
Rule Execution in Graph-Based Incremental Interactive
Integration Tools

Simon M. Becker, Sebastian Lohmann, and Bernhard Westfechtel

Department of Computer Science III, RWTH Aachen University
Ahornstraße 55, D-52074 Aachen, Germany�

sbecker,slohmann,bernhard � @i3.informatik.rwth-aachen.de

Abstract. Development processes in engineering disciplines are inherently com-
plex. Throughout the development process, different kinds of inter-dependent de-
sign documents are created which have to be kept consistent with each other.
Graph transformations are well suited for modeling the operations provided for
maintaining inter-document consistency. In this paper, we describe a novel ap-
proach to rule execution for graph-based integration tools operating interactively
and incrementally. Rather than executing a rule in atomic way, we break rule ex-
ecution up into multiple phases. In this way, the user of an integration tool may
be informed about all potential rule applications and their mutual conflicts so that
he may take a judicious decision how to proceed.

1 Introduction

Development processes in engineering disciplines are inherently complex. Through-
out the development process, different kinds of inter-dependent documents are created
which have to be kept consistent with each other. For example, in software engineer-
ing there are requirements definitions, software architectures, module bodies, etc. which
describe a software system from different perspectives and at different levels of abstrac-
tion and granularity. Documents are connected by manifold dependencies and need to
be kept consistent with each other. For example, the source code of a software system
must match its high-level description in the software architecture.

Development processes may be viewed as multi-stage transformation processes
from the initial problem statement to the final solution. Throughout the transforma-
tion process, many interacting decisions have to be performed. These decisions can
be automated only to a limited extent; in many settings, human interactions are re-
quired. Moreover, transformation rarely proceeds stage-wise according to some wa-
terfall model. Rather, incremental and iterative processes have been proposed, which
require to propagate changes throughout a set of inter-dependent documents.

In such a setting, there is a need for incremental and interactive integration tools for
supporting inter-document consistency maintenance. An integration tool has to manage
links between parts — called increments in the sequel — of inter-dependent documents.
It assists the user in browsing (traversing the links in order to navigate between related
increments in different documents), consistency analysis (concerning the relationships
between the documents’ contents), and transformations (of the increments contained in
one document into corresponding increments of the related document).

Graphs and graph transformations have been used successfully for the specification
and realization of integration tools [1, 2]. However, in the case of incremental and inter-
active integration tools specific requirements have to be met concerning the execution of
integration rules. In this paper, we describe a novel approach to rule execution for graph-
based integration tools operating incrementally and interactively. We have realized this
approach, which is based on triple graph grammars [3, 4], in a research prototype called
IREEN, an Integration Rule Evaluation ENvinronment [5]. Rather than executing a rule
in atomic way, IREEN breaks rule execution up into multiple phases. In this way, the
user of an integration tool may be informed about all potential rule applications and
their mutual conflicts so that (s)he may take a judicious decision how to proceed.

The rest of this paper is structured as follows: Section 2 presents a scenario which
motivates our work by a practical example. Section 3 is devoted to the graph-based spec-
ification of integration tools. Section 4, the core part of this paper, presents our novel
approach to rule execution. Section 5 discusses related work, and Section 6 presents a
short conclusion.

2 Scenario

The research reported in this paper is carried out within the IMPROVE project [6],
which is concerned with models and tools for design processes in chemical engineering.
In this section, we present a small example which illustrates key features of incremental
and interactive integration tools. This example is drawn from chemical engineering,
but we could also have chosen an example from another engineering discipline (e.g.,
software engineering).

In chemical engineering, the flow sheet acts as a central document for describing
the chemical process. The flow sheet is refined iteratively so that it eventually describes
the chemical plant to be built. Simulations are performed in order to evaluate design
alternatives. Simulation results are fed back to the flow sheet designer, who annotates
the flow sheet with flow rates, temperatures, pressures, etc. Thus, information is prop-
agated back and forth between flow sheets and simulation models. Although the flow
sheet plays the role of a master document, it may also happen that a simulation model
is created first and the flow sheet is derived from the simulation model (reverse engi-
neering).

Unfortunately, the relationships between flow sheets and simulation models are not
always straightforward. Different kinds of simulation models are created for differ-
ent purposes. Often, simulation models have to be composed from pre-defined blocks
which in general need not correspond 1:1 to structural elements of the flow sheet. Thus,
maintaining consistency between flow sheets and simulation models is a demanding
task requiring sophisticated tool support.

Figure 1 illustrates how an incremental integration tool assists in maintaining con-
sistency between flow sheets and simulation models. In general, flow sheets and simu-
lation models are created by different users at different times with the help of respective
tools; an integration tool is used to establish mutual consistency on demand. In a cooper-
ation with an industrial partner, we studied the coupling of COMOS [7], an environment

PFR Flashing

Splitting

HE PFR

HEATER RPlug
REQUIL

HE

FLASH

SPLIT
RPlug

REQUIL

L L L L L L L L L

1.)

2.)

