
2003 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 1-11

UML-BASED DEFINITION OF INTEGRATION MODELS FOR
INCREMENTAL DEVELOPMENT PROCESSES IN

CHEMICAL ENGINEERING

Simon M. Becker
Department of Computer Science III, Aachen University of Technology, Germany

Bernhard Westfechtel
Department of Computer Science III, Aachen University of Technology, Germany

In development processes, multiple tools are used to describe different aspects of the developed
product. The resulting information is stored in heterogeneous documents that are technically inde-
pendent but whose contents are closely related on the semantic level. Thus, if one document is
changed, these changes have to be propagated to dependent documents in order to restore mutual
consistency. Therefore, there is a need for incremental integration tools which assist developers in
consistency maintenance. Driven by this need, we realized a framework for building incremental
integration tools which is currently being used in the chemical engineering domain. Integration
tools are based on models of the related documents and their mutual relationships. These models
are defined in the Unified Modeling Language (UML).

Keywords: incremental integration, model-based transformation, UML

1. Introduction
Development processes in different engineering disciplines such as e.g. mechanical, chemical, or

software engineering are highly complex. The product to be developed is described from multiple in-
ter-dependent perspectives. The results of development activities are stored in documents such as e.g.
requirements definitions, software architectures, or module implementations in software engineering or
various kinds of flow diagrams and simulation models in chemical engineering. These documents are
connected by mutual dependencies and have to be kept consistent with each other. Thus, if one docu-
ment is changed, these changes have to be propagated to dependent documents in order to restore mu-
tual consistency.

Tool support for maintaining inter-document consistency is urgently needed. However, conven-
tional approaches suffer from severe limitations. For example, batch converters are frequently used to
transform one design representation into another. Unfortunately, such a transformation cannot proceed
automatically if human design decisions are required. Moreover, batch converters cannot be applied to
propagate changes incrementally. Furthermore, hypertext-like tools provide base mechanisms for es-
tablishing inter-document links which provide for traceability of the development process. However,
usually such tools do not incorporate semantic knowledge on the relationships between inter-dependent
documents. Therefore, support for consistency control and change propagation is severely limited.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 2

In (Becker et al. 2002), we presented a framework for building integration tools that offer more so-
phisticated support for maintaining inter-document consistency. Our approach is characterized by the
following features:
(1) Relationships between inter-dependent documents are stored in separate data structures, which

are called integration documents. An integration document consists of a set of links connecting
patterns of the related documents.

(2) Integration tools are driven by rules which specify the relationships between source and target
patterns. When a rule is applied, a corresponding link is inserted into the integration document.

(3) Integration tools operate incrementally inasmuch as they may be used to propagate changes be-
tween inter-dependent documents. That is, when one document is changed, only the effects of
this change are propagated to the related document; unaffected parts of the document are re-
tained.

(4) In general, integration tools are bidirectional, i.e., they can be used to propagate changes from
the source to the target document and vice versa.

(5) In general, it cannot be assumed that changes can be propagated automatically. Rather, integra-
tion tools operate interactively, i.e., they rely on human decisions concerning the selection of
which rule to apply in ambiguous situations.

(6) Change propagation is only one of multiple functions of integration tools. In addition, they can
be used for consistency analysis and browsing (traversing of links).

(7) Finally, integration tools are model-based, i.e., they are based on models of the related docu-
ments and their mutual relationships.

In this paper, we focus on the last feature mentioned above. We will demonstrate how the Unified
Modeling Language (UML, Booch et al., 1999) can be used to define the relationships between differ-
ent document types. First, class diagrams are used to define associations between related classes con-
tained in the documents’ models. Next, in collaboration diagrams corresponding patterns are identified
and related to each other. Finally, executable rules based on graph transformations are derived from the
corresponding patterns.

The rest of this paper is structured as follows: In Section 2, we present a motivating example from
the chemical engineering domain. In Section 3, we give an overview of our modeling approach. After
these preparations, the core part of the paper follows. Section 4 presents the meta model, which is used
in Section 5 to define actual integration models. Section 6 discusses related work, and Section 7 con-
cludes the paper.

