
1

Integration Tools for Supporting Incremental Modifications
within Design Processes in Chemical Engineering∗

Birgit Bayer a, Simon Beckerb, Manfred Naglb

aProcess Systems Engineering, Turmstr. 46
bComputer Science III, Ahornstr. 55
Aachen University of Technology, D-52056 Aachen, Germany

Keeping the vast amount of inter-document relations consistent, which relate entities of dif-
ferent documents, is important for the quality and efficiency of design processes. Especially,
these relations are eminent for master documents, as flowsheets (PFD) in chemical engineer-
ing, because management decisions are based on statements derived from PFDs. This paper
introduces novel tools for an incremental and interactive update or check of such relations.

1. INTRODUCTION

In the process industries, there is a growing demand for the improvement ofdesign processes
in order to obtain better design results in shorter development cycles. The design results are
of major interest for the topmanagementof a chemical company, as they are the basis for
decisisonsif, when, and how to build a new plant or to modify an existing one.

Currenttool supportis mainly characterized by numerous software tools forspecific purposes
or isolated partsof the design process. However, a sustainable improvement of the design pro-
cess can only be achieved by the integration of application tools into a design environment [1].
During the last years, commercial environments like Aspen Zyqad or intergraph’s SmartPlant
have been developed. They are mainly restricted to the tools of the corresponding vendor. The
adaption to specific work processes of developers within a company or the integration of arbi-
trary tools, especially from other vendors, are not generally solved.

One key aspect of tool integration is theintegration of the data created and used within
different tools. These data are kept in separate heterogeneous documents, stored in independent
files or databases. Nevertheless, their contents have to be consistent to each other. E. g., the
process structure in a simulation model used to describe and predict the behaviour of a chemical
process has to be consistent to the structure of the process represented in a flowsheet. Therefore,
elements like reactors or streams in one document are related to corresponding elements in
the other. This results in manyfine-grained, inter-document dependencies, which have to be
managed and which are the focus of this paper. Furthermore, coarse-grained data integration
(version and configuration control) has to be managed too [2], which is not presented here.

Within design processes, especially if concurrent and simultaneous engineering are applied,
incremental change processesare performed, where changes have to bepropagatedprecisely
through the network of dependent documents. Therefore, tools are needed to support developers
in keeping different documents in a consistent state. Currently, these fine-grained dependencies
are managed manually by developers without appropriate tool support.

∗Financial support by Deutsche Forschungsgemeinschaft for Collaborative Research Center 476 IMPROVE.

2

In this paper,tools will be presented thatmodelthe dependenciesbetween different docu-
ments types and documents explicitly. On this basis, integration tools are derived supporting
developers within change processes and for consistency management. Therefore, integration
tools also integrate those tools by which source and target documents are elaborated. These in-
tegration tools are one of four novel approaches investigated within the Collaborative Research
Center IMPROVE [3, 4], to support design processes in chemical engineering on top of existing
design tools (a-posteriori integration).

Integrationtoolscan only be built, if there isstructurewithin corresponding documents. For-
tunately, this is often the case, e. g. between a flowsheet and a simulation model. The flowsheet
plays the role of a master document in chemical engineering [5]. These tools have to workin-
crementallyto serve for change processes, they consider design decisionsinteractively, as there
are different possibilities to relate elements of different documents to each other, and they are
responsible formanagingthe fine-graineddependenciesbetween different documents. Integra-
tion tools have been built in the domain of software development for some time [6].

For therealizationof integration tools amethodologyhas been developed. It consists of a top-
down part, which is described in this paper, and a bottom-up part to build wrappers on top of
existing tools, to get homogeneous interfaces. The methodology consists of three steps: within
the information model CLiP the different types of entities of the chemical engineering domain
are ordered into partial models and clearly described in a conceptual multi-level framework
(sect. 2). Dependencies of this description are further refined (sect. 3): Firstly, the potential
dependencies are modeled on type level. Then, patterns of object sturctures together with their
links are defined and tool behaviour is specified, e. g. for a forward transformation. Finally,
integration tools are realized a component framework. A short outlook concludes the paper.