3.b)

3.a)

4.)

flow sheet

simulation model

propagation of structure
propagation of attributes

HE

Fig. 1. Integration between flow sheet and simulation model

for chemical engineering which in particular offers a flow sheet editor, and Aspen Plus
[8], an environment for performing steady-state and dynamic simulations.

The chemical process taken as example produces ethanol from ethen and water.
Flow sheet and simulation model are shown above and below the dashed line, respec-
tively. The integration document for connecting them contains links which are drawn
on the dashed line. The figure illustrates a design process consisting of four steps:

1. The simulation expert has already created a simulation model for a part of the chem-
ical process (heating and reaction). The simulation model is composed of three
blocks according to the capabilities of the respective simulation tool.

2. The simulation model is transformed into a flow sheet. This is achieved with the
help of an integration tool. Multiple alternatives are available for this transforma-
tion. It turns out that the simplest one — a 1:1 transformation — does not result
in an adequate flow sheet because the blocks do not correspond 1:1 to devices in
the flow sheet. Rather, the user decides to group two blocks and their connecting
stream into a single device (a plug flow reactor) in the flow sheet. The link between
the PFR and the respective parts of the simulation model is established by firing
a corresponding integration rule. In addition, another rule is available which just
transforms the block called RPlug into a PFR. This 1:1 rule stands in conflict with
the rule selected here. The integration tool presents conflicting rules to the user who
may select the rule to be applied.

3. Steps 3a and 3b are carried out in parallel, using different tools. Using the simu-
lation model created so far, a simulation is performed in the simulation tool. The
simulation results comprise flow rates, temperatures, etc. In parallel, a flow sheet
editor is used to extend the flow sheet with the chemical process steps that have not
been specified so far (flashing and splitting).

4. Finally, the integration tool is used to synchronize the parallel work performed in
the previous step. This involves information flow in both directions. First, the simu-
lation results are propagated from the simulation model back to the flow sheet. Sec-

ond, the extensions are propagated from the flow sheet to the simulation model. Af-
ter these propagations have been performed, mutual consistency is re-established.

From this example, we may derive several features of the kinds of integration tools
that we are addressing. Concerning the mode of operation, our focus lies on incremental
integration tools rather than on tools which operate in a batch-wise fashion. Rather than
transforming documents as a whole, incremental changes are propagated — in general
in both directions — between inter-dependent documents. Often, the integration tool
cannot operate automatically; rather, the user has to perform decisions interactively. In
general, the user also maintains control on the time of activation, i.e., the integration
tool is invoked to re-establish consistency whenever appropriate. Finally, it should be
noted that integration tools do not merely support transformations. In addition, they
are used for analyzing inter-document consistency or browsing along the links between
inter-dependent documents.

3 Graph-Based Specification of Integration Tools

In complex scenarios as described in the previous section, an integration tool needs to
maintain a data structure storing links between inter-dependent documents. This data
structure has been called integration document. Altogether, there are three documents
involved: the source document, the target document, and the integration document.
Please note that the terms “source” and “target” denote distinct ends of the integra-
tion relationship between the documents, but it does not necessarily imply a unique
direction of transformation (in fact, transformations are performed in both directions in
our sample scenario).

All involved documents may be modeled as graphs, which are called source graph,
target graph, and correspondence graph, respectively1. Moreover, the operations per-
formed by the respective tools may be modeled by graph transformations. Triple graph
grammars [3] were developed for the high-level specification of graph-based integra-
tion tools. The core idea behind triple graph grammars is to specify the relationships
between source, target, and correspondence graphs by triple rules. A triple rule defines
a coupling of three rules operating on source, target, and correspondence graph, respec-
tively. By applying triple rules, we may modify coupled graphs synchronously, taking
their mutual relationships into account.

An example of a triple rule is given in Figure 2 in PROGRES [9] syntax. The rule
refers to the running example to be used throughout the rest of this paper, namely the
creation of connections (appearing in both flow sheets and simulation models). In a flow
sheet, a connection is used to relate structural elements such as devices and streams. An
example of a device is a reactor, a stream is used to represent the flow of chemical
substances between devices. In Figure 1, devices are represented as rectangles, streams
are shown as directed lines. Connections are not represented explicitly (rather, they may
be derived from the layout), but they are part of the internal data model. Each device or
stream has a set of ports; connections establish relationships between these ports.

1 If the tools operating on source and target document are not graph-based, the integration tool
requires wrappers which establish corresponding graph views.

transformation ConnectionSynchroneous * =

‘2 : ComosOutPort ‘3 : AspenOutPort

‘5 : AspenInPort‘4 : ComosInPort

‘1 : subLink

‘6 : subLink

flow sheet (source) simulation model (target)
toComosIncrement

toComosIncrement toAspenIncrement

toAspenIncrement

correspondence

::=

2’ = ‘2 3’ = ‘3

5’ = ‘54’ = ‘4

toAspenIncrement

1’ = ‘1

toComosIncrement toAspenIncrement

6’ = ‘6

toComosDominant toAspenDominantconnectsComosOutPort

connectsComosInPort

7’ : ComosConnection

connectsAspenOutPort

connectsAspenInPort

9’ : AspenConnection

toComosContext

toComosContext

toAspenContext

toAspenContext

toIntegrationContext

toIntegrationContext

8’ : Link

toComosIncrement

flow sheet (source) simulation model (target)correspondence

end;