2. Motivating Example
While the concepts underlying incremental integration tools are fairly general and domain-

independent, we have focused in particular on the chemical engineering domain. Therefore, we take the
motivating example from this domain. More specifically, we are interested in the relationships between
flow sheets and simulation models. A flow sheet describes the chemical process to be designed, while a
simulation model serves as input to a tool for performing steady-state or dynamic simulations. Hetero-
geneous tools may be used for creating flow sheets and simulation models, respectively. In the follow-
ing, we assume that the flow sheet is maintained by COMOS PT (Innotec, 2002) and simulations are
performed in Aspen Plus (Aspen Technology, 2002), both of which are commercial tools for chemical
engineering.

In chemical engineering, the flow sheet acts as a central document for describing the chemical proc-
ess. The flow sheet is refined iteratively so that it eventually describes the chemical plant to be built.
Simulations are performed in order to evaluate design alternatives. Simulation results are fed back to
the flow sheet designer, who annotates the flow sheet with flow rates, temperatures, pressures, etc.
Thus, information is propagated back and forth between flow sheets and simulation models. Unfortu-

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 3

nately, the relationships between them are not always straightforward. To use a simulator such as As-
pen Plus, the simulation model has to be composed from pre-defined blocks. Therefore, the composi-
tion of the simulation model is specific to the respective simulator and may deviate structurally from
the flow sheet.

PFR Flashing

Splitting

HE PFR

HEATER RPlug REQUIL

HE

FLASH

SPLIT
RPlug

REQUIL

L L L L L L L L L

1.)

2.)

3.b)

3.a)

4.)

flow sheet

simulation model

propagation of structure
propagation of attributes

HE

Fig. 1 Integration between flow sheet and simulation model

Figure 1 illustrates how an incremental integration tool assists in maintaining consistency between
flow sheets and simulation models. The chemical process taken as example produces ethanol from
ethen and water. Flow sheet and simulation model are shown above and below the dashed line, respec-
tively. The integration document for connecting them contains links which are drawn on the dashed
line1. The figure illustrates a design process consisting of four steps:
(1) An initial flow sheet is created in COMOS PT. This flow sheet is still incomplete, i.e., it de-

scribes only a part of the chemical process (heating of substances and reaction in a plug flow re-
actor, PFR).

(2) The integration tool is used to transform the initial flow sheet into a simulation model for Aspen
Plus. Here, the user has to perform two decisions. While the heating step can be mapped struc-
turally 1:1 into the simulation model, the user has to select the most appropriate block for the
simulation to be performed. Second, there are multiple alternatives to map the PFR. Since the
most straightforward 1:1 mapping is not considered sufficient, the user decides to map the PFR
into a cascade of two blocks. These decisions are made by selecting among the different possi-
bilities of rule applications the tool presents to the user.

(3) The simulation is performed in Aspen Plus, resulting in a simulation model which is augmented
with simulation results. In parallel, the flow sheet is extended with the chemical process steps
that have not been specified so far (flashing and splitting).

(4) Finally, the integration tool is used to synchronize the parallel work performed in the previous
step. This involves information flow in both directions. First, the simulation results are propa-
gated from the simulation model back to the flow sheet. Second, the extensions are propagated

1 This is a simplified notation. Some details of the document and integration model introduced later are omit-

ted.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 4

from the flow sheet to the simulation model. After these propagations have been performed, mu-
tual consistency is re-established.

The example presented above demonstrates the functionality of the integration tool, but it does not
show how this is achieved. As mentioned, integration tools are model- and rule-based. In the next sec-
tions, we will explain the modeling framework underlying incremental integration tools.

