
THE EASST NEWSLETTER

A Summary of:
Rule Execution in Graph-Based Incremental Interactive

Integration Tools

Simon M. Becker and Sebastian Lohmann and Bernhard Westfechtel
Department of Computer Science III, RWTH Aachen University

Ahornstraße 55, D-52074 Aachen, Germany

Abstract. Development processes in engineering disciplines are inherently complex. Through-
out the development process, different kinds of inter-dependent design documents are created
which have to be kept consistent with each other. Graph transformations are well suited for
modeling the operations provided for maintaining inter-document consistency. In this summary,
we describe a novel approach to rule execution for graph-based integration tools operating in-
crementally and supporting conflict detection and user interaction. A full version of the paper is
available as [BLW04].

Keywords: incremental integration, graph transformation

1 Introduction

In development processes in engineering disciplines, different kinds of documents are created. These
documents are inter-dependent regarding their contents and as a consequence, have to be kept consistent
with each other. For example, in software engineering the source code of a software system must match
its high-level description in the software architecture.

Current support for ensuring documents’ consistency is mainly transformation oriented, allowing the
automatic generation of a target document from a source document. But in real-life development pro-
cesses, transformations are ambiguous or incomplete, requiring resolution by user interactions. If ap-
proaches like concurrent and simultaneous engineering are applied, dependent documents are often mod-
ified simultaneously. Therefore, incremental change propagation is needed to restore consistency without
loosing modifications made to one of the documents. Nevertheless, because developers have to be able
to work independently from each other, change propagation has to be decoupled from modifications to
some extent. Changes cannot be propagated at once to all dependent documents. Instead, there are
discrete points in time where developers decide to perform a synchronization of their documents.

In such a setting, there is a need for incremental and interactive integration tools for supporting inter-
document consistency maintenance. An integration tool has to manage links between parts of inter-

Rule Execution in Integration Tools

THE EASST NEWSLETTER

dependent documents. These parts are called increments in the sequel. The tool assists the user in brows-
ing (traversing the links in order to navigate between related increments in different documents), consis-
tency analysis (concerning the relationships between the documents’ contents), and transformations (of
the increments contained in one document into corresponding increments of the related document).

Graphs and graph transformations have been used successfully for the specification and realization of
integration tools [dLV02, BMP02]. However, in the case of incremental and interactive integration tools
specific requirements have to be met concerning the execution of integration rules. In this paper, we
describe a novel approach to rule execution for graph-based integration tools operating incrementally
and interactively which is based on triple graph grammars [Sch95]. Rather than executing a rule in
atomic way, rule execution is broken up into multiple phases. In this way, the user of an integration tool
may be informed about all potential rule applications and their mutual conflicts so that (s)he may take a
judicious decision how to proceed.

2 Graph-Based Specification of Integration Tools

In complex scenarios as described in the previous section, an integration tool needs to maintain a data
structure storing links between inter-dependent documents. This data structure is called integration doc-
ument. Altogether, there are three documents involved: the source document, the target document, and
the integration document. Please note that the terms “source” and “target” denote distinct ends of the
integration relationship between the documents, but this does not necessarily imply a unique direction of
transformation.

All involved documents may be modeled as graphs, which are called source graph, target graph, and
correspondence graph, respectively. Moreover, the operations performed by the respective tools may
be modeled by graph transformations. Triple graph grammars [Sch95] were developed for the high-
level specification of graph-based integration tools. The core idea behind triple graph grammars is to
specify the relationships between source, target, and correspondence graphs by triple rules. A triple rule
defines a coupling of three rules operating on source, target, and correspondence graph, respectively. By
applying triple rules, we may modify coupled graphs synchronously, taking their mutual relationships
into account.

