which
balance requirements such as efficiency, adaptability,
portability, etc. Therefore, the design process is per-
formed interactively. Furthermore, design usually pro-
ceeds incrementally and iteratively. As a consequence,
integration tools which assist in maintaining consistency
between requirements and design need to operate both
interactively and incrementally. Moreover, tool support
has to provide for traceability, i.e., each element of the
design has to be traced back to its originating elements
in the requirements.

1.2 Contribution

In this paper, we focus on incremental and interactive
integration tools for inter-model consistency mainte-
nance. A tool is called incremental if the effort to pro-
cess a change is proportional to the size of the change.
In other words: An incremental tool is designed to pro-
cess small changes with low effort. The unit of change is
called increment, which corresponds to some syntactic
unit of the underlying modeling language. These defi-
nitions are drawn from the tool building literature [29];
consider e.g. incremental parsers or syntax-aided editors
with incremental context-sensitive analysis. In contrast,
in the context of incremental development processes an
increment denotes a unit of work, whose size depends
on the characteristics of the development process being
executed.

Incremental tools are not necessarily interactive; con-
sider e.g. incremental parsers operating silently in the
background. In contrast, we focus on scenarios where
user interaction is inherently required (as e.g. for the
integration between requirements engineering and
design). In such scenarios, user interaction cannot be
avoided because not all decisions can be automated.
Involving the user implies that the user can control the
integration process. If automation is pushed too far, the
results produced by non-interactive integration tools
might be of limited value. Of course, there are other
scenarios where automated tools are desired, such as
e.g. code generators in model-driven development. But
this is not the focus of the research presented in this
paper.

To provide incremental and interactive integration
tools for inter-model consistency maintenance, links are
required which connect increments of inter-depen-
dent models. These links are used for browsing to
switch back and forth between inter-dependent models.

A graph-based algorithm for consistency maintenance

Furthermore, they are used to record design decisions
and to propagate changes. Finally, links provide for
traceability of the development process.

Inter-model links can be realized in various ways,
e.g., by maintaining bidirectional pointers which are
stored with the models to be integrated. In contrast,
we maintain a separate data structure called integra-
tion model. In general, a link stored in the integration
model relates sets of increments in the respective inter-
dependent models. Thus, links may express m : n rela-
tionships in the general case. Furthermore, links may
be annotated with additional information, and we may
even store relationships between links. Altogether, the
integration model is much more powerful than a reali-
zation by bi-directional pointers, which has been ruled
out because of its inherent limitations.

Another reason for storing links in a separate data
structure is a posteriori integration of existing tools. In
the case of heterogeneous tools, each tool maintains its
own data base, which may not be extensible by external
applications. In such a situation, it is not possible to store
bidirectional pointers with the data of the tools.

The key contribution of this paper lies in a novel algo-
rithm for consistency maintenance in incremental and
interactive integration tools. The algorithm is driven by
rules which relate patterns in inter-dependent models.
Here, the term pattern refers to a set of increments and
their connecting relationships. In contrast to previous
approaches, rule execution is split into multiple steps.
First, the algorithm searches for applicable rules and
looks for conflicts among these rules. Informally, two
rules stand in conflict if the execution of one rule dis-
ables the execution of the competing rule. Conflicts are
presented to the user, who performs a selection among
the conflicting rules. Only those rules which do not
participate in any conflict are executed automatically
(i.e., without further user interaction). This approach
requires to separate pattern matching from rule exe-
cution. In contrast, in previous work (e.g. [11,20]) rules
have been executed atomically (but not necessarily auto-
matically) without making the user aware of conflicts
among the offered rules.

The integration algorithm is based on graphs. Graphs
consist of nodes representing objects and edges rep-
resenting relationships between these objects. Graphs
constitute the common meta model in which the inter-
dependent models and the integration models are
expressed. We use graphs because they are well suited
for representing complex data with manifold relation-
ships in a natural way. Furthermore, we make use of
graph transformation rules [33] for describing modi-
fications of these graphs on a high level of abstrac-
tion. Since graph transformation rules are executable,

an implementation of the algorithm may be created by
rapid prototyping. In fact, we have realized and evalu-
ated the integration algorithm in IREEN, an Integra-
tion Rule Evaluation ENvironment [27]. Additionally,
a more industry-related framework for building real-
world integration tools is being implemented based on
the lessons learned from IREEN (cf. Sect. 9).

1.3 Structure

Section 2 presents a scenario which motivates our work
by a practical example. Section 3 is devoted to the graph-
based specification of integration tools. Sections 4 to 9,
the core part of this paper, present our novel approach
to rule execution. Section 10 discusses related work, and
Sect. 11 presents a short conclusion.

2 Scenario

2.1 Context of research

The research presented in this paper is domain-inde-
pendent, i.e., it can be applied to different engineering
disciplines. In the introduction, we referred to software
engineering, particularly to the relationships between
requirements and design. We studied these relationships
in the IPSEN project, which was concerned with tightly
integrated, incremental, and graph-based software engi-
neering environments [29]. Within the IPSEN project,
an integration tool for maintaining consistency between
requirements and design was developed [25,26] which
may be viewed as a precursor of the IREEN prototype
described in this paper.

Our current research is carried out within the
IMPROVE project [30], which is concerned with mod-
els and tools for design processes in chemical engineer-
ing. IMPROVE is an interdisciplinary research project
which is performed by computer scientists, chemical
engineers, and plastics engineers at the RWTH Aachen
University, Germany. IMPROVE cooperates closely
with industrial partners in order to validate research
concepts and to put research into practice. The research
reported in this paper has been conducted in the sub-
project of IMPROVE which is dedicated to the devel-
opment of integration tools. To this end, a cooperation
was established with innotec, a German software com-
pany which provides solutions for chemical engineering.
In the context of this cooperation, an integration tool
was developed which assists in maintaining consistency
between flow sheets and simulation models [5]. This tool
is based on a general framework for building integration

S. M. Becker et al.

tools. The integration algorithm described here is part
of this framework.

2.2 Development processes in chemical engineering

Development processes in chemical engineering are
divided roughly into two parts: basic engineering and
detail engineering. In basic engineering, the basic deci-
sions concerning the design of the chemical plant are
made. In detail engineering, the design is refined to a
blueprint of the chemical plant to be built. In the sequel,
we will focus on a small cutout of basic engineering.
We will be concerned with design and simulation and
will ignore other activities such as requirements analy-
sis, cost estimation, and laboratory experiments.

In chemical engineering, the flow sheet plays a cen-
tral role. A flow sheet is composed of devices (reactors,
separation units, etc.) and streams representing the flow
of chemical substances between devices. All elements of
the flow sheet are typed. For example, there are different
types of reactors such as plug flow reactors or continuous
stirring reactors. Furthermore, elements are decorated
by attributes. For example, a reactor may be described
by attributes such as height and dimension, and a stream
is characterized by some material and its flow rate. In
basic engineering, many details are still left unspecified,
e.g., the layout of the plant to be built. The flow sheet is
refined later in detail engineering. As far as basic engi-
neering is concerned, the flow sheet primarily serves to
design the chemical process and the overall composition
of the chemical plant.

Primarily, the flow sheet constitutes a structural
model. However, since it is used as a central overview
diagram, behavioral data are collected in the flow sheet,
as well. These data comprise temperature, mass flows,
heat flows, pressure profile, molecular weight, etc.
Behavioral data are obtained by performing laboratory
experiments, analytically by solving mathematical equa-
tions, and by simulations. Altogether, the flow sheet is
used by chemical engineers as the central model which
describes both the structure and the behavior of the
chemical plant to be built. All crucial design decisions
are performed with the help of and are documented in
the flow sheet.

As mentioned, the behavior of the chemical process
may be determined in multiple ways. In this paper, we
will focus on simulations, which are based on mathemat-
ical models of the chemical process. These models are
defined as sets of differential equations, which usually
are too complicated to be solved analytically. Simula-
tions are classified further into steady-state simulations,
which describe the behavior of the chemical process in
its equilibrium state, and dynamic simulations, which

are used e.g. to determine the start-up behavior and the
behavior in the case of technical faults.

Simulations are based on simulation models. How
these models are structured, depends heavily on the
respective simulation tool. In the worst case (not to be
discussed further), the simulation expert has to develop
the simulation model in terms of differential equations
on his own. However, many simulation tools reduce the
effort of developing simulation models considerably by
providing pre-defined blocks. Simulators of this kind
are called block simulators. The simulation expert com-
poses a simulation from pre-defined blocks and connects
them by streams. In a block simulation model, a stream
defines a connection between the outputs of the source
block and the inputs of the target block. This means
that the outputs of the source block are set equal to the
inputs of the target block. How the blocks are structured
internally, is (intentionally) hidden from the users of the
simulation tool.

Performing simulations of the chemical process is
not straightforward. Usually, simulations are performed
only for parts of the process, which are defined in
connected regions of the flow sheet. Please note that
the structure of a region in the flow sheet may devi-
ate from the structure of the corresponding simulation
model. In the case of a block simulator, the simulation
model is composed of pre-defined blocks, which may or
may not correspond to devices contained in the flow
sheet. For example, multiple blocks may have to be
composed in order to simulate a single device of the
flow sheet.

The notion of consistency between a flow sheet and
a simulation model is not straightforward to define; in
this case, an “official” definition of consistency does not
exist. There are some intuitive rules of thumb, e.g., a
device may be mapped onto a block, or a stream in
the flow sheet may be mapped onto a stream in the
simulation model. Furthermore, each element of the
region to be simulated has to mapped onto some ele-
ment of the corresponding simulation model (and vice
versa). However, as explained above, mappings are not
always 1:1.

Therefore, we do not assume that consistency is
defined once and for all in a universally accepted way.
Rather, consistency is defined in terms of a set of rules
which is extensible and modifiable. The rule base is
fed by simulation experts in an iterative process. How-
ever, the knowledge acquisition process goes beyond the
scope of this paper; therefore, the reader is referred to
[4]. In this paper, we will assume that the rule base is
given and static.

In basic engineering, the development process is
highly iterative. Typically, the flow sheet is designed first.

A graph-based algorithm for consistency maintenance

After simulations have been performed, the simulation
results are propagated back to the flow sheet. Based on
the simulation results, the flow sheet may have to be
extended or modified, and new simulations may have
to be performed. This iterative process terminates when
the requirements to the chemical process are eventu-
ally satisfied. Please note that the development process
may also involve reverse engineering. For example, it
may happen that an initial version of the flow sheet
is derived from a pre-existing simulation model. Fur-
thermore, a simulation expert may decide to extend or
modify the simulation model and propagate these struc-
tural changes back into the flow sheet. Altogether, this
implies a tight change propagation cycle between the
flow sheet and the various simulation models.

2.3 Sample process

The sample process described below was designed in
cooperation with chemical engineers and the software
company innotec. In the cooperation with innotec, we
built an integration tool for coupling COMOS PT, an
environment for chemical engineering developed by
innotec, and Aspen Plus, a commercial block simulation
tool. Among other tools, COMOS PT provides a flow
sheet editor. The integration tool maintains consistency
between flow sheets prepared with COMOS PT and
simulation models created in Aspen Plus (cf. Sect. 9).

The integration between COMOS PT and Aspen Plus
was performed a posteriori, i.e., existing tools were inte-
grated which were not designed for integration. Each
tool stores models in documents which are owned by
the tools. Links between these documents are stored in
a separate integration document.

The design process refers to a simple chemical pro-
cess which produces ethanol from ethen and water. For
this simple process, we assume that there is no need to
define different regions for different simulations, i.e., we

assume that the region for the simulation model covers
the complete flow sheet.

Figure 1 shows the flow sheet and the simulation
model in different stages of development. Typically, flow
sheets and simulation models are created by different
users at different times with the help of respective tools;
an integration tool is used to establish mutual consis-
tency on demand. The design process consists of four
steps:

1. An initial version of the simulation model is cre-
ated.

2. An initial version of the flow sheet is derived from
the simulation model (reverse engineering).

3. The flow sheet is extended with further elements.
In parallel, the simulation is performed for the sim-
ulation model corresponding to the old version of
the flow sheet (concurrent engineering).

4. Consistency between the flow sheet and the simula-
tion model is re-established by propagating changes
in both directions.

Flow sheets consist of devices and streams, which are
represented in Fig. 1 as boxes and arrows, respectively.
In the diagrams for the simulation model, blocks are
shown as graphical icons indicating their types; streams
connecting the blocks are displayed as arrows. Finally,
inputs and outputs are marked by graphical arrows. All
elements of the flow sheet and the simulation model
are decorated with attributes, which have been omitted
from the figure for the sake of readability.