3. Overview

3.1. Levels of Modeling
In order to define the documents that are to be integrated, their relations, and the rules that control

the integration in a structured way, a multi-layered modeling approach based on UML is used. It fol-
lows the paradigm of meta modeling, i.e., each layer defines the constructs to be used on the next lower
layer. To express this paradigm in UML, we applied the approach introduced in (Schleicher et al.,
2001), which is based on the extension of the UML meta model.

meta model

UML
meta model

PFD
meta model extension

(document + integration)

model
type level

abstract instances

Aspen Plus and
Comos PT

document models

Aspen Plus and
Comos PT integration

associations

Aspen Plus and
Comos PT
integration

correspondences

Aspen Plus and
Comos PT
integration

rules

concrete instances

Aspen Plus
and

Comos PT
documents

instance of instance of

instance of

ex-
tends

uses

Aspen Plus and
Comos PT integration

integration
documents

Fig. 2 Levels of modeling

Figure 2 shows the different layers and their interdependencies. On the meta model level, the UML
meta model is enriched with modeling constructs that can be used on the model level to define process
flow diagram-like document types and to build models for the integration of such documents. The
process flow diagram (PFD) specific meta model is a specialization of an even more abstract meta
model for the integration of arbitrary documents which is omitted here.

Like in standard UML, the model level consists of the type level and the instance level. On the type
level document models for specific types of documents are defined. They are expressed as class hierar-
chies describing the documents’ underlying type systems. In our example, documents containing simu-
lation models for Aspen Plus and flow sheets for Comos PT are defined. To be able to perform an inte-

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 5

gration of these documents, associations2 between the classes contained in the documents' class hierar-
chies are drawn.

On the instance level, we distinguish between concrete instances and abstract instances. Correspon-
dences and rules are abstract instances. A correspondence relates a pattern contained in one document
to a pattern contained in another document. A pattern describes a template which can be matched
against an actual document. Here, Aspen Plus patterns are related to Comos PT patterns. Correspon-
dences can be enriched to become executable integration rules. These rules are used to perform the in-
tegration of two documents.

Concrete instances are used to describe actual document instances like Aspen Plus simulation mod-
els, Comos PT flow sheets, and integration documents. An integration document is created for each
integration of two documents. It contains links between related parts of the documents.

The different layers of modeling are explained in detail in Sections 4 and 5.

3.2. Modeling Process
Figure 3 shows the interrelations between the different parts of the model from a more practical

point of view. The meta model serves as basis both for the implementation of integration tools and the
rule modeling process. It is defined according to domain specific knowledge like, in our case, the in-
formation model CLiP (Bayer, 2003) for chemical engineering and the requirements concerning inte-
gration functionality.

rules

ab
st

ra
ct

in
st

an
ce

 le
ve

l
ty

pe
 le

ve
l

m
et

a
le

ve
l

associations

consistency check

interactive
refinement

document and
integration

meta model

consistency check

integration tool

implementation based on

correspondences

co
nc

re
te

in
st

an
ce

 le
ve

l

abstraction

controlling integration

integration tool

...

domain
specific

knowledge

source
document

integration
document

target
document

Fig. 3 Modeling process

2 These associations are different from the associations used in the UML standard. In the following, always

the prefix “UML” is used if it is referred to UML associations.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 6

Basically, there are two ways to define integration rules: top down, before the integration tool is ap-
plied, or bottom up, based on situations occuring during the usage of the tool. It is most likely that in
practice first a basic set of rules is defined top down by a modeling expert and then the rule base is ex-
tended bottom up by the engineer using the integration tool. Before any rules can be defined, the
documents to be integrated have to be modeled on type level, which is not shown in the figure. Next,
associations have to be defined on type level that declare types for possible correspondences on the
abstract instance level. Again, for both tasks domain specific knowledge has to be used.

Following a top down approach, now correspondences on the abstract instance level are modeled
based on the associations on type level. These are then interactively refined to integration rules. The
resulting set of rules is used by the integration tool to find corresponding parts of source and target
document and to propagate changes between these two documents. The correponding document parts
are related by links stored in the integration document. If no appropriate rule can be found in a given
situation, the chemical engineer performing the integration can manually modify source and target
document and add links to the integration document.

To extend the rule base bottom up, the links entered manually into the integration document can be
automatically abstracted to correspondences between patterns. Next, a consistency check against the
associations on type level is performed. If the correspondences are valid, the engineer is now guided
through the interactive refinement of the correspondence to integration rules by a modeling tool. The
rules are added to the rule base and can be used for the following integrations.