As already explained earlier, we cannot assume in general that all participating documents may be mod-
ified synchronously. In case of asynchronous modifications, a triple rule is not ready for use. However,
we may derive asynchronous rules from the synchronous rule in the following ways: A forward rule
assumes that the source graph has been extended, and extends the correspondence graph and the target
graph accordingly. Analogously, a backward rule is used to describe a transformation in the reverse di-
rection. Finally, a consistency analysis rule is used when both documents have been modified in parallel.
In this case, only the correspondence graph has to be updated.

Unfortunately, even these rules are not ready for use in an integration tool as described in the previous
section. In the case of non-deterministic transformations between inter-dependent documents, it is crucial
that the user is made aware of conflicts between applicable rules. Thus, we have to consider all applicable
rules and their mutual conflicts before selecting a rule for execution. To achieve this, we have to give up
atomic rule execution, i.e., we have to decouple pattern matching from graph transformation.

Rule Execution in Integration Tools

THE EASST NEWSLETTER

3 Rule Execution

Each integration rule is automatically translated into a set of graph transformations. These rule specific
transformations are executed together with some generic ones following an integration algorithm. Here,
we present a short overview of the algorithm only. A detailed description can be found in [BLW04].

The increments contained in integration rules may have different roles affecting how they are treated
by the algorithm: increments can be dominant, normal, or context increments. Each increment in source
or target graph may be referenced by at most one link as dominant or normal increment created by
exactly one rule, whereas each increment may be a context increment for an arbitrary number of links.
To facilitate pattern matching, dominant increments serve as starting point. Context increments are used
to embed edges during transformations.

create

half links

find possible rule

applications

detect

overlappings

find unambiguous

rule

find decisions

ask for user

decision

check context

delete obsolete

half links

delete impossible

rule applications

delete obsolete

overlappings

execute rule

construct

select

execute and

cleanup

[no decisions]

[unambiguous

 rule found]

[decisions pending]

[no unambiguous

 rule]

generic

rule specific

Figure 1: Integration algorithm

Figure 1 shows a UML activity diagram depicting the integration algorithm. To perform each activity,
one ore more graph transformations are executed. Activities that require the execution of rule specific
transformations are marked grey and italic. The overall algorithm is divided into three phases.

During the first phase (construct), all possible rule applications and conflicts between them are deter-
mined and stored in the graph. First, for each increment in the source document that has a type compatible
to the dominant increment’s type of any rule, a half link is created that references this increment.

Then, for each half link the possible rule applications are determined by matching the increments con-
tained on the left-hand side of the corresponding forward, backward, or correspondency analysis rule,
that are non-context increments. The result of the pattern matching is explicitly stored in the correspon-
dence graph. This is necessary to decouple the matching and execution of rules. The context increments
are matched in the subsequent phase of the algorithm. The last step of this phase is a generic transforma-
tion detecting and marking overlappings between possible rule applications.

While the construct phase is executed only once, the following two phases are executed in a loop until the
integration is complete. In the select phase, for all rule applications the context is checked by matching

Rule Execution in Integration Tools

THE EASST NEWSLETTER

all context increments of the rules. Again, the matching is stored in the correspondence graph. If one
rule application, whose context is present, is unambiguous, it is automatically selected for execution.
Otherwise, the user is asked to select one rule among the rules with existing context. If there are no
executable rules, the algorithm ends.

In the last phase (execute and cleanup), the selected rule is executed using the increments previously
matched. For forward (backward) rules, the non-context increments in the target (source) document are
created and a new link is established that references source and target increments. When executing a
consistency analysis rule, the link is created between existing increments. After that, some operations
are performed to adapt the information that was collected in the construct phase to the new situation. For
example, possible rule applications are deleted, that have become impossible after the execution of a
conflicting rule.

The algorithm continues by going back to the select phase. The context has to be checked again because
previously missing context increments may have been created by the preceding rule execution. The loop
continues until the integration is finished.