The integration tool maintains a data structure
which contains links between elements of the flow sheet
and elements of the simulation model. These links are
represented by ellipses which are located on the dashed
line separating the flow sheet from the simulation model.
Dotted lines are used to indicate the elements
participating in a link. Furthermore, arrows located

Fig. 1 Integration between
flow sheet and simulation
model

PFR Flashing

Splitting

HE PFR

HEATER RPlug
REQUIL

HE

FLASH

SPLIT
RPlug

REQUIL

L L L L L L L L L

1.)

2.)

3.b)

3.a)

4.)

flow sheet

simulation model

of structure of attributes

HE

propagation propagation

S. M. Becker et al.

on the left indicate the directions of change propagations
(structural and attribute changes, respectively) which
are performed in the various steps of the design process.

In the sample design process, two users are involved:
The design expert is responsible for the flow sheet, the
simulation expert creates the simulation model and runs
simulations. The steps of the design process are per-
formed as follows:

Step 1. Initially, we assume that the simulation expert
has already created a simulation model for a part of
the chemical process (heating and reaction). The simu-
lation model is composed of three blocks according to
the capabilities of the respective simulation tool (please
recall that the blocks are pre-defined by the simulation
tool).

Step 2. The design expert transforms the simulation
model into the flow sheet with the help of the integration
tool. Multiple alternatives are available for this transfor-
mation. It turns out that the simplest one—a 1:1 trans-
formation—does not result in an adequate flow sheet
because the blocks do not correspond 1:1 to devices
in the flow sheet. Rather, the design expert decides to
group two blocks and their connecting stream into a
single device (a plug flow reactor) in the flow sheet.
The link between the PFR and the respective parts of
the simulation model is established by firing a corre-
sponding integration rule. In addition, another rule is
available which just transforms the block called RPlug
into a PFR. This 1:1 rule stands in conflict with the rule
selected here: Applying one rule disables the competing
rule. The integration tool presents conflicting rules to
the user who may select the rule to be applied.

Step 3. Steps 3a and 3b are carried out in parallel, using
different tools. Using the simulation model created so
far, the simulation expert runs the simulation. The sim-
ulation results comprise flow rates, temperatures, etc.
In parallel, the design expert uses the flow sheet edi-
tor to extend the flow sheet with the chemical process
steps that have not been specified so far (flashing and
splitting).

Step 4. Finally, the integration tool is used to synchro-
nize the parallel work performed in the previous step
by re-establishing consistency between flow sheet and
simulation model. This step is performed cooperatively
by the design expert and the simulation expert in a
joint working session. Synchronizing the flow sheet and
the simulation model involves information flow in both
directions. First, the attributes containing the simulation
results are propagated from the simulation model back

to the flow sheet.2 Second, the extensions are propagated
from the flow sheet to the simulation model. In this way,
mutual consistency is re-established.3

2.4 Requirements to integration tools

From this example, we derive several features of the
kinds of integration tools we are addressing:

Functionality. An integration tool must manage links
between elements of inter-dependent models. In gen-
eral, links may be m:n relationships, i.e., a link con-
nects m source elements with n target elements. They
may be used for multiple purposes: browsing, con-
sistency analysis, and transformation.

Mode of operation. An integration tool must operate
incrementally rather than batch-wise. It is used to
propagate changes between inter-dependent models.
This is done in such a way that only actually affected
parts are modified. As a consequence, manual work
does not get lost, as it happens in the case of batch
converters.

Direction. In general, an integration tool may have to
work in both directions. That is, if model m1 is
changed, the changes are propagated into model m2
and vice versa.

Mode of interaction. An integration tool may operate
automatically in simple scenarios. However, user
interactions are required in the case of non-deter-
ministic transformations.

Integration rules. An integration tool is driven by rules
defining which patterns may be related to each other
and supporting the transformation of patterns. It
must provide support for defining and applying these
rules.

Conflict detection. In the case of non-deterministic
choices, the integration tool must detect conflicting
rules and report conflicts to the user. Otherwise, the
user would have to apply a rule without being aware
of conflicting alternatives.

Time of activation. In the case of reactive integration,
the integration tool performs incremental transfor-
mations and consistency checks on each user com-
mand. In contrast, integration on demand means
that the integration tool is explicitly activated by the
user at appropriate points of time. In our work, we
focus on integration on demand as it is appropriate
in multi-user scenarios as presented above.

2 For a description of the attribute propagation mechanism please
refer to [5].
3 Please note that Fig. 1 displays the simulation model after Step
4. The results of Step 3a are not visualized.

A graph-based algorithm for consistency maintenance

Traceability. An integration tool must record a trace of
the rules which have been applied. This way, the user
may reconstruct later on which decisions have been
performed during the integration process.

3 Graph-based specification of integration tools

Integration tools are based on a formal specification
which employs graphs as the underlying data model
and graph transformation rules to specify operations on
graphs on a high level of abstraction. Since graph trans-
formation rules are executable, code may be generated
from the formal specification. In this way, prototypes of
integration tools may be generated rapidly.

The current section introduces the formal founda-
tions of integration tools. First, a brief introduction into
graph grammars and graph transformation systems is
given. Then, we discuss a graph-based formalism which
has been designed specifically for solving integration
problems.

3.1 Graph grammars and graph transformation systems

Graphs are well suited for modeling complex structured
data. In the context of this paper, we use graphs to repre-
sent the models to be integrated (the flow sheet and the
simulation model in our running example) and the inte-
gration model placed in between these models. Please
note that the diagrams of Fig. 1 are based on a graph-
ical notation designed for the end user which differs
from the internal representation introduced below. The
integration algorithm to be described in subsequent sec-
tions requires a formal graph representation. How such
a graph representation is actually provided, goes beyond
the scope of this paper and is described elsewhere [4].
The basic idea is to realize a graph view on the data struc-
tures of the tools (flow sheet editors and simulators) by
means of wrappers.

Graphs may be defined in many different ways. Here,
we are dealing with directed, typed, and attributed
graphs. A graph has a finite set of nodes which are
identified uniquely by node numbers. Edges are binary
relationships between nodes. A directed graph contains
edges whose ends are distinguished as source and tar-
get, respectively. This distinction does not imply that
edges can be traversed only from source to target; in
contrast, edges may be traversed in both directions. In
a typed graph, both nodes and edges are typed. In an
attributed graph, the elements of graphs may be deco-
rated with attributes. In the graph data model which we
assume, attributes may not be attached to edges; further-
more, duplicate edges of the same type are not allowed.

Therefore, edges are represented as triples (sn, tn, et),
where sn, tn, et denote source node, target node, and
edge type, respectively. In the sequel, directed, typed,
and attributed graphs are briefly called graphs.

Please note that types of nodes and edges as well as
attributes have to be defined in a graph schema, i.e., a
database schema for graphs. Due to the lack of space,
this is not further explained.

Figure 2 displays a cutout of the graph representation
of the informal diagram shown in Fig. 1. Please note
that this is an internal graph representation, i.e., it is not
intended to show this graph to the end user. Rather,
end users operate on diagrams similar to those shown in
Fig. 1. The graph of Fig. 2 refers to the plug flow reactor
(PFR) in the flow sheet, the corresponding cascade of
blocks in the simulation model, and the link structure in
between.

In Fig. 2, nodes and edges represent increments and
relationships, respectively. Nodes and edges are drawn
as boxes and arrows, respectively. Edge types are placed
on the arrows for the edges. The box for a node contains
its node number (any unique identifier is permissible,
not just natural numbers) and its type. Attributes are
omitted from the figure.

Let us now describe the elements of the graph repre-
sentation, referring back to the diagram of Fig. 1:

– The plug flow reactor of the flow sheet and the cor-
responding blocks in the simulation model are rep-
resented as nodes (f2, a2, and a10, respectively).

– The stream connecting the simulation blocks is also
represented as a node (a6) even though it is dis-
played as an arrow in the diagram. The stream can-
not be represented as an edge because it has to be
decorated with attributes (e.g., material flow or tem-
perature).

– Both the flow sheet and the simulation model are
based on a common port-based meta model. A port
defines a connection point of some element and is
represented by a node (e.g., f1). Ports are classified
into input ports and output ports. For example, for a
reactor ports define connection points for incoming
and outgoing material flows; for streams, they define
their ends and the flow direction. Each port is owned
by the element to which it is attached. The owner-
ship is expressed by edges from element nodes to
port nodes.

– Connections are used to link ports of different ele-
ments. Each connection is represented by a node
(e.g., a4) and two edges pointing to the connected
ports. In the informal diagrams of Fig. 1, neither
ports nor connections are represented explicitly.

S. M. Becker et al.

Fig. 2 Graph representation
of a cutout of Fig. 1

– Finally, links are represented by link nodes (l2). A
link node is connected to each node of the linked
subgraphs by an edge. These edges are classified into
different types which will be explained later. Pri-
marily, links connect increments of flow sheets and
simulation models, respectively. Additional sublink
nodes (l1, l3) define correspondences between
ports, which in general cannot be deduced uniquely
from correspondences between elements. In our
example, the outer ports of the cascade of simu-
lation blocks are linked to the input port and the
output port of the plug flow reactor.

A graph grammar is a generalization of a string gram-
mar, i.e., it generates graphs instead of strings. The first
papers on graph grammars were published around 1970.
An overview of the theoretical foundations is given in
[33]; applications of graph grammars are described in
[13]. In a graph grammar, graphs are generated from a
start graph by applying productions. A production con-
sists of a left-hand side and a right-hand side, both of
which are graphs. A production is applicable to a host
graph when a match of its left-hand side is found. Apply-
ing the production means that the match of the left-hand
side is replaced with a copy of the right-hand side.

A graph transformation system differs from a graph
grammar since it is intended to transform graphs rather
than to generate graphs. Therefore, a graph transforma-
tion system does not distinguish between terminal and
non-terminal symbols. In a graph transformation sys-
tem, graph transformation rules are applied to modify
a host graph. While productions are used to generate
graph structures, graph transformation rules may also
specify deletions.

In the sequel, we will generally use the term “graph
transformation rule” independently of whether we refer
to graph grammars or to graph transformation systems.

Graph grammars and graph transformation systems
will be discussed more concretely in the next subsec-
tions. As a notation for graph grammars and graph
transformation systems, we will use the specification
language PROGRES [35]. We have specified our graph
algorithm for incremental and interactive consistency
maintenance with the help of the PROGRES develop-
ment environment, which offers - among other tools
such as a syntax-aided editor and an interpreter - a com-
piler which generates code from the specification. The
features of the specification language PROGRES will
be explained on the fly throughout the presentation of
the graph-based integration algorithm.

A graph-based algorithm for consistency maintenance

3.2 Triple graph grammars

The graph of Fig. 2 consists of three subgraphs corre-
sponding to the flow sheet, the simulation model, and the
integration model, respectively. The intermediate link
data structure is required in the case of complex inte-
gration problems, where m : n correspondences have to
be maintained, applied transformation rules have to be
recorded, and dependencies between links or transfor-
mation rules have to be represented.

For the specification of sophisticated integration tools,
a customized variant of graph grammars called triple
graph grammars was developed [34]. A triple graph
grammar deals with interrelated graph structures called
source graph, target graph, and integration graph, respec-
tively. The terms “source” and “target” denote distinct
ends of the relationship between the models to be inte-
grated, but this does not necessarily imply a unique
direction of transformation (in fact, transformations are
performed in both directions in our sample scenario).

The core idea behind triple graph grammars is to spec-
ify the relationships between source, target, and inte-
gration graph declaratively by triple rules. A triple rule
defines a coupling of three rules operating on source, tar-
get, and integration graph, respectively. When a triple
rule is applied, the coupled graphs are modified synchro-
nously, taking their mutual relationships into account.
Triple graphs generated from a start graph by applying
triple rules are mutually consistent by definition, i.e., the
triple rules define what inter-model consistency means.

Originally, a special-purpose formalism was intro-
duced for triple rules in [34]. Instead, we specify triple
rules as ordinary PROGRES rules. An example of a tri-
ple rule in PROGRES notation is given in Fig. 3. This
rule describes the creation of corresponding connec-
tions, which are inserted synchronously into the source
graph and the target graph and are connected via a link
node in the integration graph. Throughout the rest of
this paper, this rule will be used as a running example.