Fig. 2. Triple rule for a connection

The triple rule ConnectionSynchronous has a left-hand side (shown above
the right-hand side) which spans all participating subgraphs: the source graph (repre-
senting the flow sheet) on the left, the correspondence graph in the middle, and the target
graph (for the simulation model) on the right. The left-hand side is composed of port
nodes in source and target graph, distinguishing between output ports and input ports2.
Furthermore, it is required that the port nodes in both graphs correspond to each other.
This requirement is expressed by the nodes of type subLink in the correspondence
graph and their outgoing edges which point to nodes of the source and target graph,
respectively. Port correspondences are established by other triple rules which transform
the blocks the ports belong to, e.g. streams or devices. Correspondences between source
and target patterns are represented by links and can be further structured by sublinks,
e.g. to express port correspondences.

All elements of the left-hand side re-appear on the right-hand side. New nodes are
created for the connections in source and target graph, respectively, as well as for the
link between them in the correspondence graph. The connection nodes are embedded
locally by edges to the respective port nodes. For the link node, three types of adjacent
edges are distinguished.toDominant edges are used to connect the link to exactly one
dominant increment in the source and target graph, respectively. In general, the source
and target pattern related through the triple rule may consist of more than one increment
in each participating graph. Then, there are additional edges to normal increments (not
needed in our running example)3. Finally, toContext edges point to nodes which are

2 Only ports of different orientation may be connected.
3 The distinction between dominant and normal increments is not vital, but helpful for pragmatic

reasons; see next section.

not themselves part of the transformation but are required as a context condition. These
nodes are called context increments.

Figure 2 describes a synchronous graph transformation. As already explained ear-
lier, we cannot assume in general that all participating documents may be modified
synchronously. In case of asynchronous modifications, the triple rule shown above is
not ready for use. However, we may derive asynchronous rules from the synchronous
rule in the following ways:

– A forward rule assumes that the source graph has been extended, and extends the
correspondence graph and the target graph accordingly. Thus, the forward rule de-
rived from our sample rule would contain node 7 on the left-hand side.

– Analogously, a backward rule is used to describe a transformation in the reverse
direction. In our example, node 9 would be part of the left-hand side.

– Finally, a consistency analysis rule is used when both documents have been mod-
ified in parallel. In our running example, this means that connections have been
inserted into both the flow sheet and the simulation model and a link is created a
posteriori. Thus, the consistency analysis rule would include nodes 7 and 9 on the
left-hand side.

Unfortunately, even these rules are not ready for use in an integration tool as de-
scribed in the previous section. In the case of non-deterministic transformations be-
tween inter-dependent documents, it is crucial that the user is made aware of conflicts
between applicable rules. Thus, we have to consider all applicable rules and their mu-
tual conflicts before selecting a rule for execution. To this achieve this, we have to give
up atomic rule execution, i.e., we have to decouple pattern matching from graph trans-
formation.

4 Rule Execution

4.1 Overview

As explained in the previous section, an integration rule cannot be executed by means
of a single graph transformation. To ensure the correct sequence of rule executions, to
detect all conflicts between rule applications, and to allow the user to resolve conflicts,
each integration rule is automatically translated to a set of graph transformations. These
rule specific transformations are executed together with some generic ones following an
integration algorithm. In this subsection, we will present the overall algorithm, while in
the following subsections the phases of the algorithm are explained in detail, showing
some of the rule specific and generic graph transformations involved. The simplified
example in Figure 4 (to be explained later) is used to illustrate the algorithm.

While the algorithm in general supports the concurrent execution of forward, back-
ward, and consistency analysis rules, we focus on forward transformations only, using
the forward transformation rule for a connection as running example. Some aspects of
the algorithm are omitted, as the treatment of existing links that have become inconsis-
tent due to modifications in the integrated documents.

create
half links

find possible rule
applications

detect
overlappings

find unambiguous
rule

find decisions

ask for user
decision

check context

delete obsolete
half links

delete impossible
rule applications

delete obsolete
overlappings

execute rule

construct

select
execute and

cleanup

[no decisions]

[unambiguous
 rule found]

[decisions pending]

[no unambiguous
 rule]

generic

rule specific

Fig. 3. Integration algorithm

Figure 3 shows a UML activity diagram depicting the integration algorithm. To
perform each activity, one ore more graph transformations are executed. Activities that
require the execution of rule specific transformations are marked grey and italic. The
overall algorithm is divided into three phases.

During the first phase (construct), all possible rule applications and conflicts be-
tween them are determined and stored in the graph. First, for each increment in the
source document that has a type compatible to the dominant increment’s type of any
rule, a half link is created that references this increment. Then, for each half link the
possible rule applications are determined. The last step of this phase is a generic trans-
formation marking overlappings between possible rule applications.