4 Conclusion

We have presented a novel approach to the execution of integration tools in incremental and interactive
integration tools using graph transformations. We have realized this approach, in a research prototype
called IREEN, an Integration Rule Evaluation ENvironment. In an industrial cooperation with the Ger-
man software company Innotec the approach was evaluated with a simplified prototype for the integration
of flow sheets and simulation models implemented in C++. Experiments with the prototype showed that
our approach considerably leverages the task of keeping dependent documents consistent to each other.

References

[BLW04] Simon M. Becker, Sebastian Lohmann, and Bernhard Westfechtel. Rule execution in graph-
based incremental interactive integration tools. In Proc. of the 2nd International Conference
on Graph Transformations (ICGT 2004), LNCS 3256, pages 22–38. Springer, 2004.

[BMP02] L. Baresi, M. Mauri, and M. Pezzè. PLCTools: Graph transformation meets PLC design.
Electronic Notes in Theoretical Computer Science, 72(2), 2002.

[dLV02] J. de Lara and H. Vangheluwe. Computer aided multi-paradigm modelling to process petri-
nets and statecharts. In Proc. of 1st Int. Conf. on Graph Transformations (ICGT 2002), LNCS
2505, pages 239–253. Springer, 2002.

[Sch95] Andy Schürr. Specification of graph translators with triple graph grammars. In Proc. of the
20th Intl. Workshop on Graph-Theoretic Concepts in Computer Science (WG 1994), LNCS
903, pages 151–163, Herrsching, Germany, 1995. Springer.

Rule Execution in Integration Tools

THE EASST NEWSLETTER

The “Software Analysis and Verification” Column

Jens Knoop *
*Institute of Computer Languages, Vienna University of Technology

1 Software Analysis and Verification:
A New Column of the EASST Newsletter

Software analysis and verification, and software transformation are as closely related as Siamese twins.
Indeed, before undergoing a (non-trivial) transformation virtually every piece of software will before-
hand be subject to some analysis or verification in order to ensure the applicability of the transformation,
to ensure at a minimum that the application of the transformation will not cause any harm. More gen-
erally than suggested by the title of this column, the software analysis and verification column seeks
contributions on the theory and practice of methods for the analysis, verification, and transformation of
software. Contributions, which are related to at least one of these topics are welcome. Especially wel-
come are contributions bridging two of these topics such as analysis and transformation. Additionally,
and without being limited to, also position papers, book reviews, announcements of forthcoming events
such as conferences and workshops, or reports on past conferences are welcome, too.

Contributions to this column should directly be sent to the column editor, preferably by email to
knoop@complang.tuwien.ac.at, or by letter post to:

Univ.-Prof. Dr. Jens Knoop
Institute of Computer Languages
Vienna University of Technology
Argentinierstr. 8 / E1851
1040 Vienna, Austria
knoop@complang.tuwien.ac.at

In this first issue of this new column we report on three workshops and symposiums within the scope
of the software and analysis column: ISoLA 2004, SYNASC 2004, and ASM 2004. It should be noted
that the selection of these three meetings for presentation here is biased by recent involvements of the
column editor as a member of the Programme Committee (ISoLA 2004, SYNASC 2004) and invited
speaker (SYNASC 2004, ASM 2004). .

THE SOFTWARE ANALYSIS AND VERIFICATION COLUMN Software Analysis and Verification

THE EASST NEWSLETTER

1.1 Report on ISoLA 2004

ISoLA 2004 was the inaugural instance of the International Symposium on Leveraging Applications of
Formal Methods (ISoLA 2004). It took place from October 30th to November 2nd in Paphos, Cyprus.
Initiated and organized by the current EASST President Tiziana Margaria (General Chair), Bernhard
Steffen (Programme Chair) and Anna Philippou (Local Chair), ISoLA 2004 attracted some 70 scientists
and researchers from around the world from both academia and industry.

This is in line with the intent of this new symposium series, which, as expressed in the call for papers
and the preface of the symposium proceedings, is “to bridge the gap between designers and developers
of rigorous tools, and users in engineering and in other disciplines, and to foster and exploit syner-
getic relationships among scientists, engineers, software developers, decision makers, and other critical
thinkers.”