The rule is specified in PROGRES syntax (with the
exceptions of the comments in italic, which were added
for the sake of readability). In the first line, the rule is
given a name. The dashed boxes contain the left-hand
side and the right-hand side, respectively.4 The left-hand
side consists of nodes, which are numbered in a unique
way, and edges, both of which are typed. Since this
rule specifies an extension of the host graph, the right-
hand side repeats all of these nodes, using the notation
i’ = ‘i. Likewise, their connecting edges are repeated
on the right-hand side. Furthermore, the right-hand side

4 For layout reasons, the left-hand side is shown above the right-
hand side.

contains new nodes (notation i’ : type, where type
denotes the type of the new node) and edges.

The left-hand side is composed of port nodes in source
and target graph, distinguishing between output ports
and input ports.5 Furthermore, it is required that the
port nodes in both graphs correspond to each other.
This requirement is expressed by the nodes of type
Sublink in the integration graph and their outgoing
edges, which point to nodes of the source and target
graph, respectively. Port correspondences are estab-
lished by other triple rules which transform the elements
the ports belong to.

All elements of the left-hand side re-appear on the
right-hand side. New nodes are created for the connec-
tions in source and target graph, respectively, as well as
for the link between them in the integration graph. The
connection nodes are embedded locally by edges to the
respective port nodes. For the link node, the following
types of adjacent edges are distinguished:

– toDomSrcIncr and toDomTrgIncr edges are
used to connect the link to exactly one dominant
increment in the source and target graph, respec-
tively. In our example, the connections act as domi-
nant increments.

– In general, the source and target pattern related
through the triple rule may consist of more than one
increment in each participating graph. Then, there
are additional edges to normal increments (toNor
SrcIncr and toNorTrgIncr; not needed in our
running example).6

– toConSrcIncr and toConTrgIncr edges point
to nodes which define the context for the new incre-
ments. These nodes are called context increments.
In our example, the ports being connected serve as
context increments.

– If a link is composed of sublinks, the composition
relationships are expressed by edges of type
ToSubl. These do not appear in our sample rule
since the sublinks occurring here serve as context
and are owned by other links for mapping devices
or streams with respective ports.

– ToConSubl edges are used to connect a link to sub-
links in its context (which are in turn connected to
the related increments in source and target graph by
ToSrcIncr and ToTrgIncr edges, respectively).
In our example, sublinks between corresponding
ports appear in the context of the link between

5 Only ports of different orientation may be connected.
6 The distinction between dominant and normal increments is not
vital, but helpful for pragmatic reasons; see next section.

S. M. Becker et al.

Fig. 3 Triple rule for a
connection

transformation ConnectionSynchronous =

‘2 : ComosOutPort ‘3 : AspenOutPort

‘5 : AspenInPort‘4 : ComosInPort

‘1

‘6

flow sheet (source) simulation model (target)

toTrgIncrtoSrcIncr

toTrgIncrtoSrcIncr

: Sublink

: Sublink

links

::=

2’ = ‘2 3’ = ‘3

5’ = ‘54’ = ‘4

1’ = ‘1

6’ = ‘6

7’ : ComosConnection 9’ : AspenConnection8’ : Link

flow sheet (source) simulation model (target)

AC2AOutPort

AC2AInPort

toConTrgIncr

CC2CInPort

CC2COutPort

toTrgIncrtoSrcIncr

toTrgIncr

toConSubl

toConSrcIncr

toConTrgIncrtoConSrcIncr

toDomSrcIncr toDomTrgIncr

toConSubl

toSrcIncr

links

end;

connections.ToConLnk edges connect a link to links
in its context but are not used here.

The triple graph grammar for the integration between
flow sheets and simulation models contains further rules
dealing with devices, streams, and ports. These rules
are elementary inasmuch as they define 1:1 mappings
between single elements of flow sheets and simulation
models, respectively. In addition, there are rules for
mapping composite patterns which may define m:n map-
pings in general. For example, in Fig. 2 a mapping is
defined between the plug flow reactor in the flow sheet
and a cascade of two blocks in the simulation model. It
is a straightforward task to construct a triple rule from
the graph of Fig. 2. Due to space restrictions, however,
the following presentation is restricted to the running
example shown in Fig. 3 (creation of a connection).

3.3 Rule execution in the original TGG approach

Triple graph grammars are generative, i.e., they describe
mutually consistent triple graphs. Each triple graph
which may be generated from the start graph by apply-
ing the triple rules consists of three mutually consistent
subgraphs. Thus, a given triple graph may be checked
for consistency by solving the word problem of the tri-
ple graph grammar. This could be done, but has not been
the focus of our work.

For our purposes, triple rules cannot be executed as
they stand. Our integration tools are designed to prop-
agate changes between inter-dependent models after
these have been modified in a potentially asynchronous
way. In contrast, a triple rule such as given in Fig. 3

describes a synchronous graph transformation. Further-
more, the triple rule could be applied to any pair of
corresponding ports. This is not desired for incremental
integration tools for consistency maintenance. Instead,
rules are desired which create a corresponding connec-
tion in the target model when a connection has been
added to the source model and vice versa. When one
connection is already present, rules of this kind oper-
ate in a deterministic way (while the synchronous rule
would insert connections more or less randomly).

In [34], it is described how asynchronous integration
rules may be derived from a synchronous triple rule by
adding nodes and their edges to its left-hand side:

– A forward rule assumes that the source graph has
been extended, and extends the integration graph
and the target graph accordingly. Thus, the forward
rule derived from our sample rule (Fig. 3) addition-
ally contains node 7 on the left-hand side.

– Analogously, a backward rule is used to describe
a transformation in the reverse direction. In our
example, node 9 is added to the left-hand side of
the backward rule.

– Finally, a correspondence (analysis) rule is used when
both graphs have been modified in parallel. In our
running example, this means that connections have
been inserted into both the flow sheet and the simu-
lation model and a link is created a posteriori. Thus,
the correspondence rule additionally includes nodes
7 and 9 on the left-hand side.

Our approach goes beyond the derivation of asyn-
chronous rules as proposed in the original TGG

A graph-based algorithm for consistency maintenance

Fig. 4 Overall integration
algorithm

input graph

source
graph

target
graph

integration
graph

output graph

source
graph

target
graph

integration
graph

1
2

1

3
4

5

1. check all links in the integration graph
- interactive repair / change propagation

2. apply integration rules to new increments
- forward, backward and correspondence rules

approach. An integration tool driven by asynchronous
rules as described above would execute these rules in
an atomic way. However, the user would not be aware
of conflicts between these rules. These conflicts occur
when transformation rules overlap with respect to their
non-context increments. Therefore, the requirement for
conflict detection (see end of Sect. 2) cannot be met
in the case of atomic execution of asynchronous triple
rules. In order to inform the user about conflicting rules,
all applicable rules and their mutual conflicts have to
be considered before a rule is selected for execution. To
achieve this, we have to give up atomic rule execution,
i.e., we have to decouple pattern matching from graph
transformation. Breaking up rule execution constitutes
the core contribution of this paper and will be discussed
in the following Sects. 4–8.

4 Overview

4.1 Overall integration algorithm

In our interactive, incremental, and bidirectional inte-
gration tools, the execution of forward, backward, and
correspondence analysis rules, as introduced in Sect. 3,
is embedded in an overall integration algorithm. This
algorithm is sketched in Fig. 4.

The input and output of the algorithm is an over-
all graph that contains graph representations of source,
target, and integration subgraphs. Thus, graph edges
between nodes belonging to different subgraphs can be
handled as normal graph edges. When the algorithm is
invoked, source and/or target graph contain some edges
and nodes, with some of the nodes already being con-
nected to links in the integration graph, if the algorithm
is not invoked for the first time. For instance, in our sce-
nario in Sect. 2 at the first invocation of the integration
tool the target graph contains the simulation model for
the core part of the plant, whereas source and integra-
tion graph are still empty. At the second invocation, a

part of the simulation model is connected to a part of the
flow sheet by links in the integration graph. Additional
components have been added to the flow sheet that are
not referenced by links yet.

In the abstract example in Fig. 4, two links (1, 2) are
contained in the integration graph and reference some
of the nodes in source and target graph. Other nodes in
source and target graph have been added since the last
run of the integration tool and are not referenced by
links, yet. Furthermore, some nodes in the target graph
have been deleted, resulting in a dangling reference from
link 2.

Another implicit input to the algorithm is a set of
forward, backward, and correspondence analysis rules.
This input is implicit, as for the specification approach
followed here (c.f. next Sect. 4.2), the rules are auto-
matically hard-coded into the integration algorithm by
a code generator.

The overall algorithm consists of two main phases:
The first one deals with existing links, while the second
one aims at handling nodes that are not referenced by
links, yet, and at creating new links.

Each link in the integration graph has an associated
state. When a link has been newly created by executing
a rule or manually by the user, its state is initially set to
consistent. In the first phase, for each link it is checked
whether source and target patterns originally referenced
by the link are still present in source and target graphs.
If some parts of the patterns are missing due to modifi-
cations of source and/or target graphs, the state of the
link is changed to damaged. In the example in Fig. 4, link
2 has a dangling reference to the target graph and thus
is damaged.7

In the next step, it is attempted to repair damaged
links. There are different possible repair strategies, most
of which require user interaction. Some of these possi-
bilities are explained in Sect. 8. In the example in Fig. 4,

7 The underlying graph model does not support dangling edges,
so additional information has to be stored in the integration graph
to detect missing nodes, see Sect. 8.

S. M. Becker et al.

all nodes of the target graph being referenced by the
damaged link 2 have been deleted. Thus, the deletion is
propagated to the source graph by deleting the link in
the integration graph and the associated pattern in the
source graph.

In the second main phase of the overall algorithm,
forward, backward, and correspondence analysis rules
as introduced in Sect. 3 are applied to nodes that are still
available, i.e. are not referenced by a link, yet. In the
example, a forward rule has been applied to create link
3, a backward rule for link 4, and a correspondence rule
for link 5. This may have involved the manual resolution
of conflicts between competing rules. After all rules have
been applied, there may still be some nodes that have to
be dealt with manually, due to the lack of appropriate
rules. Additionally, links created by executing rules may
be modified by the user later on. As already mentioned
in Sect. 2, we do not intend to provide a fully automated
transformation. Instead, we explicitly support the com-
bination of manual and automatic steps to perform the
transformation.

In this paper, the first phase of the algorithm is
discussed only briefly in Sect. 8. We focus on the sec-
ond part of the algorithm performing the execution of
forward, backward, and correspondence analysis rules.
In Sect. 5, the main idea of rule execution in our tools is
informally explained for forward rules using an abstract
example. The corresponding graph transformation rule
definitions are described in Sect. 6 including some opti-
mizations made to the algorithm originally introduced
in [6]. Backward rules are handled analogously to for-
ward rules. Correspondence analysis rules are addressed
in Sect. 7. In this article, we concentrate on structural
aspects of the integration. Besides handling of structure,
our integration tools support handling of attributes and
their values as well, which is not addressed here.

The integration algorithm is defined as graph trans-
formation system using PROGRES. The following
Sect. 4.2 illustrates how invariant parts of the algorithm
together with triple rule-specific graph transformation
rules and schema as well as graph transformation rule
definitions for source and target graph are combined to
the final graph transformation system and how it can be
executed.

4.2 From triple rules to executable specifications

Our main goal is to formally define the algorithm for the
execution of integration rules by defining a translation of
integration rules into the specification of a graph trans-
formation system. The approach is to combine some
invariant specification parts with some specification
parts that are derived from the set of synchronous triple

Fig. 5 Overview of prototype generation

graph grammar rules. The resulting overall specification
is executable, which allows the evaluation of the inte-
gration algorithm and the integration rule set.

Figure 5 gives an overview of how the overall spec-
ification is derived following this approach. First, from
each synchronous triple graph grammar rule contained
in the rule set a forward, a backward, and a correspon-
dence analysis rule are derived as explained in Sect. 3. In
the sequel, the term integration rule (or just rule) will be
used for such rules if its direction is not to be explicitly
addressed.8

The integration algorithm for the execution of inte-
gration rules consists of rule-specific and generic graph
transformation rules. The rule-specific graph transfor-
mation rules are automatically derived from the for-
ward, backward, and correspondence analysis rules
using a code generator. The generator output is an
incomplete specification of a graph transformation sys-
tem for the PROGRES system [35] containing the spe-
cific graph transformation rules for each integration rule.
The translation of integration rules into the rule-specific
graph transformation rules is not formally specified in
this paper. Instead, in Sects. 6 and 7 some examples of
the resulting graph transformation rules are described.