In the next phase (select), for all rule applications the context is checked. If one rule
application, whose context is present, is unambiguous, it is automatically selected for
execution. Otherwise, the user is asked to select one rule among the rules with existing
context. If there are no executable rules, the algorithm ends.

In the last phase (execute and cleanup), the selected rule is executed and some
operations are performed to adapt the information that was collected in the construct
phase to the new situation.

4.2 Construction Phase

In the construction phase, it is determined which rules can be possibly applied to which
subgraphs in the source document. Conflicts between these rules are marked. This in-
formation is collected once in this phase and is updated later incrementally during the
repeated executions of the other phases.

In the first step of the construction phase (create half links), for each increment,
the type of which is the type of a dominant increment of at least one rule, a link is
created that references only this increment (half link). Dominant increments are used as

a) create half links c) detect overlappings e) execute rule

I1

I2

I3

L1

L2

Ra

Rb

O1

Rc

I4

I5

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I1

I2

I3

L1

L2

b) find potential rule applications d) check context f) cleanup

I1

I2

I3

L1

L2

Ra

Rb

O1

C1

C2

Rc

I1

I2

I3

L1

L2

Ra

Rb

Rc

I4

I5

I1

I2

I3

L1

Ra C1

L2 Rc

Fig. 4. Simplified example integration

anchor for links and to group decisions for user interaction. Half links are the anchors
for information about possible rule applications and are transformed to consistent links
after one of the rules has been applied.

In the example, half links are created for the increments I1and I3, named L1 and L2,
respectively (c.f. Figure 4 a).

To achieve this, for each rule a PROGRES production is derived that matches an
increment with the same type as the rule’s dominant increment in its left-hand side,
with the negative application condition that there is no half link attached to the incre-
ment, yet. Then on its right-hand side the half link node is created and connected to the
increment with an edge. All these productions are executed repeatedly, until no more
left-hand sides are matched, i.e., half links have been created for all possibly dominant
increments.

The second step (find possible rule applications) determines the integration rules that
are possibly applicable for each half link. A rule is possibly applicable for a given half
link if the source document part of the left-hand side of the synchronous rule without the
context increments is matched in the source document graph. The dominant increment
of the rule has to be matched to the one belonging to the half link. For the possible
applicability, context increments are not taken into account because missing context
increments could be created later by the execution of other integration rules. For this
reason, the context increments are matched in the selection phase before selecting a rule
for execution.

transformation + TRC2A_R3_propose * =

‘1 : ComosConnection
toComosDominant

‘2 : Link

::=

4’ : rule

1’ = ‘1
toComosDominantisAssignedTo

hasRole possibleRule

3’ : role 2’ = ‘2

condition ‘2.status = unchecked;
transfer 4’.ruleId := "C2A-R3";

end;

Fig. 5. Find possible rule applications

Figure 5 shows the PROGRES transformation for the example rule. The left-hand
side consists of the half link and the respective dominant increment only because all
other increments of this rule are context increments. In general, all non-context incre-
ments and their connecting edges are part of the left-hand side. On the right-hand side,
a rule node is created to identify the possible rule application (4’). This node carries
the id of the rule and is connected to the half link. A role node is inserted to explicitly
store the result of the pattern matching (3’). If there are more increments matched, role
nodes can be distinguished by an id attribute. The asterisk (*) behind the production
name tells PROGRES to apply this production for each possible matching of its left-
hand side. When executed together with the corresponding productions for the other
rules, as a result all possibly applicable rules are stored at each half link. Please note
that if a rule is applicable for a half link with different matchings of its source incre-
ments, multiple rule nodes with the corresponding role nodes are added to the half link.

In the simplified example (Figure 4 b), three possible rule applications were found,
e.g., Ra at the link L1 would transform the increments I1 and I2. Please note that the
role nodes are omitted in the figure.

Each increment can be referenced by one link only as non-context increment. This
leads to the fact that there can be conflicts between possible applications of integration
rules. In the case of a conflict, the user has to choose one of the conflicting rules in
the selection phase. There are two types of conflicts: First, there can be multiple rule
nodes at one half link. These share at least the dominant increment, so only one of
the corresponding rules can be executed. This is the case for link L2 in the example in
Figure 4 c): Rb and Rc are conflicting. Second, an increment can be referenced by role
nodes belonging to rule applications of different links. In the example, the increment I2
is referenced by Ra and Rb.