4. Meta Model
The meta model extends the UML meta model with constructs that can be used to define PFD

document types and associations between them. Figure 4 shows a UML class diagram which depicts
the meta model3. The document related part of the meta model is marked grey, the rest is integration
specific. The document meta model defines meta classes that are instantiated on the type level to define
the documents’ type hierarchies. The class PFD_Increment is the root of the type hierarchy. Only in-
stances of this class can be related by an association on type level. A PFD_Increment can be either a
Component or a Connection. A Component is a chemical Device that processes chemical sub-
stances or a Stream that transports them. Each Component can aggregate zero to many objects of
class Port. An additional constraint which is not depicted here assures that streams can have only two
ports. A Connection, which connects two ports, serves to represent the topological structure of the
flow sheet.

Instances of the integration specific meta class PFD_Link are used on type level to express associa-
tions between increment types. Each increment type can be referenced by at most one link as target
increment (toPFDTarget) or source increment (toPFDSource). This is ensured by the relations’ car-
dinalities and an additional constraint which is omitted here. An increment type can be referenced by
an arbitrary number of links as context increment (toPFDTargetContext, toPFDSourceContext).
One of the two documents that are to be integrated is chosen to be the source document containing
source increments and the other to be the target document containing target increments. This has no
influence on the direction in which information is propagated between both documents. Increments
referenced by a link as context increments cannot be modified by the resulting rule. Each link can be
extended by relating ports of the source document to corresponding ports in the target document via
instances of the meta class PortMapping. The knowledge of corresponding ports is needed by integra-

3 This is an informal presentation of the meta model. The new classes and UML associations have to be de-

fined as in (Schleicher et al., 2001). The cardinalities defined in the meta model do not refer to the next lower
level, the type level, but to the instance level. In a formal notation they would have to be defined as additional
constraints on the meta level.

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 7

tion rules that automatically reconnect components that are created in one document by other rules ac-
cording to the topological structure in the other document.

Port
(from PFD_Document)

toPorttoPort

PortMappingtoSourcePort

toTargetPort

toPFDSource

toPFDSourceContext

toPFDTarget

toPFDTargetContext

toPortMapping
document

meta model Component
(from PFD_Document)

PFD_Increment
(from PFD_Document)

Connection
(from PFD_Document)

Dev ice
(from PFD_Document)

Stream
(from PFD_Document)

PFD_Link

Fig. 4 Meta model

5. Model

5.1. Type Level
On the type level the type hierarchies of the source and the target documents are modeled and asso-

ciations between classes of the two hierarchies are defined. The instance-of relationship between
classes on the type level and their meta classes on the meta level is expressed with stereotypes. A class
with the stereotype <<mclass>> is an instance of the metaclass mclass.

HeatExchanger
<<Dev ice>>

HEATER
<<Dev ice>>

HEATX
<<Dev ice>>

Reactor
<<Dev ice>>

RSTOIC
<<Dev ice>>

REQUIL
<<Dev ice>>

RPlug
<<Dev ice>>

STREAM
<<Stream>>

MATERIAL
<<Stream>>

HEAT
<<Stream>>

AspenDev ice
<<Dev ice>>

AspenStream
<<Stream>>

AspenConnection
<<Connection>>

AspenComponent
<<Component>>

AspenPort
<<Port>> toAspenPort

<<toPort>>
toAspenPort
<<toPort>>

ComosDev ice
<<Dev ice>>

HE
<<Dev ice>>

HE2
<<Dev ice>>

a) b)

Enthalpy Change
<<Dev ice>>

0..2
1

0..n 0..n

Fig. 5 Document models of Aspen Plus (a) and Comos PT (b) (excerpt)

In Figure 5 a) an excerpt of the type hierarchy of Aspen Plus is depicted. The class AspenCompo-
nent which is an instance of the meta class Component is the common super class for AspenDevice
(instance of Device) and AspenStream (instance of Stream). Beneath these classes the simulation
components available in Aspen Plus for the simulation of devices and streams are modeled as further
subclasses. For instance, the class HeatExchanger is a superclass for all classes of heat exchangers

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 8

like HEATER and HEATX. The document model of Comos PT is structured similarly. Figure 5 b)
shows an excerpt containing some of the heat exchangers available for the definition of flow sheets in
Comos PT. They are grouped by the superclass EnthalpyChange.