To obtain a complete and executable specification,
the generated specification has to be combined with two

8 To avoid confusing integration rules with graph transformation
rules, the latter term is always written completely.

A graph-based algorithm for consistency maintenance

other specification parts: One specification contains the
invariant integration-specific parts, which are the inte-
gration graph schema, the overall integration algorithm
control, and some generic graph transformation rules for
the algorithm. Additionally, for both source and target
graph there are specifications each containing the graph
schema and some graph transformation rules to realize
operations allowing the user to modify the graph. They
are needed because the executable specification has to
be self-contained, i.e. it is not possible to access data
of external applications. Thus, applications have to be
simulated using graph transformation rules.

The complete specification is compiled by the
PROGRES system [35] resulting in C code which is
then embedded into the UPGRADE framework which
provides a graphical user interface and persistent graph
storage for the generated code [8]. This leads to a
prototype which allows construction and modification
of source and target graphs as well as simulating runs of
the integration tool. Inspection of the current state of the
graph and user interaction during the integration can be
performed using the graphical user interface. Some addi-
tional coding is required for application-specific layout
algorithms and user interfaces. However, these efforts
can be kept small because the resulting prototypes are
not targeted at the end user. Instead, they are intended
only to serve as proof of concept and for the eval-
uation of integration rules as well as the integration
algorithm itself. This prototyping methodology is called
IREEN (Integration Rule Evaluation ENvironment).
Our approach for the integration of real-world applica-
tions and its relation to IREEN is briefly addressed in
Sect. 9.

5 Incremental transformation (informal)

The main idea of our rule execution approach is to
decouple pattern matching and graph transformation to
allow conflict detection and user interaction as proposed
in Sect. 3. Thus, the integration algorithm first finds
possible applications of integration rules and explic-
itly stores the matches in the integration graph. Then,
conflicts between these possible rule applications are
determined. Conflict free rules are applied immediately,
whereas the user is asked for conflict resolution for the
remaining rule applications. Only then, the user-selected
rules are executed.

The integration rule execution algorithm is defined
by its overall control structure, depicted as UML activity
diagram (with additional annotations) in Fig. 6, together
with graph transformation rules realizing the single
activities. The UML notation is only used for illustra-

create
half links

find possible
rule applications

detect
overlappings

choose
rule

check
context

execute
rule

construct
context

check execute

[rule
chosen]

[no
rules left]

generic rule specific

cleanup
activities
cleanup
activities
cleanup
activities

Fig. 6 Simplified integration algorithm (rule execution part)

tion, the overall control structure is implemented in
PROGRES as well.

The set of integration rules used in an integration tool
is directly incorporated into the algorithm by realizing
some of the activities with graph transformation rules
specific for each integration rule contained in the set
(labeled in italics in the figure). The remaining graph
transformation rules are independent of specific rules.

The algorithm is used to apply forward, backward,
and correspondence analysis rules. In this and the fol-
lowing section, we present the algorithm focusing on for-
ward rules only. The execution of backward rules works
accordingly. The differences that have to be considered
if correspondence rules are applied are addressed in
Sect. 7.

The algorithm for the execution of integration rules
consists of three phases. In the following, these phases
are informally described with the help of the abstract
example in Fig. 7. To keep it small, the example does
not relate to specific types of source and target graphs
as well as to specific rules.

During the first phase (construct), all possible rule
applications and conflicts between them are determined
and stored in the integration graph. First, for each incre-
ment in the source graph that has a type compatible
with the dominant increment’s type of any rule, a half
link is created that references this increment. A half
link is a link in the integration graph that references
only one dominant increment in either the source or the
target graph and no other increments. In the example,
half links are created for the increments I1 and I3, and
named L1 and L2, respectively (c.f. Fig. 7a).

Then, for each half link the possible rule applica-
tions are determined. This is done by trying to match
the left-hand side of forward rules, starting at the domi-
nant increments to avoid global pattern matching. In the
example (Fig. 7b), three possible rule applications were

S. M. Becker et al.

Fig. 7 Simplified example
integration

I1

I2

I3

L1

L2

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I1

I2

I3

L1

L2

Ra

Rb

Rc

I1

I2

I3

L1

L2

Ra

Rb

O1

Rc

I4

I5

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I4

I5

I1

I2

I3

L1

Ra C1

L2 Rc

L1 Ra

C1 O1

source/target graph nodes integration graph nodes

increment in source (left)
or target (right) graph

(half) link possible rule application

context overlap

 create half links

 find possible rule applications

detect overlappings

 check context

 execute rule

 cleanup

a)

b) d) f)

c) e)

found: Ra at the link L1 would transform the increments
I1 and I2; Rb would transform the increments I2 and I3;
and Rc would transform increment I3.

Each increment can be referenced by one link only as
non-context increment (c.f. Sect. 3), as these increments
(normal or dominant) are “consumed” by an integra-
tion rule. Thus, a conflict occurs if multiple possible rule
applications reference the same non-context increment.
After applying one of the conflicting rules, they are no
longer available for the competing rules. Therefore, in
the case of a conflict, the user has to choose one of the
conflicting rules in the execute phase.

There are two types of conflicts: First, there can be
multiple rule nodes at one half link. These share at
least the dominant increment, so only one of the cor-
responding rules can be executed. This is the case for
link L2 in the example in Fig. 7c: Rb and Rc are
conflicting. Second, an increment can be referenced by
possible rule applications of different links. In the exam-
ple, the increment I2 is referenced by Ra and Rb. To
prepare conflict-resolving user interaction, conflicts of
the second type are explicitly marked in the graph by
adding an edge-node-edge construct (e.g., O1 in
Fig. 7b).

In the next phase (context check), the context is
checked for all possible rule applications and all matches
are stored in the graph. Only rules whose contexts have
been found are ready to be applied. In the example in
Fig. 7d, the context for Ra consisting of increment I3 in

the source graph was found (C1). The context for Rb is
empty (C2), the context for Rc is still missing.

In the last phase (execute), a rule is selected for exe-
cution and after its execution the data collected in the
construct phase is updated. If any rule application whose
context is present is unambiguous, i.e., it is not involved
in any conflicts, it is automatically selected for execution.
Otherwise, the user is asked to select one rule among the
rules with existing context. If there are no executable
rules left, the algorithm ends. In the example in Fig. 7d,
no rule can be automatically selected for execution. The
context of Rc is not yet available and Ra and Rb as well
as Rb and Rc are conflicting. Here, it is assumed that the
user selects Ra for execution.

Then, the selected rule is executed. In the example
(Fig. 7e), this is the rule corresponding to the rule node
Ra. As a result, increments I4 and I5 are created in the
target graph, and references to all increments are added
to the half link L1. Now, the half link has become a consis-
tent link, also called full link. The result in source, target,
and integration graph—concerning the link in question
and its increments—is the same as if the corresponding
forward triple graph grammar rule had been applied in
an atomic way.

Afterwards, rules that cannot be applied and links
that cannot be made consistent anymore are deleted. In
Fig. 7f, Rb is deleted because it depends on the availabil-
ity of I2 which is now referenced by L1 as a non-context
increment. If there were alternative rule applications

A graph-based algorithm for consistency maintenance

belonging to L1, they would be removed as well. Last,
obsolete overlappings have to be deleted. In the exam-
ple, O1 is removed because Rb was deleted. Please note
that the cleanup procedure may change depending on
how detailed the integration process has to be docu-
mented. For instance, if the user decisions are to be
traced completely, all possible rule applications have to
be preserved, even those not executed.

Now, the execution returns to the context check phase,
where the context check is repeated. Finally, in our
example the rule Rc can be selected automatically for
execution because it is no longer involved in any con-
flicts, if we assume that its context has been found.

6 Specification of incremental transformation

In this section, the algorithm for the execution of inte-
gration rules is presented in detail. Graph transforma-
tion rules in PROGRES notation are shown for some
of its activities. The algorithm described here is an opti-
mized version of the one presented in [6] and used in the
previous section to informally introduce the approach in
a simplified way. The optimization provides two bene-
fits: First, it is avoided to repeatedly check the context
for each possible rule application. For each possible rule
application, the algorithm determines a specific point in
time when its context check is performed only once. This
improves the performance of the algorithm a lot. Sec-
ond, after the context check has been performed for a
possible rule application, the rule application is deleted
if the context has not been found. Only conflicts between
already context checked rule applications are shown to
the user. This prevents unnecessary user interaction. The
optimization is based on the idea of keeping track of the
dependencies between different potential rule applica-
tions as originally introduced in [25].

The optimized algorithm is depicted in Fig. 8. In the
following subsections, its phases and the related activi-
ties are explained in detail. The most important graph
transformation rules used to realize the activities are
shown. To present the integration rule-specific graph
transformation rules, the forward rule transforming a
connection (c.f. Sect. 3) is used as running example.

Before explaining the phases of the algorithm in
detail, we briefly introduce some additional language
constructs of PROGRES that we make use of in the
sequel. For a more detailed description, the reader is
referred to [35].

PROGRES graph transformation rules can have a
condition section. It consists of a list of expressions
which refer to values of attributes of nodes contained
in the left-hand side pattern (syntax to read attribute

create
half links

find possible
rule applications

check
context

delete rules
without context

determine
safely

integratable
links

construct context check

detect
overlappings

check
dependencies

choose
rule

delete obsolete
half links

delete impossible
rule applications

delete obsolete
overlappings

execute
rule

execute

[rule
chosen]

[no
rules left]

Fig. 8 Integration algorithm (rule execution part)

name of node ‘i: ‘i.name). If not all expressions eval-
uate to true for a match which has been found based
on the left-hand side pattern, the match is ignored. For
instance, a condition is used in the PROGRES graph
transformation rule in Fig. 9 to ensure that the link’s
status is unchecked.9

Another possibility to further restrict the possible
matches of the left-hand side is to make use of restric-
tions. Restrictions can be applied to single nodes on the
left-hand sides of graph transformation rules. The appli-
cation of a restriction is visualized as a double arrow
pointing at the respective node being labeled with the
name of the restriction to apply. A restriction can be
compared to a function that has to evaluate to true
for the restricted node to be matched by the left-hand
side. When applying a restriction, it can receive further
parameters, e.g. constants, nodes, attributes of nodes. A
restriction is applied, for instance, in the graph transfor-
mation rule in Fig. 10 at node ’2. A restriction can be
defined visually as graph test (comparable to the left-
hand side of a graph transformation rule) or textually
using specific expressions.

While attributes are read in conditions, they can be set
in the transfer section of a PROGRES graph trans-
formation rule (syntax to set attribute name of node i’
to value val: i’.name:=val). The transfer section is
used e.g. in the PROGRES graph transformation rule
in Fig. 9.

An asterisk (*) following the name of a PROGRES
graph transformation rule implies that the graph trans-
formation is performed for all possible matches when
the graph transformation rule is executed. Without an

9 The status of links (accessed bygetStatus andsetStatus) is
used for the PROGRES implementation of the overall algorithm
control which is not discussed in detail here.

S. M. Becker et al.

asterisk, only one match is selected nondeterministically
for execution.

PROGRES graph transformation rules can contain
negative application conditions (NAC). Unlike in other
graph transformation languages, they are not specified
as additional patterns. Instead, they are contained in the
left-hand side pattern in the form of negative nodes and
negative edges which are depicted as crossed-out edges
or nodes, respectively. For instance, node ‘3 in Fig. 12
is a negative node. The semantics are not explained in
general here. Instead, for each graph transformation
rule making use of NACs, the intended behavior will be
presented.

Comparable to edges, paths can be used to express
that nodes are connected by a sequence of edges and
nodes. Paths are used in left-hand side patterns com-
parable to edges but are depicted by a double arrow.
For instance, the graph transformation rule in Fig. 10
contains two applications of the referencesNonCon-
textIncrement path. Paths can be defined textually
and graphically, but their definitions are not shown here,
due to the lack of space.

6.1 Construction phase

In the construction phase, it is determined which rules
can be applied to which subgraphs of the source graph.
Conflicts between these rules are marked. This infor-
mation is collected once in this phase and is updated
later incrementally during the repeated executions of
the other phases.

In the first step of the construction phase (create half
links), for each increment, the type of which is the type
of a dominant increment of at least one rule, a link is
created that references only this increment (half link).
Dominant increments are used as anchors for links and
to group decisions for user interaction. Half links store
information about possible rule applications and are
transformed to consistent links after one of the rules
has been applied.

To create half links, for each rule a PROGRES graph
transformation rule is derived that matches an incre-
ment with the same type as the rule’s dominant incre-
ment in its left-hand side, with the negative application
condition that there is no half link attached to the incre-
ment yet. Then, on its right-hand side the half link node
is created and connected to the increment with an edge.
All of these graph transformation rules are executed
repeatedly, until no more left-hand sides are matched,
i.e., half links have been created for all possibly domi-
nant increments.