The conflicts of the first type can be easily determined by counting the rule nodes
belonging to a link. The conflicts of the second type are less obvious, so to prepare
the user interaction in the selection phase, all of them have to be found and marked.
This is done with the help of the generic PROGRES production in Figure 6. The pat-
tern on the left-hand side describes an increment (‘7) that is referenced by two roles

transformation + GEN_detectRuleConflicts * =

‘7 : clsIncrementinconsistentLink
inconsistentLink

conflictsWith

conflictsWith

hasRole

hasRole

isAssignedTo

isAssignedTo

possibleRule

possibleRule

‘5 : rule

‘4 : overlapping

‘3 : rule‘1 : Link

‘2 : Link ‘8 : role

‘6 : role

::=

7’ = ‘7

hasRole

hasRole
isAssignedTo

isAssignedToconflictsWith

conflictsWith

possibleRule

possibleRule
5’ = ‘5

3’ = ‘3

4’ : overlapping

2’ = ‘2 8’ = ‘8

6’ = ‘61’ = ‘1

end;

Fig. 6. Detect overlappings

belonging to different rule nodes which belong to different links. The negative node
‘4 prevents multiple markings of the same conflict. On the right-hand side, an overlap
node is inserted between the two rule nodes (O1 in the example). Again, this produc-
tion is marked with an asterisk, so it is executed until all conflicts are detected. Besides
detecting conflicts between different forward transformation rules, the depicted pro-
duction also detects conflicts between forward, backward, and correspondency analysis
rules generated from the same synchronous rule. As a result of that, it is not necessary
to check whether the non-context increments of the right-hand side of the synchronous
rule are already present in the target document when determining possible rule applica-
tions in the second step of this phase.

In the example in Figure 4 c), the overlap node O1 is created between Ra and Rb
because they both reference I1. The conflict between Rb and Rc is not explicitly marked
because it can be seen from the fact that they both belong to the same half link.

4.3 Selection Phase

The goal of the selection phase is to select one possible rule application for execution
in the next phase. If there is a rule that can be executed without conflicts, the selection
is performed automatically, otherwise the user is asked for his decision. Before a rule
is selected, the contexts of all rules are checked because only a rule whose context has
been found can be executed.

The context check is performed in the first step of this phase. The context is formed
by all context elements from the synchronous rule. It may consist of increments of
source and target documents and of links contained in the integration document.

transformation + TRC2A_R3_contextCheck * =

‘5 : rule

‘1 : role ‘3 : ComosConnection ‘7 : Link

‘9 : AspenOutPort

‘10 : AspenInPort

‘2 : ComosOutPort

‘4 : ComosInPort

toComosDominant

toComosIncrement

toComosIncrement

toAspenIncrement

toAspenIncrement

consistentLink

consistentLink

connectsComosInPort

connectsComosOutPort

isAssignedTo

hasRole

possibleRule

 (‘4, ‘3, ‘2, ‘8, ‘7, ‘6, ‘10, ‘9, ‘5, ‘1)

‘8 : subLink

‘6 : subLink

not TRC2A_R3_contextAlreadyFound

::=

1’ = ‘1

8’ = ‘8

9’ = ‘9

10’ = ‘10

2’ = ‘2

4’ = ‘4

toComosDominant

possibleRule

toComosIncrement

toComosIncrement

toAspenIncrement

toAspenIncrement

possibleContext

hasContextRole

hasContextRole

hasContextRole

hasContextRoleisAssignedTo

12’ : role

isAssignedTo

isAssignedTo

isAssignedTo

hasContextRole

hasContextRole

isAssignedTo

isAssignedTo

isAssignedTo

hasRole

17’ : role

14’ : role

6’ = ‘6

3’ = ‘3 7’ = ‘7

11’ : role

13’ : role

5’ = ‘5

15’ : context

16’ : role

connectsComosOutPort

connectsComosInPort

condition ‘5.ruleId = "C2A-R3";
‘7.status = checked;

end;

Fig. 7. Check context

In the example in Figure 4 d), the context for Ra consisting of increment I3 in the
source document was found (C1). The context for Rb is empty (C2), the context for Rc
is still missing.

Figure 7 shows the PROGRES production checking the context of the example inte-
gration rule. The left-hand side contains the half link (‘7), the non-context increments
(here, only ‘3), the rule node (‘5), and the role nodes (‘1). The non-context incre-
ments and their roles are needed to embed the context and to prevent unwanted folding
between context and non-context increments. For the example rule, the context consists
of the two ports connected in the source document (‘2, ‘4), the related ports in the
Aspen document (‘9, ‘10), and the relating sublinks (‘6, ‘8).

On the right-hand side, a new context node is created (‘15). It is connected to all
nodes belonging to the context by role nodes (11’, 12’, 13’, 14’, 16’, 17’) and
appropriate edges. If the matching of the context is ambiguous, multiple context nodes
with their roles are created as the production is executed for all matches.

Because the selection phase is executed repeatedly, it has to be made sure that each
context match (context node and role nodes) is added to the graph only once. The con-
text match cannot be included directly as negative nodes on the left-hand side because
edges between negative nodes are prohibited in PROGRES. Therefore, this is checked
using an additional graph test which is called in the restriction on the rule node. The
graph test is not presented here because it is rather similar to the right-hand side of this
production.