This first instance of ISoLA featured 5 sessions with 15 presentations of contributed research papers,
a poster session, a panel on “Formal Approaches to Complex Software Systems” moderated by Jose-
Luis Fernandez-Villacanas-Martin (Commission of the European Union), and 13 Thematic Sessions on
specific hot topics of special relevance and interest to the formal methods developers’ and users’ commu-
nity. These sessions were composed of 33 presentations, which were solicited by the respective thematic
session chairs, who also acted as a shepherd of these contributions. A further highlight of the sympo-
sium was the invited lecture delivered by David Harel (Weizman Institute, Israel), which was entitled
“Towards an Odor Communication and Synthesis System.”

The topics of the regular and thematic sessions covered a spectrum, which ranged from model checking
and validation over scheduling and performance issues of real-time embedded systems to component-
based and networked applications and the usage of formal methods in industry.

Of a special interest with respect to the scope of this column was the Thematic Session on “Program
Analysis and Transformation.” This session was devoted to discussing the state-of-the-art and to further
identifying the most urgent challenges related to beneficially using formal methods in program analysis
and transformation, e.g. in verifying optimizing compilation.

The thematic session on program analysis and transformation featured three presentations, which ap-
proached the session’s topic from quite diverse perspectives, and served as the starting point for further
in-depth discussions at the symposium. They were delivered by Dan Quinlan (Lawrence Livermore Na-
tional Laboratory, CA) on the “Classification and Utilization of Abstractions for Optimization,” Wolf
Zimmermann (University of Halle-Wittenberg, Germany) on the “Correctness of Transformations in
Compiler Back-Ends,” and Byron Cook (Microsoft Research, UK) on “Finding API Usage Rule Viola-
tions in Windows Device Drivers Using Static Driver Verifier.”

The preliminary proceedings of this symposium are available as a technical report of the Department of
Computer Science of the University of Cyprus [MSPR04]. It is planned to publish selected resubmitted
papers in post conference proceedings and in special issues of distinguished journals.

In 2006 it is planned to return to Paphos, Cyprus, for the second large event of ISoLA. In 2005, there
will be a thematically focused event, which will be organized in North-America, most likely in the
Washington D.C. area.

Further information on the meeting in Paphos can be found on the Web page of the symposium at
http://sttt.cs.uni-dortmund.de/isola2004/dflt ns/index.html

THE SOFTWARE ANALYSIS AND VERIFICATION COLUMN Software Analysis and Verification

THE EASST NEWSLETTER

1.2 Report on SYNASC 2004

From September 26th to September 30th, the 6th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2004) was held in Timişoara, Romania. The symposium
was hosted by the University of the West Timişoara, and it was jointly organized by its Department of
Computer Science, the Research Institute for Symbolic Computation of the Johannes Kepler University
of Linz, Austria, and the Institute e-Austria Timişoara. Founded in October 2002, the Institute e-Austria
Timişoara is jointly funded by the governments of Romania and Austria to further strengthen the ties and
research collaborations between Romania and Austria, both scientifically and economically, and to create
a gate for Austrian IT companies to Romania and further to other countries in Eastern Europe, certainly
something of interest in its own for an association carrying the acronym EASST: more information on
the Institute e-Austria Timişoara and its mission can be found at http://www.ieat.ro/.

The Program Co-Chairs of SYNASC 2004 were Viorel Negru (West University, Romania) and Tudor
Jebelean (University of Linz, Austria), the General Co-Chairs Ştefan Măruşter (West University, Roma-
nia), and Bruno Buchberger (University of Linz, Austria), and the Local Co-Chairs were Daniela Zaharie
(West University, Romania) and Dana Petcu (Institute e-Austria, Romania).