The second activity (find possible rule applications)
determines the integration rules that are possibly appli-

transformation + Connection_ForwardRule_propose * =

‘1 : ComosConnection
toDomSrcIncr

‘2 : Link

::=

1’ = ‘1
toDomSrcIncrisAssignedTo

3’ : role

hasRole
4’ : rule

possibleRule

2’ = ‘2

condition ‘2.getStatus = unchecked;
transfer 4’.ruleId := "Connection_ForwardRule";

3’.roleName := "CC";
end;

Fig. 9 Find possible rule applications

cable for each half link. A rule is possibly applicable
for a given half link if the source graph part of the left-
hand side of the synchronous rule without the context
increments is matched in the source graph. The domi-
nant increment of the rule has to be matched to the one
belonging to the half link. For the possible applicability,
context increments are not taken into account because
missing context increments could be created later by
the execution of other integration rules. For this reason,
the context increments are matched later in the context
check phase.

Figure 9 shows the PROGRES graph transformation
rule for the example integration rule. The left-hand side
consists of the half link and the respective dominant
increment only because all other increments of this rule
are context increments. In general, all non-context incre-
ments and their connecting edges are part of the left-
hand side.

On the right-hand side, a rule node is created to iden-
tify the possible rule application (4’). This node carries
the id of the rule and is connected to the half link. A
role node is inserted to explicitly store the result of the
pattern matching (3’).

If there are more increments matched, role nodes can
be distinguished by the roleName attribute.

The asterisk (*) following the graph transformation
rule’s name tells PROGRES to perform the graph trans-
formation for each possible match of the graph transfor-
mation rule’s left-hand side. When executed together
with the corresponding graph transformation rules for
the other integration rules, as a result all possibly appli-
cable rules are stored at each half link. Please note that
if an integration rule is applicable for a half link with
different matches of its source increments, multiple rule
nodes with the corresponding role nodes are added to
the half link.

A graph-based algorithm for consistency maintenance

During user interaction in later steps of the algo-
rithm, for each link that is involved in a conflict all
possible rule applications are presented to the user who
has to resolve the conflict by selecting one of the rules.
While conflicts between possible rule applications shar-
ing the same dominant increment and thus belonging
to the same link are immediately visible, others have to
be marked with cross references (hyperlinks) between
the conflicting rule applications. This is the case for all
rules that belong to different links but share at least one
non-context increment. Such rules are connected by an
edge-node-edge construct with the node’s type being
overlapping. The corresponding graph transforma-
tion rule is not shown.

In general, not only conflicts between forward rules,
but also conflicts between forward, backward, and cor-
respondence analysis rules generated from the same
synchronous rule are detected. As a result, it is not nec-
essary to check whether the non-context increments of
the right-hand side of the synchronous rule are already
present in the target graph when determining possible
rule applications in the second step of this phase (cf.
Sect. 7).

To determine for each possible rule application when
its context is to be checked, dependencies between rule
applications and other links are searched and stored
in the integration graph (activity check dependencies).
These dependencies are based on the fact that the con-
text required for a given possible rule application is
either there from the beginning, will never be there,
or is created by the execution of other rules. To handle
the latter case, it is defined that a possible rule appli-
cation depends on a link if parts of its context may be
created by making the link consistent. For instance, in
our scenario the integration rule transforming a connec-
tion can be applied only after the connected ports have
been handled by other rules.

To be able to detect dependencies, some assumptions
about the existence of parts of the context depending
on the rule type (forward, backward, or correspondence
analysis) have to be made:

• For forward rules, the source graph part of the con-
text is assumed to be already contained in the source
graph before the execution of any rule. In the syn-
chronous rule, there must be a path from each target
context increment to a source context increment tra-
versing only target context increments, context links
and sublinks, and one source context increment.

• Backward rules are handled analogously.
• For correspondence analysis rules, both source and

target graph parts of the context have to be con-
tained in the respective graph.

• For all rule types, the integration graph part of the
context may still be missing in the integration graph.
Instead, there are (inconsistent) half links connected
to some increments which already reference their
possible rule applications.

Figure 10 shows how these assumptions can be used
to detect dependencies between possible rule applica-
tions and links using the forward rule of a connection
as example: The source graph part of the left-hand side
of the PROGRES graph transformation rule contains
the pattern formed by all source increments—including
source context—and their edges. The half link (’2) and
the rule node (’4) together with all assigned roles as in
the right-hand side of the propose graph transforma-
tion rule are contained in the integration graph part. For
each source context increment that has an edge to any
context element in the integration graph in the synchro-
nous rule, a Link node connected to the increment by
a referencesNonContextIncrement path is con-
tained in the left-hand side. Here, the flow sheet ports
(’5, ’6) and the links ’7 and ’8 are part of the pattern
because they are connected by an edge to a context
sublink in the synchronous rule. ThereferencesNon-
ContextIncrement path detects existing direct refer-
ences to non-context increments by toDomSrcInr or
toNorSrcIncr as well as indirect possible future ref-
erences indicated by the existence of a rule node ref-
erencing the increment via a role. If a match for the
left-hand side is found, dependsOn edges are created
from the rule node (’4) to the links (’7, ’8) on the
right-hand side. The dependsOn edges explicitly model
that finding the context for the current rule depends on
the integration of the referenced links.

6.2 Context check

As the first activity of the context check phase, a set
of links is determined which do not depend on other
inconsistent links (definition not shown). A link is ready
for integration (safe IntLink) if it neither has a rule
that depends on a link which is still inconsistent, nor a
rule that overlaps with a rule that belongs to a link that
is not ready for integration. Only then can the context
of all its possible rule applications be checked, and all
information that is needed for user interaction later on
is available.

The context check is performed for all links that are
ready for integration in the next step of this phase (check
context). The context is formed by all context increments
from the synchronous rule. It may consist of increments
of source and target graphs and of links contained in the
integration graph.

S. M. Becker et al.

Fig. 10 Dependency check
for the connection rule

transformation + Connection_ForwardRule_dependencyCheck * =

‘6 : ComosOutPort

‘5 : ComosInPort

toDomSrcIncrisAssignedTo

‘3 : role

hasRole

‘4 : rule

possibleRule

‘2 : Link

CC2CInPort

CC2COutPort

‘1 : ComosConnection

referencesNonContextIncrement

‘7 : Link

referencesNonContextIncrement

‘8 : Link

inconsistentLink

::=

8’ = ‘8

7’ = ‘7

6’ = ‘6

5’ = ‘5

toDomSrcIncrisAssignedTo

3’ = ‘3

hasRole

possibleRule
2’ = ‘2

CC2CInPort

CC2COutPort

1’ = ‘1

dependsOn

dependsOn

4’ = ‘4

condition ‘4.ruleId = "Connection_ForwardRule";
‘2.getStatus = checked;

end;

Figure 11 shows the PROGRES graph transforma-
tion rule checking the context of the example integra-
tion rule. The left-hand side contains the half link (‘2),
the non-context increments (here, only ‘1), the rule
node (‘4), and the role nodes (‘3). The non-context
increments and their roles are needed to embed the
context and to prevent unwanted folding between con-
text and non-context increments. For the example rule,
the context consists of the two ports connected in the
source graph (‘7, ‘8), the related ports in the Aspen
graph (‘5, ‘6), and the relating sublinks (‘9, ‘10). The
consistentLink restrictions make sure that the sub-
links belong to a consistent link. The restriction
safeIntLink applied on the link (‘2) ensures that
the context is checked only for links that can be safely
integrated.

On the right-hand side, a new context node is created
(‘11). It is connected to all nodes belonging to the con-
text by role nodes (12’, 13’, 14’, 15’, 16’, 17’) and
appropriate edges. If multiple matches of the context
are found, multiple context nodes with their roles are
created as the graph transformation is performed for all
matches.

To make sure that the context belonging to the right
integration rule is checked, the rule id is constrained
in the condition part of the graph transformation rules.
After the context of a possible rule application has been
found, the rule can be applied.

In the last step of this phase (delete rules without con-
text), for all links that are ready for integration the possi-

ble rule applications whose contexts were not found are
deleted. As they do not depend on inconsistent links, it
is not possible that the missing contexts will be created
later.

6.3 Execution phase

The execute phase starts with the selection of one rule
for execution (choose rule). This activity comprises auto-
matic as well as manual selection of rules. First, it is
checked whether there is a rule that can be executed
without user interaction. Therefore, the graph transfor-
mation rule in Fig. 12 is used to find a rule application
that is not involved in any conflict. On the left-hand side
of the graph transformation rule, a rule node is searched
(‘1) that has only one context node and is not related
to any overlap node. If there are multiple context nodes,
the rule cannot be executed automatically, instead, the
user has to choose a context node. The rule node has
to be related to exactly one half link (‘2) that does not
have another rule node. For forward rules, a rule node
always belongs to one link only, while nodes of corre-
spondence analysis rules are referenced by two half links
(see Sect. 7).

If a match is found in the host graph, the rule node
and the context node are selected for execution by
substituting their referencing edges by selectedRule
and selectedContext edges, respectively. The rule
node is returned in the output parameter selRule.

A graph-based algorithm for consistency maintenance

transformation + Connection_ForwardRule_contextCheck * =

‘8 : ComosOutPort

‘7 : ComosInPort

‘6 : AspenOutPort

‘5 : AspenInPort

toDomSrcIncrisAssignedTo

‘3 : role

hasRole

‘4 : rule

possibleRule

‘2 : Link

consistentLink

consistentLink

toTrgIncrtoSrcIncr

‘10 : Sublink

toTrgIncrtoSrcIncr

‘9 : Sublink

CC2CInPort

CC2COutPort

‘1 : ComosConnection
safeIntLink

::=

8’ = ‘8

7’ = ‘7

6’ = ‘6

5’ = ‘5

toDomSrcIncrisAssignedTo

3’ = ‘3

hasRole

possibleRule

2’ = ‘2

toTrgIncrtoSrcIncr

10’ = ‘10

toTrgIncr

toSrcIncr
9’ = ‘9

CC2CInPort

CC2COutPort

1’ = ‘1

possibleContext

4’ = ‘4

ctxtRoleIsAssignedTo

12’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

13’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

14’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

15’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

16’ : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

17’ : CtxtRole

hasCtxtRole

11’ : context

condition ‘4.ruleId = "Connection_ForwardRule";
‘2.getStatus = checked;
‘3.roleName = "CC";

transfer 12’.roleName := "AC.In";
13’.roleName := "AC.Out";
14’.roleName := "CC.In";
15’.roleName := "CC.Out";
16’.roleName := "CLPM.In";
17’.roleName := "CLPM.Out";

end;

Fig. 11 Check context

The corresponding rule can be applied in the next
step.

If no rule could be selected automatically, i.e. all rules
are involved in conflicts, the user has to resolve one of
these conflicts by selecting a rule for execution. There-
fore, all conflicts are collected and presented to the
user. For each half link, all possible rule applications are
shown. If a rule application conflicts with another rule of
a different half link, this is marked as annotation (hyper-
link) at both half links. The result of the user interaction
is stored in the graph with the help of selectedRule
and selectedContext edges, as with the automatic
rule selection.

If there is neither a rule that can be automatically
selected nor a conflict left, the algorithm terminates. If

there are still inconsistent links left at the end of the
algorithm, the user has to perform the rest of the inte-
gration manually.

The selected rule is now executed by a rule-specific
PROGRES graph transformation rule, for our example
rule see Fig. 13. The left-hand side pattern is nearly iden-
tical to the right-hand side of the context check graph
transformation rule in Fig. 11. The main difference is
that the edge from the link (‘2) to the rule node (‘4) is
now a selectedRule edge and the edge from the rule
node to the context node (‘11) is aselectedContext
edge.

On the right-hand side, the new increments in the tar-
get graph are created and embedded by edges. In this
case, the connection (18’) is inserted and connected

S. M. Becker et al.

transformation + GEN_selectRuleAndContextAutomatically1L
(out selRule : rule) =

‘7 : rule

‘5 : context

‘4 : context
possibleContext

possibleContext

‘1 : rule

possibleRule

‘6 : Link

possibleRule

possibleRule

‘2 : Link

conflictsWith

‘3 : overlapping

::=

4’ = ‘4
selectedContext

1’ = ‘1

selectedRule

2’ = ‘2

return selRule := ‘1;
end;

Fig. 12 Select unambiguous rule

to the two Aspen ports (5’, 6’). The half link (2’) is
extended to a full link, referencing all context and non-
context increments in the source and the target graph.
The information about the applied rule and roles etc. is
kept to be able to detect inconsistencies occurring later
due to modifications in source and target graphs.