The context is checked for all possible rule applications. To make sure, that the
context belonging to the right rule is checked, the rule id is checked in the condition
part of the productions. After the context of a possible rule application has been found,
the rule can be applied.

transformation + GEN_selectRuleAndContextAutomatically1L
(out selRule : rule) =

‘7 : rule

‘5 : context

‘4 : context
possibleContext

possibleContext

‘1 : rule

possibleRule

‘6 : Link

possibleRule

possibleRule

‘2 : Link

conflictsWith

‘3 : overlapping

::=

4’ = ‘4
selectedContext

1’ = ‘1

selectedRule

2’ = ‘2

return selRule := ‘1;
end;

Fig. 8. Select unambiguous rule

After the context has been checked for all possible rule applications, some rules can
be applied, others still have to wait for their context. The next step of the algorithm (find
unambiguous rule) tries to find a rule application that is not involved in any conflict. The
conflicts have already been determined in the construction phase. Because any incre-
ment may be referenced by an arbitrary number of links as context, no new conflicts are
induced by the context part of the integration rules. The generic PROGRES production
in Figure 8 finds rule applications that are not part of a conflict. On the left-hand side
a rule node is searched (‘1) that has only one context node and is not related to any
overlapping node. It has to be related to exactly one half link (‘2) that does not have an-
other rule node. For forward transformation rules, a rule node belongs to one link only,
while nodes of consistency analysis rules are referenced by two half links. Therefore
for consistency analysis rules, another production is used which is not shown here. A
rule node is not selected for execution if there are conflicting rules, even if their context
is still missing. As the context may be created later, the user has to decide whether to
execute this rule and thereby making the execution of the other rules impossible.

If a match is found in the host graph, the rule node and the context node are se-
lected for execution by substituting their referencing edges by selectedRule and
selectedContext edges, respectively. The rule node is returned in the output pa-
rameter selRule. The corresponding rule can be applied in the execution phase.

In the example in Figure 4 d), no rule can be automatically selected for execution.
The context of Rc is not yet available and Ra and Rb as well as Rb and Rc are conflict-
ing.

If no rule could be selected automatically, the user has to decide which rule has to
be executed. Therefore, in the next step (find decisions), all conflicts are collected and
presented to the user. For each half link, all possible rule applications are presented. If
a rule application conflicts with another rule of a different half link, this is presented
as annotation at both half links. Rules that are not executable due to a missing context
are included in this presentation but cannot be selected for execution. This information
allows the user to select a rule manually, knowing which other rule applications will be
made impossible by his decision. If there are no decisions left, the algorithm terminates.
If there are still half links left at the end of the algorithm, the user has to perform the
rest of the integration manually. If there are decisions, the result of the user interaction
is stored in the graph (ask for user decision) and the selected rule is executed in the
execution phase. In the example, the user selects rule Ra.

4.4 Execution Phase

The rule that was selected in the selection phase is executed in the execution phase.
Afterwards, the information collected during the construction phase has to be updated.

In the example (Figure 4 e), the corresponding rule of the rule node Ra is executed.
As a result, the increments I4 and I5 are created and references to all increments are
added to the link L1.

Rule execution is performed by a rule specific PROGRES production, see Figure 9.
The left-hand side of the production is nearly identical to the right-hand side of the
context check production in Figure 7. The main difference is that the edge from the link
(‘10) to the rule node (‘7) is now a selectedRule edge and the edge from the rule
node to the context node (‘13) is a selectedContext edge. The possibleRule
and possibleContext edges are replaced when a rule together with a context is
selected for execution either by the user or automatically.

On the right-hand side, the new increments in the target document are created and
embedded by edges. In this case, the connection (18’) is inserted and connected to the
two Aspen ports (14’, 15’). The half link (10’) is extended to a full link, referencing
all context and non-context increments in source and target document. The information
about the applied rule and roles etc. is kept to be able to detect inconsistencies occurring
later due to modifications in source and target documents.

The following steps of the algorithm are performed by generic productions that up-
date the information about possible rule applications and conflicts. First, obsolete half
links are deleted. A half link is obsolete if its dominant increment is referenced by an-
other link as non-context increment. In the example this is not the case for any half link
(Figure 4 e). Then, possible rule applications that are no longer possible are removed.
In Figure 4 f), Rb is deleted because it depends on the availability of I2 which is now