2. INFORMATION MODELS FOR SPECIFYING INTEGRATION TOOLS

In order to be able to implement integration tools that allow to interrelate data of different
application tools, thedatahandled andstoredin thesetoolsand their mutualdependencieshave
to beunderstood. One possibility to obtain such an understanding are information models, in
which data structures and dependencies are described in an abstract and formal manner.

The information model CLiP(ConceptualLifecycleProcess model) has been developed to
describe the information and work processes of the chemical engineering domain in a concep-
tual manner, i. e. independently from a specific implementation [7]. CLiP coversthreemodel
levels, on which concepts are given on different degrees of abstraction.

On themeta level, thetechnical system is introduced representing all kinds of technical
artifacts, that are built to fulfill some functionality (cf. Fig. 1.a). Examples fortechnical
systems are chemical plants, computer systems, or mathematical models. Within atechni-
cal system , two types of subsystems can be distinguished:devices which hold the major
functionality andconnections that link the different devices together. The connectivity
of devices and connections is represented by theirports , which are connected via
couplings .

On thetype level, CLiP is refined for the representation of information needed during chemi-
cal process design by introducingtypes(classes) ofentities(cf. Fig. 1.b). The chemical process
itself and mathematical models used to describe the process’ behavior are of major importance
here. Both are instances oftechnical system ; their mainelementsandrelationsare given
in Fig. 1.b.Process steps like separations, reactions, or unit operations are the devicesof

3

TechnicalSystem

modeled by

Connection

Device

Port

Coupling

has

connects
2

0..n

1

1..n
TechnicalSystem

modeled by

Connection

Device

Port

Coupling

has

connects
2

0..n

1

1..n

Process Mathematical Model

ProcessStep
modeled by

PhaseSystem

ProcessPort

ProcessState

Model

represented by

1..n 2

1..n

1..n 0..n

0..n

0..n

0..n

2

ModelCoupling

1

2

1

modeled by

modeled by

PFR

Enthalpy
Change

RPlug

Heater

Connector

Process Mathematical Model

ProcessStep
modeled by

PhaseSystem

ProcessPort

ProcessState

Model

represented by

1..n 2

1..n

1..n 0..n

0..n

0..n

0..n

2

ModelCoupling

1

2

1

modeled by

modeled by

PFR

Enthalpy
Change

RPlug

Heater

Connector

a) meta level: technical system b) type level: partial models, types of entities, relations

Figure 1. Meta and type level of the CLiP information model

thechemical process. Their connections arephase systems representing an amount of ma-
terial at a certainprocess state which is exchanged between two process steps via their
process ports . A phase system can be a material stream with a distinct flow rate (e. g.
kmol/hr) as well as a material amount or hold-up with a distinct amount (e. g. kmol). The
process state can characterize the exchanged material in an unambiguous manner.

Mathematicalmodels , as part of the information model’s type level, can be developed with
an internal structure and specified inputs and outputs that represent thestructureof themodeled
system. Models haveconnectors , which can be used for connecting two models with an-
other viamodel couplings . The left side of Fig. 1.b belongs to thepartial modelProcess
the right side toMathematical Model .

From a conceptual point of view,process steps andphase systems can be related
to the models which are used for their representation (see Fig. 1.b), in this case defining
dependencies between entitiesof two different partial models. In principle, the relationship is
many-to-many, because a process step might be represented by an arbitrary number of models,
or one model can be used to represent different (similar) process steps. Furthermore, for the
representation of aprocess step within one specificmodel more than one model building
block might be needed, e. g. for the description of different phenomena occurring in parallel.

The structure of the chemical process given by the connectivity of theprocess ports is
reflected on the model side byconnectors . Process steps andmodels can be decom-
posed in a hierarchical manner; the structure of these decompositions are interdependent. So,
both sides of Fig. 1.b can be refined by givingspecific typesof the entities for a specific domain
within chemical engineering via specialization of basic entity types. For example,PFR is a
specificprocess step . Thereby, thedependenciesshown in Fig. 1.b are instantiated more
specifically.

The type level of the information model defines the basicknowledgeof an applicationdo-
main. It is grouped into partial models and defines the entity types in a specialization hierarchy.
This hierarchy forms an ontology of this domain. The relationships of this model are the basis
for the development of an integration tool between Comos PT [8], a design data base where

4

information about the chemical process and the single process steps is kept, and Aspen Plus [9],
whose model building blocks are special types of mathematical models.