The following steps of the algorithm are performed by
generic graph transformation rules that update the infor-
mation about possible rule applications and conflicts.
First, obsolete half links are deleted (delete obsolete half
links). A half link is obsolete if its dominant increment
is referenced by another consistent link as non-context
increment. Then, possible rule applications are removed
which are conflicting with the rule just executed (delete
impossible rule applications). Finally, overlap nodes refer-
encing rules that have been deleted and are thus dan-
gling are removed (delete obsolete overlappings).

7 Correspondence analysis

Correspondence analysis rules are used to detect corre-
spondences between existing increments in source and
target graph. Therefore, they search for existing pat-
terns in source and target graphs and create links in the
integration graph. One application would be to use a
rule set consisting only of correspondence analysis rules
and to apply it to two complete graphs. As a result, all
corresponding parts were connected by consistent links
and all inconsistencies were marked by inconsistent half

links. Although supported by our approach as well, this
scenario is quite unrealistic.

Instead, during the creation and modification of
source and target graphs an integration tool is used from
time to time to propagate changes between the graphs.
For propagation, all kinds of rules, i.e. forward, back-
ward, and correspondence rules are applied together.
They detect already corresponding increments and prop-
agate increments between source and target graphs that
do not have a corresponding counterpart in the other
graph, yet.

During the execution of correspondence analysis
rules, the same requirements regarding conflict detec-
tion and user interaction have to be fulfilled as with for-
ward and backward rules. Especially, conflicts between
both types of rules have to be detected. Therefore, cor-
respondence analysis rules are executed together with
forward and backward rules using the same integration
algorithm.

In the following subsection, we will describe only
the differences between the execution of forward and
correspondence rules (c.f. Fig. 8). As in the previous
section, the rule for a connection is used as running
example.

7.1 Applying correspondence analysis rules

The intention of correspondence analysis rules is to
detect already existing patterns of increments in source
and target graph and to relate them by a new link in
the integration graph. Thus, during the find possible rule
applications activity of the integration algorithm, the pat-
terns are searched in source and target graph. The cor-
responding rule-specific graph transformation rule for
our running example is depicted in Fig. 14.

Its left-hand side looks for all dominant and normal
increments in both source and target graph (the con-
nections ’1 and ’2). Additionally, two nodes of type
Link are searched (’3, ’4). These links have been cre-
ated during the create half links activity by the
according graph transformation rules for forward and
backward rules, if connections exist in source and target
graph.

On the right-hand side, as in Fig. 9, a role node is cre-
ated for each increment found (5’, 6’) and a rule node
referencing all role nodes is created (7’). In contrast
to forward and backward rules, the rule node is refer-
enced by two links. Thus, the potential correspondence
between the two connection increments is established.

All following activities of the algorithm preserve both
links, until finally, when the rule is executed, the two
links are merged into a single link. This is done by delet-
ing one of them and redirecting its edges to the other

A graph-based algorithm for consistency maintenance

transformation + Connection_ForwardRule_apply
(nrule1 : rule) =

‘8 : ComosOutPort

‘7 : ComosInPort

‘6 : AspenOutPort

‘5 : AspenInPort

toDomSrcIncrisAssignedTo

‘3 : role

hasRole

selectedRule

‘2 : Link

toTrgIncr
toSrcIncr

‘10 : Sublink

toTrgIncrtoSrcIncr

‘9 : Sublink

CC2CInPort

CC2COutPort

‘1 : ComosConnection

selectedContext

‘4 = nrule1

ctxtRoleIsAssignedTo

‘12 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘13 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘14 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘15 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘16 : CtxtRole

hasCtxtRole

ctxtRoleIsAssignedTo

‘17 : CtxtRole
hasCtxtRole

‘11 : context

::=

8’ = ‘8

7’ = ‘7

6’ = ‘6

5’ = ‘5

toDomSrcIncrisAssignedTo

3’ = ‘3

hasRole

appliedRule

toTrgIncrtoSrcIncr
10’ = ‘10

toTrgIncrtoSrcIncr
9’ = ‘9

CC2CInPort

CC2COutPort

1’ = ‘1

appliedContext

4’ = ‘4

ctxtRoleIsAssignedTo

12’ = ‘12

hasCtxtRole

ctxtRoleIsAssignedTo

13’ = ‘13

hasCtxtRole

ctxtRoleIsAssignedTo

14’ = ‘14

hasCtxtRole

ctxtRoleIsAssignedTo

15’ = ‘15

hasCtxtRole

ctxtRoleIsAssignedTo

16’ = ‘16

hasCtxtRole

ctxtRoleIsAssignedTo

17’ = ‘17

11’ = ‘11

toDomTrgIncr

AC2AOutPort

AC2AInPort

18’ : AspenConnection

toConTrgIncr

toConTrgIncr

toConSrcIncr

toConSrcIncr

toConSubl

toConSubl

2’ = ‘2

hasCtxtRole

condition ‘4.ruleId = "Connection_ForwardRule";
‘2.getStatus = checked;
‘3.roleName = "CC";
‘12.roleName = "AC.In";
‘13.roleName = "AC.Out";
‘14.roleName = "CC.In";
‘15.roleName = "CC.Out";
‘16.roleName = "CLPM.In";
‘17.roleName = "CLPM.Out";

transfer 2’.setStatus := ruleBased;
end;

Fig. 13 Execute rule

one. As both increment patterns are already contained
in source and target graph, when executing the rule just
the integration graph is modified.

In general, finding all potential correspondences leads
to a combinatorial explosion of possible rule applica-
tions. This is addressed by different techniques, depend-
ing on the integration rule in question. First, conditions
based on attribute values of increments can be added.
For instance, simply the user-given names of target and
source increments can be compared. More complex con-
ditions can be defined, too, e.g. equations on attributes
containing chemical data like the substances flowing

in streams to find matching streams in our scenario.
Second, defining rules with complex patterns on both
source and target graph sides makes finding too many
matches more unlikely. Third, as with the rule for con-
nections, there are no attributes and the pattern cannot
be extended but there is context comprising source, tar-
get, and integration graph parts contained in the rule. In
this case, all matches are found but the context check in
the next phase eliminates “wrong” possible rule appli-
cations. Current work aims at providing a fourth possi-
bility using artificial contexts for rules that neither have
attributes nor context.

S. M. Becker et al.

Fig. 14 Find possible rule
applications for
correspondence analysis

transformation + Connection_CorrespondenceRule_propose * =

‘2 : AspenConnection

‘1 : ComosConnection
toDomSrcIncr

‘3 : Link

toDomTrgIncr
‘4 : Link

::=

2’ = ‘2

1’ = ‘1

toDomSrcIncr

toDomTrgIncr

isAssignedTo

5’ : role

isAssignedTo

6’ : role

hasRole

hasRole
7’ : rule

possibleRule

3’ = ‘3

possibleRule

4’ = ‘4

condition ‘3.getStatus = unchecked;
‘4.getStatus = unchecked;

transfer 7’.ruleId := "Connection_CorrespondenceRule";
5’.roleName := "CC";
6’.roleName := "AC";

end;

7.2 Executing correspondence analysis rules together
with forward and backward rules

Besides executing a set of integration rules containing
only rules all being of the same type (i.e., either forward,
backward or correspondence analysis rules), the mixed
execution of all types of rules is supported.

If at least one forward or backward variant as well
as the correspondence analysis variant of a rule can be
applied to the same set of increments, this leads to a
conflict. This conflict can be used to ensure that corre-
sponding increments are not duplicated by applying a
forward and a backward rule as proposed in the begin-
ning of this section. Figure 15 demonstrates this using
an abstract example: Increment I1 in the source graph
is the dominant increment for link L1 and increment I4
in the target graph is the dominant increment for link
L2. In this situation, a rule R is applicable in its forward
variant (→) at L1, in its backward variant (←) at L2
and as correspondence analysis rule (↔) at both links.
Obviously, R→ and R↔ are conflicting because they are
both referenced by the same link, as well as R← and R
↔. These two conflicts prevent the automatic execution
of any of the three rules.

In general, user interaction is used to resolve
conflicts. Concerning the connection rule, the conflict
could be automatically eliminated by assigning the
correspondence analysis rule a higher priority than the
forward and backward rules and adapting the generic
find unambiguous rule step of the algorithm to react

I1 L1 L2 I4

R

R

R

Fig. 15 Conflict between forward, backward, and correspon-
dence analysis rule

according to priorities. This is possible because only
one connection may exist between two ports, thus the
duplication of connections by applying forward
and backward rules is not allowed. In other cases, only
the user can decide which rule should be executed.
As a heuristic, correspondence rules can be given a
higher priority anyway, forcing manual post-processing
if this caused a wrong result. This heuristic implies that
as many matches as possible are found automatically,
assuming that it does not make sense to transform an
increment when a corresponding increment is already
available.

8 Consistency check and repair

In the first main phase of the overall integration algo-
rithm (c.f. Sect. 4.1), before other rules are executed it is
checked whether already existing links in the integration

A graph-based algorithm for consistency maintenance

graph have been damaged by modifications of source
and target graphs. If a link is damaged, this has to be
propagated: All other links referencing it as context
have to be set to damaged as well.

There are different causes for a link to become
damaged:

– Increments in source or target graph have been
deleted, resulting in dangling references from the
link.

– Attribute values of source or target increments have
been changed in a way that the attribute conditions
tested by the propose and the context check graph
transformation rule no longer hold.

– Edges in source or target graph have been deleted,
resulting in the patterns searched by the propose
and the context check graph transformation rule
being no longer present.

– A link contained in the integration context of the
current link has changed its state to damaged.

– A link contained in the integration context of the
current link has been changed manually (references
to increments were removed), resulting in the pat-
tern that was searched during the context check
being no longer present.

To be able to detect changes induced by the causes
listed above, additional information has to be kept in the
integration graph. For links that have been established
by the execution of integration rules, at least a reference
to the applied rule has to be stored to be able to check
whether the originally referenced pattern is still there.
For links that have been created manually, a description
of the whole patterns that are referenced by the link
has to be copied to the integration graph. Only with this
information is it possible to detect changes that have
been made to the graphs without tracing them. Tracing
changes would be possible as well for the PROGRES
prototypes but with respect to our a-posteriori integra-
tion tool implementations, where tracing depends on the
possibilities of the integrated tools, it is not supported.
Just checking for dangling edges is not possible for both
types of links because dangling edges are not supported
by the graph model underlying PROGRES and thus are
immediately deleted.

The simplest way to deal with a damaged link is to
delete it and thereby make the remaining increments
available again for the execution of other rules. Though
possible in general, deleting the link is not a good option.
The modification resulting in the damage of the link was
most probably done on purpose. The link—even if it

is damaged—contains valuable information on which
parts of the other graph may be affected by the modifi-
cations. So in most cases just asking the user to resolve
the inconsistency manually is a better option than delet-
ing the link.

If the inconsistency has been caused by the deletion of
increments, it is possible to propagate it by first deleting
all remaining increments in source and target graphs and
then deleting the link. This behavior could be restricted
to situations where all increments of a link have been
deleted in one of the graphs or where one of the domi-
nant increments has been deleted.

Another option is to restore consistency by remov-
ing the cause for the inconsistency. For instance, missing
increments or edges may be created. This option is desir-
able only in those cases where the operation causing the
damage was carried out accidentally, because it would
be undone. For attribute values, the attribute conditions
of the synchronous rule can be used to propagate the
change.

If only some parts of the patterns in source and target
graphs are missing, it is possible to perform a pattern
matching for the whole pattern of the corresponding
rule using still existing nodes to initialize some of the
patterns’ nodes. This can be helpful e.g. if the user first
deletes an increment and then recreates it.

In general, it cannot be determined automatically
which alternative for repairing damaged links is appro-
priate. Because of that, user interaction is necessary here
as well. The integration tool can determine all the pos-
sibilities for dealing with the inconsistency and let the
user decide. It is even possible to temporarily delete the
link, collect all the alternatives of how normal integra-
tion rules can be applied to the freed increments and
then present them together with other repair actions to
the user.

In our current implementation, damaged links are just
detected and the user is notified to repair them manu-
ally. Using the damaged link, his attention is directed
towards the part of the document that needs to be
adapted. Therefore, an integration rule-specific PRO-
GRES restriction is generated. It searches the whole
right-hand side of the synchronous rule including the
links and edges between links and increments in source
and target graphs. A corresponding PROGRES graph
transformation rule searches for links that were created
by the rule in question but do not fulfill the restriction.
On its right-hand side, it changes the state of the link to
damaged. Current work aims at evaluating other alter-
natives for detection and repair of inconsistencies and
how they can be implemented with graph transforma-
tion rules.