transformation + TRC2A_R3_apply (selRule : rule) =

isAssignedTo

hasContextRole

hasContextRole

‘10 : Link

‘15 : AspenInPort

‘14 : AspenOutPort

‘6 : ComosInPort

‘4 : ComosOutPort

connectsComosOutPort

connectsComosInPort

hasRole

selectedRule

toComosDominant

toComosIncrement

toComosIncrement

consistentLink

consistentLink

toAspenIncrement

toAspenIncrement

selectedContext

isAssignedTo

isAssignedToisAssignedTo

isAssignedTo

hasContextRole

hasContextRole

hasContextRole

hasContextRole

isAssignedTo

isAssignedTo

‘2 : role

‘7 = selRule

‘1 : role

‘5 : ComosConnection

‘3 : role

‘8 : role

‘12 : role

‘9 : subLink

‘11 : subLink ‘17 : role

‘16 : role

‘13 : context

::=

hasContextRole

15’ = ‘15

14’ = ‘14

6’ = ‘6

4’ = ‘4

connectsComosOutPort

connectsComosInPort

isAssignedTo

hasRole

appliedRule

toComosDominant

toComosIncrement

toComosIncrement
toAspenIncrement

toAspenIncrement

appliedContext

isAssignedTo

isAssignedTo
isAssignedTo

isAssignedTo

hasContextRole

hasContextRole

hasContextRole

connectsAspenInPort

connectsAspenOutPort

toAspenDominant

toAspenContext

toAspenContext

toComosContext

toComosContext

toIntegrationContext

toIntegrationContext

isAssignedTo

isAssignedTo

hasContextRole

hasContextRole

7’ = ‘7

2’ = ‘2

3’ = ‘3

5’ = ‘5

1’ = ‘1

8’ = ‘8

12’ = ‘12

11’ = ‘11

9’ = ‘9

18’ : AspenConnection10’ = ‘10

17’ = ‘17

16’= ‘16

13’= ‘13

condition ‘10.status = checked;
‘7.ruleId = "C2A-R3";

transfer 10’.status := ruleBasedConsistent;
end;

Fig. 9. Execute rule

referenced by L1 as non-context increment. If there were alternative rule applications
belonging to L1 they would be removed, as well. Last, obsolete overlappings have to
be deleted. In the example, O1 is removed because Rb was deleted. Please note that the
cleanup procedure may change depending on how detailed the integration process has
to be documented.

5 Related Work

Our approach to incremental integration for development processes is based on the
triple graph grammar approach introduced by Schürr [3] and early work at our de-
partment in the area of software engineering [10] during the IPSEN project [11]. We
adapted the results to the domain of chemical engineering [12] and extended the origi-
nal approach: now, we are dealing with the problem of a-posteriori integration, the rule

definition formalism was modified [13] and the rule execution algorithm was further
elaborated to support conflict detection (see Section 4).

Related areas of interest in computer science are (in-) consistency checking [14]
and model transformation. Consistency checkers apply rules to detect inconsistencies
between models which then can be resolved manually or by inconsistency repair rules.
Model transformation deals with consistent translations between heterogeneous mod-
els. In the following a few projects of both areas are presented which are using graph
transformations. Our approach contains aspects of both areas but is more closely related
to model transformation.

In [15], a consistency management approach for different view points [16] of de-
velopment processes is presented. The formalism of distributed graph transformations
[17] is used to model view points and their interrelations, especially consistency checks
and repair actions. To the best of our knowledge, this approach works incrementally but
does not support detection of conflicting rules and user interaction.

The consistency management approach of Fujaba [18] supports inter-model consis-
tency checks. The approach is based on triple graph grammars [3] as well. Comparable
to our approach, different graph transformations are derived from each triple rule. User
interaction is restricted to choosing the repair action for a detected inconsistency. Con-
flict detection between different inconsistency checking rules is supported only w.r.t.
preventing endless loops if repair actions create new inconsistencies.

Model transformation recently gained increasing importance because of the model
driven approaches for software development like the model driven architecture (MDA)
[19]. In [20] and [21] some approaches are compared and requirements are proposed.

The PLCTools prototype [2] allows the translation between different specification
formalisms for programmable controllers. The translation is inspired by the triple graph
grammar approach [3] but is restricted to 1:n mappings. The rule base is conflict free so
there is no need for conflict detection and user interaction. It can be extended by user
defined rules which are restricted to be unambiguous 1:n mappings. Incrementality is
not supported.

In the AToM project [1], modelling tools are generated from descriptions of their
meta models. Transformations between different formalisms can be defined using graph
grammars. The transformations do not work incrementally but support user interaction.
Unlike in our approach, the control of the transformation is contained in the user-defined
graph grammars.

The QVT Partner’s proposal [22] to the QVT RFP of the OMG [23] is a relational
approach based on the UML and very similar to the work of Kent [24]. While Kent
is using OCL constraints to define detailed rules, the QVT Partners propose a graphi-
cal definition of patterns and operational transformation rules. Incrementality and user
interaction are not supported.

BOTL [25] is a transformation language based on UML object diagrams. Compara-
ble to graph transformations, BOTL rules consist of an object diagram on the left-hand
side and another one on the right-hand side, both describing patterns. Unlike graph
transformations, the former one is matched in the source document and the latter one
is created in the target document. The transformation process is neither incremental

nor interactive. There are no conflicts because of very restrictive constraints on the rule
base.

Transformations between documents are urgently needed (not only) in chemical
engineering. They have to be incremental, interactive and bidirectional. Additionally,
transformation rules are most likely ambiguous. There are a lot of transformation ap-
proaches and consistency checkers with repair actions that can be used for transforma-
tion as well, but none of them fulfills all of these requirements. Especially, the detection
of conflicts between ambiguous rules is not supported. We address these requirements
with the integration algorithm described in this contribution.

6 Conclusion

We have presented a novel approach to the execution of integration tools in incremental
and interactive integration tools using graph transformations. Our approach was eval-
uated in an industrial cooperation with the German software company Innotec with a
simplified prototype for the integration of flow sheets and simulation models imple-
mented in C++. In parallel to our work with PROGRES, we developed a light-weight
framework [12] for the rapid construction of integration tools. Current work aims at
integrating the rule execution approach presented here into this framework.