AspenComponent
(from Aspen_Document)

<<Component>>

AspenConnection
(from Aspen_Document)

<<Connection>>

ComosComponent
(from Comos_Document)

<<Component>>

ComosConnection
(from Comos_Document)

<<Connection>>
AspenPort

(from Aspen_Document)

<<Port>>

toAspenPort
<<toPort>>

toAspenPort
<<toPort>>

ComplexLink
<<PFD_Link>>

toAspenComponent
<<toPFDSource>>

toAspenConnection
<<toPFDSource>>

toAspenContextComponent
<<toPFDSourceContext>>

toAspenContextConnection
<<toPFDSourceContext>>

toComosComponent
<<toPFDTarget>>

toComosContextComponent
<<toPFDTargetContext>>

toComosConnection
<<toPFDTarget>>

toComosContextConnection
<<toPFDTargetContext>>

ComosPort
(from Comos_Document)

<<Port>>

toComosPort
<<toPort>>

toComosPort
<<toPort>>

AspenComosPortMapping
<<PortMapping>>toAspenPort

<<toSourcePort>>

toAspenComosPortMapping
<<toPortMapping>>

toComosPort
<<toTargetPort>>

0..n

1

0..n0..2

0..n

0..1

0..n

0..n

0..n 0..1

0..n
0..n 1

0..n

0..1

0..n

0..1 0..n

0..n

0..n

1

0..n

0..1 0..n

0..n 0..n

0..1

0..n

0..1 0..2

HEATER
(from Aspen_Document)

<<Device>>
HE

(from Comos_Document)

<<Device>>
HeaterLink

<<PFD_Link>>toHeater
<<toPFDSource>>

toHE
<<toPFDTarget>>

AspenPort
<<Port>>

toAspenPort
<<toPort>>

ComosPort
<<Port>>

toComosPort
<<toPort>>

HeaterPortMapping
<<PortMapping>>

toHeaterPortMapping
<<toPortMapping>>

toHEATERPort
<<toSourcePort>>

toHEPort
<<toTargetPort>>

0..n 0..1 0..1 0..n

1 1 1

0..n0..n0..n

1 1 1 1

HeatExchanger
(from Aspen_Document)

<<Device>>

HeatExchangerLink
<<PFDLink>>toHeatExchanger

<<toPFDSource>>

EnthalpyChange
(from Comos_Document)

<<Device>>
toEnthalpyChange

<<toPFDTarget>>

11 1 1

a)

b)

c)

(from Aspen_Doc...) (from Comos_Doc...)

Fig. 6 Type level correspondences on different levels of abstraction

Beside the documents' type hierarchies associations between their types are modeled on type level.
For the top down modeling approach these associations are used to explicitly express domain knowl-
edge. For the bottom up modeling approach they are used to check the validity of corresponding pat-
terns on the abstract instance level. Associations are expressed with link classes that are related to the
associated classes via UML associations.

Type level associations can be defined on different levels of abstraction. This can be illustrated with
the help of the examples in Figure 6. Part a) shows an association between the classes HEATER of the
Aspen Plus type hierarchy and HE of the Comos PT type hierarchy. The class HeaterLink is an in-
stance of the meta class PFD_Link and expresses the association. A class HeaterPortMapping is de-
fined that can be used on the abstract instance level to specify which ports correspond to each other.
The cardinalities of the toHeater and toHE UML associations are one-to-one and the connected heater
classes both are leaves of the type hierarchies (see Figure 5).

The association in Figure 6 b) is similar to the one explained before, but in this case the related
classes are not leaves of the type hierarchies. The port mapping is omitted in this figure.

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 9

Associations like the two explained so far can be directly derived from domain specific knowledge.
For example, in our scenario they are gained from UML associations between partial models of the
chemical engineering data model CliP (Bayer, 2003).

The most generic association is depicted in Figure 6 c). This association allows the definition of ar-
bitrary corresponding patterns on the abstract instance level. Thus, all corresponding patterns that are
syntactically correct are an instance of this association. Of course, there are more associations defined
for our running example which are omitted here.