S. M. Becker et al.

Fig. 16 System architecture of framework-based integrator

9 Integrator framework and prototype

Using executable IREEN specifications to evaluate the
integration algorithm and test possible extensions is
very convenient, as very low implementation effort is
required to gain experimental prototypes. Nevertheless,
for several reasons this approach is not suitable for the
realization of industrial prototypes: First, the execution
of graph transformation specifications requires a heavy-
weight, grown infrastructure (PROGRES, UPGRADE,
and the underlying graph database GRAS [22]) which
is not well suited for an implementation in an industrial
context. Second, IREEN prototypes cannot be
connected to external tools, prohibiting a-posteriori inte-
gration, which is urgently needed. Third, the IREEN
user interface shows the internal structure of the over-
all graph consisting of source, target, and integration
graph. While this view is very helpful when debugging
the integration algorithm, it is nearly incomprehensible
from the end user’s perspective.

Thus, we are continuously developing a C++-based
framework [5,19] that reflects all results gained by apply-
ing the IREEN methodology. The coarse-grained
system architecture of the integrator for our evalua-
tion scenario (cf. Sect. 2) that was realized based on
the framework is depicted in Fig. 16. Framework-based
integrators are controlled by integration rules as well.
Therefore, the framework also includes tool support
(upper right corner) for rule modeling which is based
on the UML [4,7] (i.e., the graph grammar formalism is
not exposed to domain experts).

Existing applications and their documents are con-
nected to the framework using tool wrappers that pro-
vide a graph interface on their data. In our example,
these tools are Comos PT and Aspen Plus. The

corresponding wrappers both use the applications’ COM
interfaces to access their API.

As there is no overall graph as in IREEN, and source
and target documents’ internal data structures cannot
be modified, the relationships between the documents’
data are stored in an additional integration document.
It is serialized as XML file, but kept in memory during
runtime of the integrator providing optimized access to
its content, e.g. via indexes.

Unlike with the IREEN approach, integration rules
are interpreted at runtime by the integrator core, which
is the main component of the framework. This allows
for extending the integration rule set at runtime without
having to recompile the integrator. Thus, the integrator
can ‘learn’ new rules from manual interaction when a
complete rule set is not available in advance [7].

The integrator core is reused for all framework-based
integrators. Its implementation is a one-to-one realiza-
tion of the integration algorithm underlying IREEN,
with the rule-specific graph transformations being exe-
cuted by a specific integration rule interpreter. This rule
interpreter is based on a graph transformation engine
that is part of the integrator core, too. This engine can be
kept much more light-weight than, e.g., PROGRES, as
only very simple graph transformations have to be exe-
cuted. All pattern matching is done starting from dom-
inant increments, in most cases only locally traversing
the graph avoiding global pattern matching. Thus, the—
in theory—high complexity of pattern matching does
not affect the integrators’ performance. The rule-inde-
pendent graph transformation rules of the integration
algorithm are manually hard-coded into the integrator
core, making use of the optimized storage of links in the
integration document.

User interaction is performed using a user interface
that is tailored to the specific integrator application (cf.
Fig. 17). For the integrator between Aspen Plus and
Comos PT, the user interface is incorporated as plug-in
into the Comos PT. The menu bar and the tree view
shown in the screenshot are a part of Comos PT, while
the main part of the window is currently occupied by
the integrator. In its left part, all pending decisions are
presented to the user. The screenshot shows the decision
between two alternatives for processing the reactor of
the process flow diagram (cf. Sect. 2.3). In its right part,
the integration document can be inspected. It contains a
list of all links, each of which can be maximized to show
all its details, e.g. the list of all related increments.

Currently, in a follow-up project of IMPROVE (cf.
Sect. 11) we are, among other aspects, investigating fur-
ther possibilities for integrator user interfaces. The most
promising idea is to hide as much of the integration
document as possible from the user. The integrated

A graph-based algorithm for consistency maintenance

Fig. 17 Screenshot of the
integrator user interface

documents could be presented directly side by side using
the original views of the integrated applications. Links
could be only implicitly represented by enhancing the
original views by additional functionality as highlight-
ing corresponding increments in both documents upon
selection or browsing between related increments. Unre-
lated increments and inconsistent links could be marked
using a certain color, and pending decisions between
conflicting rules could be directly annotated at the dom-
inant increments. For a user interface like this it is nec-
essary to be able to extend the user interface of at least
one of the integrated applications. In our follow-up pro-
ject, this is possible for Comos PT, as it is carried out in
tight cooperation with its developer innotec.

10 Related work

Our approach to the specification of incremental and
interactive integration tools is based on triple graph
grammars. Therefore, we will discuss the relationships
to other work on triple graph grammars in the next
subsection. Subsequently, we will address competing
approaches to the specification of integration tools
which do not rely on the triple graph grammar approach.

10.1 Related work on triple graph grammars

The triple graph grammar approach was introduced by
Schürr in [34], where the theoretical foundations for
building TGG-based integration tools were laid. The
work was motivated by integration problems in software

engineering. For example, [26] describes how triple
graph grammars were applied in the IPSEN project [29],
which dealt with integrated structure-oriented software
development environments.

The Ph.D. thesis of Lefering [25] built upon the the-
oretical foundations of Schürr. In this thesis, Lefering
developed an early framework for building integration
which was based on triple graph grammars. The
framework was implemented in C++, rules had to be
transformed manually into C++ code to make them
operational. The framework was applied to the integra-
tion of requirements engineering and software architec-
ture documents.

Unfortunately, the work of Lefering was not contin-
ued after the termination of the IPSEN project. Rather,
applications of triple graph grammars were built using
the PROGRES environment. In the reengineering pro-
jects VARLET [20] and REFORDI [11], synchronous
triple rules were transformed manually into forward
rules (for transforming the old system into a renovated
one being based on object-oriented concepts). The PRO-
GRES system was used to execute forward rules in an
atomic way.

Our work on rule execution differs from systems
such as REFORDI and VARLET inasmuch as a sin-
gle triple rule is executed in multiple steps. Decom-
position of rule execution was motivated in particular
by the need for detecting conflicts and resolving them
interactively. Rather, we draw upon early work per-
formed by Lefering. In particular, this applies to the
design of the basic data structures (such as distinction
between dominant, normal, and context increments),
the idea to split up rule execution, and the introduction

S. M. Becker et al.

of dependencies between links for the topological sort-
ing of rule applications and the elimination of pseudo
conflicts. On the other hand, our work contributes the
following improvements:

– We added detection, persistent storage, and resolu-
tion of conflicts between integration rules.

– We provide a precise formal specification of the
integration algorithm. In [25], the algorithm was
described informally and implemented in a conven-
tional programming language.

– Likewise, rules had to be hand-coded in Lefering’s
framework. In contrast, synchronous triple rules are
converted automatically into specific rules for exe-
cution in our approach.

– We used the specification in two ways: First, IREEN
was constructed by rapid prototyping by generating
code from the formal specification (Fig. 5). Second,
an implementation designed for industrial use was
derived from the formal specification [4].

To conclude this subsection, let us briefly discuss other
current work on triple graph grammars:

The PLCTools prototype [3] allows the translation
between different specification formalisms for program-
mable controllers. The translation is inspired by the tri-
ple graph grammar approach [34] but is restricted to 1:n
mappings. The rule base is conflict-free, so there is no
need for conflict detection and user interaction. It can
be extended by user-defined rules which are restricted
to be unambiguous 1:n mappings. Incremental transfor-
mations are not supported.

In [24], triple graph grammars are generalized to han-
dle integration of multiple documents rather than pairs
of documents. From a single synchronous rule, multiple
rules are derived in an analogous way as in the original
TGG approach as presented in [34]. The decomposition
into multiple steps such as link creation, context check,
and rule application is not considered.

In [39,10], a plug-in for flexible and incremental con-
sistency management in Fujaba is presented. The plug-
in is specified using story diagrams [17], which may
be seen as a UML-inspired notation for graph rewrite
rules. From a single triple rule, six rules for directed
transformations and correspondence analysis are gen-
erated in a first step. In a second step, each rule is
decomposed into three operations (responsibility check,
inconsistency detection, and inconsistency repair). The
underlying ideas are similar to our approach, but they
are tailored towards a different kind of application. In
particular, consistency management is performed in a
reactive way after each user command. Thus, there is
no global search for possible rule applications. Rather,

modifications to the object structure raise events which
immediately trigger consistency management actions.

10.2 Other approaches

Related areas of interest in computer science are (in-)
consistency checking [36] and model transformation.
Consistency checkers apply rules to detect inconsisten-
cies between models which then can be resolved
manually or by inconsistency repair rules. Model trans-
formation deals with consistent translations between
heterogeneous models. Our approach contains aspects
of both areas but is more closely related to model trans-
formation.

In [15], a consistency management approach for
different view points [16] of development processes is
presented. The formalism of distributed graph trans-
formations [38] is used to model view points and their
interrelations, especially consistency checks and repair
actions. To the best of our knowledge, this approach
works incrementally but does not support detection of
conflicting rules and user interaction.

Model transformation recently gained increasing
importance because of the model-driven approaches for
software development like the model-driven architec-
ture (MDA) [32]. In [18] and [21] some approaches are
compared and requirements are proposed. While the
requirements on transformations for the MDA can be
compared to the ones on our approach sketched in this
paper, there is still a gap to transformations available in
current practice. Still, most tools work batch-wise and
do not support user interaction to influence the trans-
formations.

In [37], an approach for non-incremental and non-
interactive transformation between domain models
based on graph transformations is described. The main
idea is to define multiple transformation steps using a
specific meta model. Execution is controlled with the
help of a visual language for specifying control and
parameter flow between these steps.

In the AToM project [12], modeling tools are gener-
ated from descriptions of their meta models. Transfor-
mations between different formalisms can be defined
using graph grammars. The transformations do not work
incrementally but support user interaction. Unlike our
approach, control of the transformation is contained in
the user-defined graph grammars.

The QVT Partner’s proposal [2] to the QVT RFP
of the OMG [31] is a relational approach based on the
UML and very similar to the work of Kent [1]. While
Kent is using OCL constraints to define detailed rules,
the QVT Partners propose a graphical definition of pat-
terns and operational transformation rules. These rules

A graph-based algorithm for consistency maintenance

operate in one direction only. Furthermore, incremental
transformations and user interaction are not supported.

BOTL [9] is a transformation language based on UML
object diagrams. Comparable to graph transformations,
BOTL rules consist of an object diagram on the left-
hand side and another one on the right-hand side, both
describing patterns. Unlike graph transformations, the
former one is matched in the source document and the
latter one is created in the target document. The trans-
formation process is neither incremental nor interac-
tive. There are no conflicts because of very restrictive
constraints on the rules.

In [14], some of the approaches sketched here and
others are compared. They are based on graph transfor-
mations but not all of them use triple graph grammars.
In [28], it is discussed why graph transformations in gen-
eral are a useful device for the implementation of model
transformations.

Transformations between documents are urgently
needed (not only) in chemical engineering. They have
to be incremental, interactive and bidirectional. Addi-
tionally, transformation rules are most likely ambiguous.
There are a lot of transformation approaches and con-
sistency checkers with repair actions that can be used
for transformation as well, but none of them fulfills
all of these requirements. Especially, the detection of
conflicts between ambiguous rules is not supported. We
address these requirements with the integration algo-
rithm described in this contribution.

11 Conclusion

We have presented a novel approach to the execution of
integration rules in incremental and interactive integra-
tion tools using graph transformations. The approach
is based on triple graph grammars. Rule execution is
broken up into multiple phases to take care of conflict
detection and user interaction. For a set of triple rules,
each single triple rule is translated into a set of graph
transformation rules which are plugged into a generic
algorithm for rule execution.

For the usability of incremental and interactive inte-
gration tools, it is crucial that user interaction is mini-
mized. User interaction cannot be avoided in the case
of conflicting rules, but the integration tool must not
request further interactions because it is “not smart
enough”. Here, the optimization which we added to
the integration algorithm plays an important role. The
concept of safe integration ensures that rules are not
processed too early. Without safe integration, it might
happen that pseudo conflicts are reported. A pseudo
conflict occurs between two rules if these rules overlap

with respect to non-context increments, but only one of
the rules will finally be able to fire (please recall that
conflicts are detected before the context check is per-
formed). The optimization we added ensures that links
are processed in topological order and rules which will
never be applicable are eliminated as soon as possible.