This year, SYNASC featured 29 presentations of contributed research papers and 4 invited lectures,
several of which were of special interest with respect to the scope of this column. Among these, also
three of the invited presentations by Gabriel Ciobanu (Romanian Academy, Iaşi) on “Simulation and
Verification of the Biomolecular Systems”, by Tetsuo Ida (University of Tsukuba, Japan) on “Layers of
Abstraction in Symbolic Computation,” and by Stephen M. Watt (University of Western Ontario London,
Canada) on “Optimizing Compilation for Symbolic-Numeric Computation.”

Co-located with SYNASC 2004, there were four workshops on Agents for Complex Systems (ACSYS
2004), Computer Aided Verification of Information Systems (CAVIS 2004), on Symbolic Grid Computing
(SGC 2004), and the Natural Computing Workshop (NCW 2004). The joint proceedings of SYNASC
2004 and the affiliated workshops are available through your local book seller [PNZJ04]. Selected re-
submitted papers will later be published in a special issue of the journal “Annals of the University of
Timisoara,” ISSN 1224-970X.

Further information on SYNASC 2004 and on the SYNASC Symposium series can be found on the
SYNASC 2004 web page at http://synasc04.info.uvt.ro. .

1.3 Report on ASM 2004

Wittenberg, Germany, home to Martin Luther, and thus also known as Lutherstadt Wittenberg, was the
venue of the 11th International Workshop on Abstract State Machines (ASM 2004). The workshop
took place from May 24th to May 28th. It was organized by Wolf Zimmermann (University of Halle-
Wittenberg, Germany), who together with Bernhard Thalheim (University of Kiel, Germany) also served
as a Program Co-Chair.

The ASM workshop series is devoted to the dissemination and promotion of advances in theory, prac-
tice, and applications of ASMs and ASM methods. Typical topics of interest include the high-level de-
sign, analysis, validation, and verification of computing systems. This year, the program was composed
of 11 contributed research papers and 6 invited presentations, which were delivered by Yuri Gurevich

THE SOFTWARE ANALYSIS AND VERIFICATION COLUMN Software Analysis and Verification

THE EASST NEWSLETTER

(Microsoft Research, USA), Hans-Michael Hanisch (Universität Halle-Wittenberg, Germany), Jan Van
den Bussche (Limburgs Universitair Centrum, Belgium), Jens Knoop (TU Wien, Austria), Egon Börger
(Universitá di Pisa, Italy), and Hans Langmaack (Universität Kiel, Germany). The spectrum of topics
covered by the presentations at the workshop ranged from temporal verification of monodic ASMs over
ASM semantics for SSA intermediate program representations to ASM specifications of C# threads.

The proceedings of the workshop have been published in the LNCS series of Springer Verlag, volume
number 3052 [ZT04]. A companion technical report published by the University of Halle-Wittenberg
contains the abstracts of industrial experience reports, tool demonstrations, and work in progress papers,
which have also been presented at the workshop.

Further information on ASM 2004 and the ASM Workshop series in general can be found on the ASM
2004 web page at http://swt.informatik.uni-halle.de/ASM2004/.

ASM 2005 is going to take place from March 8th to 11th, 2005, in Paris, France. The submission
deadline for papers is on January 10th, 2005. The full call for papers can be found at http://www.univ-
paris12.fr/lacl/Asm05/. .

References

[MSPR04] Tiziana Margaria, Bernhard Steffen, Anna Philippou, and Manfred Reitenspiess, editors.
International Symposium on Leveraging Applications of Formal Methods (ISoLA 2004), TR-
2004-6, 2004. Preliminary Proceedings.

[PNZJ04] Daniela Petcu, Viorel Negru, Daniela Zaharie, and Tudor Jebelean, editors. 6th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2004),
2004. ISBN 973-661-441-7.

[ZT04] Wolf Zimmermann and Bernd Thalheim, editors. 11th International Workshop on Abstract
State Machines (ASM 2004), volume 3052 of Lecture Notes in Computer Science. Springer-
Verlag, 2004.

THE SOFTWARE ANALYSIS AND VERIFICATION COLUMN Software Analysis and Verification