5.2. Abstract Instance Level
On the abstract instance level correspondences are defined as instances of the associations on the

type level. Then, the correspondences can be refined to become executable integration rules.

5.2.1. Correspondences
Each correspondence relates one pattern of the source document to one pattern of the target docu-

ment. A pattern describes a template consisting of components, ports, connections and their relations
which can be matched against the contents of concrete document instances.

L :
HeaterLink

S1 :
HEATER

T1 : HE

S1.P1(ProductIn) :
AspenPort

T1.P1(ProductIn) :
ComosPort

S1.P2(ProductOut) :
AspenPort

T1.P2(ProductOut) :
ComosPort

L.M1 :
HeaterPortMapping

L.M2 :
HeaterPortMapping

T1.P3(HeatIn) :
ComosPort

T1.P4(HeatOut) :
ComosPort

:toHEATERPort

:toHEATERPort :toHEPort

:toHEPort

:toAspenPort

:toAspenPort

:toComosPort

:toComosPort

:toComosPort

:toComosPort

:toHeaterPortMapping

:toHeaterPortMapping

:toHeater :toHE

Fig. 7 Correspondence between heaters based on the association in Figure 6 a)

The (static) UML collaboration diagram in Figure 7 shows the correspondence of an Aspen Plus
heater component (S1) and a Comos PT heater component (T1). This correspondence is an instance of
the association in Figure 6 a). Because the association relates only one increment type with cardinality
one-to-one to another increment type and both types are leaves of their type hierarchies, the main part
of the correspondence can be unambiguously derived from the association. This is done by instantiat-
ing the link class and both heater components of the association. Only the ports and their mappings
have to be defined manually. In this example, the Aspen Plus heater has only one input (S1.P1) and
one output port (S1.P2) for the substances that have to be heated. They are related via portmappings
(L.M1, L.M2) to the corresponding ports of the Comos PT heater (T1.P1, T1.P2). The additional ports
(T1.P3, T1.P4) of the Comos PT heater that are used for the cooling/heating fluid have no counterpart
in Aspen Plus. The meaning of this correspondence is that a HEATER component in an Aspen Plus
simulation model can be related to a HE component in a Comos PT flow sheet through a link in an in-
tegration document. This is the case in the example in Section 2. The integration rules that can be
gained from this correspondence through refinement will be presented later.

To ensure the validity of the correspondences, they have to be instances of associations. If a corre-
spondence is modeled by hand following the top down approach, the modeler should select the link

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 10

type from the parent association he intends to use. Then it can be ensured by the modeling environment
(e.g. Rational Rose) that the correspondence is consistent to this association. In this example, the type
HeaterLink was chosen from the association in Figure 6 a).

If the correspondence is gained from an existing integration document following the bottom up ap-
proach, it has to be matched against all available associations. The correspondence explained so far
could be an instance of all associations in Figure 6. All associations can be ordered following a heuris-
tic metric that is based on the cardinalities of the UML associations and the distance of the types used
to the leaves of the documents' type hierarchies. The less abstract an association is, the higher is its
value according to the metric. Following this metric, the association in Figure 6 a) would be assigned a
high value while the association in Figure 6 c) would get a low value. In general, the higher the sum of
the values of all matching associations for a correspondence, the stronger it is backed by the domain
knowledge contained in the model on type level. The correspondence’s type should be set to the asso-
ciation with the highest value.