3. INCREMENTAL INTEGRATION TOOLS

Integration tools manage the fine-grained relationships between structured documents con-
taining entities, the types of which are described in CLiP. The relationships are used to incre-
mentally propagate changes between documents, to check such relations etc. Integration tools
are used to detect these relationships and to perform the changes, checks, etc. In this section
we describe themethodology part belowof CLiP to realize such tools. As example, we take a
tool that manages the consistency of process flow diagrams (PFD) in Comos PT and simulation
models in Aspen Plus.

For simple cases, therelationsbetween classes definedon type levelof CLiP can be directly
transformed into integration rules. E. g., theEnthalpyChange process step is related to the
Heater model (cf. Fig. 1.b). A rule that can be derived from this relation can informally be
described as follows: “If a stepEnthalpyChange is contained in the PFD, insert aheater
in the simulation model and memorize the dependency between both.”

For each such relation there can be aforward rule, which transforms the PFD to a simula-
tion model, abackwardrule for the opposite direction, aconsistency checkingrule, etc. The
dependencies are stored in an additional document, that is called integration document.

In general,relationshave to be defined in terms ofcorresponding object patterns. As exam-
ple, a correspondence can be defined between a pattern in Comos PT and a pattern in Aspen
Plus, see Fig. 2.a. The pattern in Comos PT consists of a reactor (PFR) with its input and output
ports. This pattern is related via alink to a pattern in the simulation model which consists
of two reactors (RPlug andREquil), connected by a stream via appropriate ports. This can
be necessary in some situations if the reaction in the PFR is too complex to be modeled by
only one reactor in Aspen Plus. Again, this relation can be transformed todifferent rules. In
Fig. 2.a, a forward rule is depicted. The applications of the UML-constraint{new} indicate
that if aPFR is found in the PFD, the corresponding simulation model structure is created and
the dependency is stored in the integration document.

Each structural entity like a stream or a chemical device is described in detail by a large set
of attributes. Theseattributeshave to be keptconsistentas well. Therefore, each rule can be
enriched with pieces of scripting code that contain attribute assignments. At rule enactment, the
user can choose which piece of code to apply.

Fig. 2.b shows an excerpt from a sampleintegration documentof the Comos PT-Aspen Plus
integrator. The dependencies are stored as links referencing the dependent entities of the cor-
responding documents. The application of the rule depicted in Fig. 2.a results in the linkL3 .
ThePFRcontained in the rule was mapped to thePFR in the sample PFD, the corresponding
structure of the simulation model and the link in the integration document were created. Other
rules applied transformed the other entities in the same way.

Furthermore, the transformed entities of the simulation model have to be connected to each-
other as well. Therefore, a special rule is defined to transform the couplings from Comos PT
to Aspen Plus. For instance, the linkL4 in the sample integration document results from the
execution of that rule. To determine the source port of the new couplingt2 , via the component
s1 the tool can find the corresponding linkL1 which contains a mapping of the ports ofs1 to
the ports oft1 (target port analog). This results in dependencies of the linkL4 to link L1 and

5

Comos PT

integration document

Aspen Plus

T5 :
REquil

T3 :
Stream

T2 :
Connection

T4 :
Connection

S1.P1 :
Port

S1.P2 :
Port

T1.P1 :
In

T1.P2 :
Out

T3.P1 :
In

T3.P2 :
Out

T5.P1 :
In

T5.P2 :
Out

L1 : Link

T1 :
RPlug

S1 :
PFR

{new}

{new}

{new}

{new} {new} {new} {new} {new} {new} {new}

{new}

{new}

a) integration rule as
 UML coll. diagram

b) a sample integration
 document

RSTOIC

EQUILR

EnthalpyChange
UO

PFR3
1

1 21 2
2

HE
1

2
3 1

PFR
21 2 1 2 1 2

link L3link L1 link L4 link L2

L1 L4 L2 attribute
assignment

port
mapping

Comos PT

integration
document

Aspen Plus

s1

s2 s3
s5

s4

t1 t3t2 t4 t5 t6 t7

t9
context co

nt
ex

t

co
nt

ex
t

context
t8

Figure 2. Integration rule and integration document

L2 (arrows in Fig. 2.b). The components that can be read but not be modified by the rule are
referenced as context of the resulting link.