Acknowledgements

This work was in part funded by the CRC 476 IMPROVE of the Deutsche Forschungs-
gemeinschaft (DFG). Furthermore, the authors gratefully acknowledge the fruitful co-
operation with innotec.

References

1. de Lara, J., Vangheluwe, H.: Computer aided multi-paradigm modelling to process petri-nets
and statecharts. In: Proc. of 1st Int. Conf. on Graph Transformations (ICGT 2002). LNCS
2505, Springer (2002) 239–253

2. Baresi, L., Mauri, M., Pezzè, M.: PLCTools: Graph transformation meets PLC design. Elec-
tronic Notes in Theoretical Computer Science 72 (2002)

3. Schürr, A.: Specification of graph translators with triple graph grammars. In: Proc. of the
20th Intl. Workshop on Graph-Theoretic Concepts in Computer Science (WG 1994). LNCS
903, Herrsching, Germany, Springer (1995) 151–163

4. Becker, S.M., Westfechtel, B.: Incremental integration tools for chemical engineering: An
industrial application of triple graph grammars. In: Proc. of the 29th Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2003). LNCS 2880, Springer (2003) 46–57

5. Lohmann, S.: Ausführung von Integrationsregeln mit einem Graphersetzungssystem. Mas-
ter’s thesis, RWTH Aachen University, Germany (2004)

6. Nagl, M., Marquardt, W.: SFB-476 IMPROVE: Informatische Unterstützung übergreifender
Entwicklungsprozesse in der Verfahrenstechnik. In: Informatik ‘97: Informatik als Innova-
tionsmotor. Informatik aktuell, Aachen, Germany, Springer (1997) 143–154

7. innotec GmbH: COMOS PT Documentation, http://www.innotec.de. (2003)

8. Aspen-Technology: Aspen Plus Documentation, http://www.aspentech.com. (2003)
9. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and environment.

Volume 2. World Scientific (1999) 487–550
10. Lefering, M., Schürr, A.: Specification of integration tools. [11] 324–334
11. Nagl, M., ed.: Building Tightly-Integrated Software Development Environments: The IPSEN

Approach. LNCS 1170. Springer, Berlin, Germany (1996)
12. Becker, S., Haase, T., Westfechtel, B., Wilhelms, J.: Integration tools supporting cooperative

development processes in chemical engineering. In: Proc. of the 6th Biennial World Conf. on
Integrated Design and Process Technology (IDPT-2002), Pasadena, California, USA, Society
for Design and Process Science (2002) 10 pp.

13. Becker, S.M., Haase, T., Westfechtel, B.: Model-based a-posteriori integration of engineering
tools for incremental development processes. Journal of Software and Systems Modeling
(2004) to appear.

14. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey
and open research issues. In: Handbook of Software Engineering and Knowledge Engineer-
ing. Volume 1. World Scientific (2001) 329–380

15. Enders, B.E., Heverhagen, T., Goedicke, M., Tröpfner, P., Tracht, R.: Towards an integration
of different specification methods by using the viewpoint framework. Transactions of the
SDPS 6 (2002) 1–23

16. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint oriented software development. In:
Intl. Workshop on Software Engineering and Its Applications. (1990) 374–384

17. Taentzer, G., Koch, M., Fischer, I., Volle, V.: Distributed graph transformation with applica-
tion to visual design of distributed systems. In: Handbook on Graph Grammars and Comput-
ing by Graph Transformation: Concurrency, Parallelism, and Distribution. Volume 3. World
Scientific (1999) 269–340

18. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for flexible and incremental consistency
mangement. In: Proc. of the Intl. Conf. on the Unified Modeling Language (UML 2003),
San Francisco, California, USA, Springer (2003)

19. OMG Architecture Board ORMSC: Model driven architecture (MDA) (2001)
20. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The missing link

of MDA. In: Proc. of 1st Intl. Conf. on Graph Transformations (ICGT 2002). LNCS 2505,
Barcelona, Spain, Springer (2002) 90–105

21. Kent, S., Smith, R.: The Bidirectional Mapping Problem. Electronic Notes in Theoretical
Computer Science 82 (2003)

22. Appukuttan, B.K., Clark, T., Reddy, S., Tratt, L., Venkatesh, R.: A model driven approach to
model transformations. In: Proc. of the 2003 Model Driven Architecture: Foundations and
Applications (MDAFA2003). CTIT Technical Report TR-CTIT-03-27, Univ. of Twente, The
Netherlands (2003)

23. OMG: MOF 2.0 query / view / transformations, request for proposal (2002)
24. Akehurst, D., Kent, S., Patrascoiu, O.: A relational approach to defining and implementing

transformations between metamodels. Journal on Software and Systems Modeling 2 (2003)
25. Braun, P., Marschall, F.: Transforming object oriented models with BOTL. Electronic Notes

in Theoretical Computer Science 72 (2003)