The performance of the integration algorithm
depends on how efficiently graph transformation rules
are executed. In the case of the IREEN prototype pre-
sented in Sect. 4.2, the PROGRES environment gen-
erates fast code from graph transformation rules by
employing sophisticated heuristics for graph pattern
matching [35]. In the C++ framework presented in Sec-
tion 9, the integration algorithm was implemented even
more efficiently by exploiting specific properties of the
integrator rule set and by hard-coding the domain-inde-
pendent core part of the integration algorithm.

The research presented in this paper was carried out
under the umbrella of IMPROVE, a long-term research
project which is concerned with models and tools for
engineering design processes [30]. The integrator frame-
work described in Section 9 was developed in close coop-
eration with an industrial partner, namely the German
software company innotec, which develops tools for
chemical engineering. Recently, a follow-up project to
IMPROVE has been launched which addresses technol-
ogy transition into industrial practice. The project has a
duration of three years and builds upon the framework
and prototypes developed so far.

The work we have performed so far was driven by
requirements defined by our industrial partners and
chemical engineers involved in the IMPROVE project
(see Sect. 2). Within the technology transfer project,
we are going to perform a comprehensive case study to
evaluate our approach. In particular, this case study will
further investigate usability issues (see also Sect. 9) and
open problems concerning e.g. correspondence analysis
(Sect. 7) and repair actions (Sect. 8).

Acknowledgments This work was in part funded by the CRC 476
IMPROVE of the Deutsche Forschungsgemeinschaft (DFG). Fur-
thermore, the authors gratefully acknowledge the fruitful cooper-
ation with innotec and the constructive comments provided by the
unknown reviewers.

References

1. Akehurst, D., Kent, S., Patrascoiu, O.: A relational
approach to defining and implementing transformations
between metamodels. J. Softw. Systems Modeling 2(4),
215–239 (2003)

2. Appukuttan, B.K., Clark, T., Reddy, S., Tratt, L., Venkatesh,
R.: A model driven approach to model transformations.
In: Proceedings of the 2003 Model Driven Architecture:

S. M. Becker et al.

Foundations and Applications (MDAFA2003), CTIT Tech-
nical Report TR-CTIT-03-27. University of Twente, The
Netherlands (2003)

3. Baresi, L., Mauri, M., Pezzè, M.: PLCTools: Graph transfor-
mation meets PLC design. Electron. Notes Theor. Comput.
Sci. 72(2), (2002)

4. Becker, S.M., Haase, T., Westfechtel, B.: Model-based
a-posteriori integration of engineering tools for incre-
mental development processes. J. Softw. Systems Model-
ing 4(2), 123–140 (2005)

5. Becker, S.M., Haase, T., Westfechtel, B., Wilhelms, J: Inte-
gration tools supporting cooperative development processes
in chemical engineering. In: Proceedings of the 6th Bien-
nial World Conference on Integrated Design and Process
Technology (IDPT-2002), Pasadena. Society for Design and
Process Science (2002)

6. Becker, S.M., Lohmann, S., Westfechtel, B.: Rule execution
in graph-based incremental interactive integration tools. In:
Proceedings of the 2nd International Conference on Graph
Transformations (ICGT 2004), LNCS, vol. 3256, pp. 22–38.
Springer, Heidelberg (2004)

7. Becker, S.M., Westfechtel, B.: UML-based definition of inte-
gration models for incremental development processes in
chemical engineering. J. Integr. Des. Process Sci. Trans.
SDPS 8(1), 49–63 (2004)

8. Böhlen, B., Jäger, D., Schleicher, A., Westfechtel, B.:
UPGRADE: building interactive tools for visual languages.
In: Proceedings of the 6th World Multiconference on
Systemics, Cybernetics, and Informatics (SCI 2002), vol. I
(Information Systems Development I), pp. 17–22, USA
(2002)

9. Braun, P., Marschall, F.: Transforming object oriented mod-
els with BOTL. Electron. Notes Theor. Comput. Sci. 72(3),
(2003)

10. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P.,
Wagner, R., Wendehals, L., Zündorf, A.: Tool integration
at the meta-model level: the Fujaba approach. Int. J. Softw.
Tools Technol. Transf. (STTT) 6(3), 203–218 (2004)

11. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based
tools for re-engineering. J. Softw. Maintenance Evolut. Res.
Practice 14(4), 257–292 (2002)

12. de Lara, J., Vangheluwe, H: Computer aided multi-paradigm
modelling to process petri-nets and statecharts. In: Proceed-
ings of 1st International Conference on Graph Transforma-
tions (ICGT 2002), LNCS, vol. 2505, pp. 239–253. Springer,
Heidelberg (2002)

13. Ehrig, H., Engels, G., Kreowski, H., Rozenberg, G. (eds.):
Handbook on Graph Grammars and Computing by Graph
Transformation: Application, Languages, and Tools, vol. 2.
World Scientific, Singapore (1999)

14. Ehrig, K., Guerra, E., de Lara, J., Lengyel, L.,
Levendovszky, T., Prange, U., Taentzer, G., Varró, D.,
Varró-Gyapay, S.: Model transformation by graph
transformation: a comparative study. In: MTiP 2005,
International Workshop on Model Transformations in
Practice (Satellite Event of MoDELS 2005) Available
from: http://www.inf.mit.bme.hu/FTSRG/Publications/var-
ro/2005/mtip05.pdf (2005)

15. Enders, B.E., Heverhagen, T., Goedicke, M., Tröpfner, P.,
Tracht, R.: Towards an integration of different specifica-
tion methods by using the ViewPoint framework. Trans.
SDPS 6(2), 1–23 (2002)

16. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint
oriented software development. In: International Workshop
on Software Engineering and its Applications, pp. 374–384
(1990)

17. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story
diagrams: A new graph rewrite language based on the uni-
fied modeling language. In: Proceedings of the 6th Inter-
national Workshop on Theory and Application of Graph
Transformation (TAGT), LNCS vol. 1764, pp. 296–309.
Springer, Heidelberg (1998)

18. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.:
Transformation: the missing link of MDA. In: Proceed-
ings of 1st International Conference on Graph Transforma-
tions (ICGT 2002), LNCS vol. 2505, pp. 90–105, Barcelona.
Springer, Heidelberg (2002)

19. Herold, S.: Ein Rahmenwerk für graphbasierte Integra-
tionswerkzeuge. Master’s thesis, RWTH Aachen University,
Germany (2005)

20. Jahnke, J., Zündorf, A.: Applying graph transformations to
database re-engineering. In Ehrig et al. [13], pp. 267–286

21. Kent, S., Smith, R.: The bidirectional mapping problem.
Electron. Notes Theor. Comput. Sci. 82(7) (2003)

22. Kiesel, N., Schürr, A., Westfechtel, B.: GRAS: a graph-
oriented software engineering database system. Infor. Sys-
tems 20(1), 21–51 (1995)

23. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The
Model Driven Architecture: Practice and Promise. Pearson
Education, Boston (2003)

24. Königs, A., Schürr, A.: Multi-domain integration with MOF
and extended triple graph grammars [online]. In: Bezivin, J.,
Heckel, R. (eds.) Language Engineering for Model-Driven
Software Development, number 04101 in Dagstuhl Sem-
inar Proceedings. Internationales Begegnungs- und Fors-
chungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
<http://drops.dagstuhl.de/opus/volltexte/2005/22> [date of
citation: 2005-02-01]

25. Lefering, M.: Integrationswerkzeuge in einer Softwareent-
wicklungsumgebung. Berichte aus der Informatik. Shaker
Verlag, Aachen (1995)

26. Lefering, M., Schürr, A.: Specification of integration tools.
In Nagl [29], pp. 324–334

27. Lohmann, S.: Ausführung von Integrationsregeln mit
einem Graphersetzungssystem. Master’s thesis, RWTH
Aachen University, Germany (2004)

28. Mens, T., van Gorp, P., Karsai, G., Varró, D.: Applying a
model transformation taxonomy to graph transformation
technology. In: Karsai, G., Täntzer, G. (eds.) GraMot 2005,
International Workshop on Graph and Model Transfor-
mations, vol. 152 of Electron. Notes Theor. Comput. Sci.
pp. 143–159 (2006)

29. Nagl, M. (ed.): Building Tightly-Integrated Software Devel-
opment Environments: The IPSEN Approach. LNCS, vol.
1170. Springer, Berlin (1996)

30. Nagl, M., Marquardt, W.: SFB-476 IMPROVE: Informat-
ische Unterstützung übergreifender Entwicklungsprozesse
in der Verfahrenstechnik. In: Informatik ‘97: Informatik als
Innovationsmotor, Informatik aktuell, pp. 143–154, Aachen
Springer, Heidelberg (1997)

31. OMG. MOF 2.0 query / view / transformations, request for
proposal (2002)

32. OMG Architecture Board ORMSC. Model driven architec-
ture (MDA) (2001)

33. Rozenberg, G. (ed.): Handbook on Graph Grammars and
Computing by Graph Transformation 1 (Foundations).
World Scientific, Singapore (1997)

34. Schürr, A.: Specification of graph translators with triple
graph grammars. In: Proceedings of the 20th International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 1994), LNCS, vol. 903, pp. 151–163, Herrsching.
Springer, Heidelberg (1995)

A graph-based algorithm for consistency maintenance

35. Schürr, A., Winter, A., Zündorf, A.: The PROGRES
approach: Language and environment. In Ehrig et al. [13],
pp. 487–550

36. Spanoudakis, G., Zisman, A.: Inconsistency management in
software engineering: Survey and open research issues. In:
Handbook of Software Engineering and Knowledge Engi-
neering, vol. 1, pp. 329–380. World Scientific, Singapore
(2001)

37. Sprinkle, J., Agrawal, A., Levendovszky, T., Shi, F., Kar-
sai, G.: Domain model translation using graph transforma-
tions. In: Proceedings of the 10th International Conference
on Engineering of Computer-Based Systems (ECBS 2003),
pp. 159–167. IEEE Computer Society (2003)

38. Taentzer, G., Koch, M., Fischer, I., Volle, V.: Distributed
graph transformation with application to visual design of
distributed systems. In: Handbook on Graph Grammars and
Computing by Graph Transformation: Concurrency, Paral-
lelism, and Distribution, vol. 3, pp. 269–340. World Scientific,
Singapore (1999)

39. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for
flexible and incremental consistency mangement. In: Pro-
ceedings of the International Conference on the Unified
Modeling Language 2003 (Workshop 7: Consistency Prob-
lems in UML-Based Software Development), San Fran-
cisco. Blekinge Institute of Technology (2003)

Authors’ Biographies

Bernhard Westfechtel received
his diploma degree in 1983 from
University of Erlangen-Nurem-
berg, his doctoral degree (Ph.D.)
in 1991 and his habilitation
degree in 1999 from RWTH Aa-
chen, Germany. Since 2004, he
has been a full professor of
computer science at University
of Bayreuth, Germany. He is
interested in software engineer-
ing environments, software con-
figuration management, process
modeling, model-driven devel-
opment, software architectures,
tool integration, and graph tech-
nology.

Sebastian Herold received his
degree in computer science from
the RWTH Aachen University
in 2005. This paper is partly
based on his diploma thesis.
Since then, he has been work-
ing at the Software Architec-
ture Group of the University of
Kaiserslautern as research assis-
tant. His main research inter-
est are software architectures and
model-driven development.

Sebastian Lohmann received his
degree in computer science from
the RWTH Aachen University in
2004. This paper is partly based
on his diploma thesis. Since then,
he has been with sd&m AG
in Ratingen.

Simon M. Becker received
his degree in computer sci-
ence from the RWTH Aachen
University in 2001. Since then,
he has been working at the
Department of Computer Sci-
ence III of the RWTH Aachen
University as research assis-
tant. His main area of research
is data integration, especially
concerning the a-posteriori
integration of dependent doc-
uments in development pro-
cesses.

	A graph-based algorithm for consistency maintenancein incremental and interactive integration tools
	Abstract
	Introduction
	Background
	Contribution
	Structure
	Scenario
	Context of research
	Development processes in chemical engineering
	Sample process
	Requirements to integration tools
	Graph-based specification of integration tools
	Graph grammars and graph transformation systems
	Triple graph grammars
	Rule execution in the original TGG approach
	Overview
	Overall integration algorithm
	From triple rules to executable specifications
	Incremental transformation (informal)
	Specification of incremental transformation
	Construction phase
	Context check
	Execution phase
	Correspondence analysis
	Applying correspondence analysis rules
	Executing correspondence analysis rules together with forward and backward rules
	Consistency check and repair
	Integrator framework and prototype
	Related work
	Related work on triple graph grammars
	Other approaches
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