Integrationtools work as follows: In each run, the integrator first checks the links contained
in the integration document, which is empty in the first run. A link is in a consistent state if all
referenced entities are still available and unchanged. Then, the documents are searched for new
entity patterns which can be matched against existing rules. If more than one rule can be applied
alternatively, the user is asked for his decision. If the available rules do not fit the user’s needs,
links can be edited manually. When manually editing links, a user may detect that an entity
correspondence is a general object pattern, which can be enriched to form rules as described
above.

The described Comos PT-Aspen Plusintegrator [10] has been realized. The implementation
uses a multi-layered framework of reusable software components for integration tools. Beside
these general components, an integrator consists of some specific components, as e. g. tool
wrappers to easily access the tools and their data. Additionally, the specified integration rules
are used to define the integrator’s behaviour. The rules can either be interpreted at runtime
(which is important for rules defined on the fly), or translated into program code and compiled

6

as part of the integrator. The latter is used for efficient implementation of predefined rules that
will not change.

4. CONCLUSION AND OUTLOOK

In this paperintegration toolswere introduced which especially support designers for han-
dling change processes and consistency management, and which are of major importance for
quality and efficiency of design processes and also for implied management decisions. A
methodologywas presented for therealizationof such tools ranging from the definition of en-
tities and dependencies within an information model to the implementation of such tools using
reuse techniques. As example, a Comos PT-Aspen Plus integrator was explained.

From the information model side one step is still missing: Entities of different types within
an application domain belong to/occur within different forms of documents. The specification
of these documents, together with the definition of their internal structure should be a part of the
model. From the tool building side two steps are still missing: For defining the dependencies
of different documents a rule editor is currently under development. Furthermore, important in
the a-posteriori context, semantical wrappers are developed in order to equal the interfaces of
tools to be integrated w. r. t. their semantical levels. The methodology for integrators is applied
at various places of the scenario of IMPROVE. Thereby, also simpler forms of integration tools
are developed.

REFERENCES

[1] B. Beßling, B. Lohe, H. Schoenmakers, et al. Cape in process design – potential and
limitations. Computers & Chemical Engineering, 21(Suppl.), pp. 17–21, 1997.

[2] M. Nagl, R. Schneider, B. Westfechtel. Tool support for the management of design pro-
cesses in chemical engineering, to appear in Computers & Chemical Engineering.

[3] W. Marquardt, M. Nagl. Tool integration via interface standardization? In DECHEMA
Monographie. 36. Tutzing Symposium der DECHEMA e.V. “Informationsverarbeitung in
der Prozeß- und Anlagentechnik”, pp. 95–126, Wiley-VCH, 1999.

[4] M. Nagl, W. Marquardt. Tool integration via cooperation functionality. In ECCE 3, 3rd
European Congress of Chemical Engineering, paper 6–5. DECHEMA, 2001.

[5] B. Bayer, K. Weidenhaupt, M. Jarke, W. Marquardt. A flowsheet centered architecture for
conceptual design. In R. Gani, S.-B. Jørgensen (eds.) Europ. Symp. on Computer Aided
Process Engineering 11, pp. 345–350, Elsevier, 2001.

[6] M. Nagl (ed.). Building Tightly Integrated Software Development Environments: The
IPSEN Approach. LNCS 1170, 709 pp., Springer, 1996.

[7] B. Bayer, C. Krobb, W. Marquardt. A data model for design data in chemical engineering –
information models. Techn. Rep. LPT-2001-15, Lehrst. f. Prozesstechnik, RWTH Aachen.

[8] innotec GmbH. http://www.innotec.de, 2002.

[9] Aspen Technology. http://www.aspentech.com/brochures/aspenplus.pdf, 2002.

[10] S. Becker, T. Haase, B. Westfechtel, J. Wilhelms. Integration Tools Supporting Coopera-
tive Development Processes in Chemical Engineering. In Proc. of the 6th Conference on
Integrated Design & Process Technology. 10 pp., 2002.