S1 :
RPlug

S3 :
Stream

S2 :
AspenConnection

S4 :
AspenConnection

S5 :
REQUIL

T1 : PFRL :
ReactorLink

S5.P1 :
AspenPort

S5.P2 :
AspenPort

S3.P2 :
AspenPort

S3.P1 :
AspenPort

S1.P2 :
AspenPort

S1.P1 :
AspenPort

T1.P1 :
ComosPort

T1.P2 :
ComosPort

PM1 :
ReactorPortMapping

PM2 :
ReactorPortMapping

:toComosPort

:toAspenComosPortMapping

:toAspenComosPortMapping

:toComosComponent:toAspenComponent

:toAspenComponent

:toAspenConnection

:toAspenComponent

:toAspenConnection

:toAspenPort

:toAspenPort

:toComosPort

Fig. 8 Complex Correspondence

A more complex correspondence that is an instance of the association in Figure 6 c) only is depicted
in Figure 8. Here, a complex pattern in an Aspen Plus simulation model is related to a simple pattern in
Comos PT. The reaction performed in the reactor in Comos PT (T1) is too complex to be simulated in
only one reactor component in Aspen Plus. Therefore, two reactors (S1, S5) are connected with a
stream (S3) via the appropriate ports and connections. Only the ports that are used to connect the com-
plex structure to other components (S1.P1, S5.P2) are mapped (PM1, PM2) to the corresponding
ports in the flow sheet (T1.P1, T1.P2). One of the rules that can be gained from this correspondence is
used in the example in Section 2 to create the simulation blocks in Aspen Plus for the PFR in Comos
PT (cf. Figure 1).

5.2.2. Rules
Correspondences rather precisely specify which patterns of source and target documents can be re-

lated to each other. Nevertheless, information is still missing to obtain rules that can be executed by an

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 11

integration tool. Therefore, each correspondence can be enriched to gain several executable integration
rules. This is done with the help of constraints that are added to the UML collaboration diagrams de-
scribing the correspondences. The constraints are used to extend the corresponding patterns into simple
graph rewriting rules that are used to find a given situation in the target, source and integration docu-
ment and alter the three documents according to the rule. For a more detailed description of the rule
execution process please refer to (Becker et al., 2002).

T1 : HES1 :
HEATER

L1 :
HeaterLink

{new}

T1 : HES1 :
HEATER

L1 :
HeaterLink

{new}

T1 : HES1 :
HEATER

L1 :
HeaterLink

{not}

T1 : HES1 :
HEATER

L1 :
HeaterLink

{delete}

{new}

{new}

{delete}

{delete}
{not}

a) forward propagation

b) backward propagation

c) forward deletion

d) backward deletion

{delete}
:toAspen

Component

:toAspen
Component

:toAspen
Component

:toAspen
Component

:toComos
Component

:toComos
Component

:toComos
Component

:toComos
Component

{delete}

{delete}

{new} {new}

{new}{new}

Fig. 9 Link establishing (a, b) and inconsistency resolving (c, d) rules

There are two classes of rules: Rules that establish links and rules that deal with inconsistencies of
existing links that occur after a modification of previously integrated documents.

The following constraints are defined:
• Unmarked increments have to be present in the document.
• {not}: The marked increment must not exist.
• {new}: The marked increment must not exist and is created if the rest of the pattern was

matched.
• {delete}: The marked increment must exist and is deleted if the rest of the pattern was

matched.
• Additional constraints can be defined, e.g. to restrict the search to increments that have specific

attribute values.
Some of the rules that can be gained by enriching the correspondence in Figure 7 are illustrated in

Figure 9. The ports and their mapping are omitted for brevity. The rules a) and b) are link establishing
rules, c) and d) deal with inconsistencies. Rule a) is a forward transformation, i.e. information is propa-
gated from the source to the target document. Here, if an increment of type HEATER is found in the
simulation model, a corresponding increment of type HE is created in the flow sheet, and a new link is
created in the integration document that references both increments. Rule b) performs the same opera-
tion in the opposite direction; this rule was applied in the example in Section 2. Please note, that de-
spite the distinction between source and target document both forward and backward transformations
can be performed by one integration tool in one integration cycle. This is needed if both documents
were modified simultaneously and are to be made consistent by propagating the changes made in each
document into the other.

The inconsistency resolving rules (c, d) are executed similarly. Here, rules are depicted that deal
with restoring the consistency after the deletion of an increment that was referenced by a link previ-
ously. For instance, if a HeaterLink was established by rule a) or b), and the heater component in the
simulation model was deleted by the user, rule c) is executed with the result that both the link and the
heater component in Aspen Plus are deleted.

Of course, there can be more complex rules than the ones explained so far. For instance, from the
correspondence in Figure 6 c) several rules can be derived through the usage of the constraints defined
above.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 12

Another example for a complex rule is the one used to propagate connections between the docu-
ments (Figure 10). This rule is rather important because it is needed to reconnect patterns that were
created in a document by other rules, according to the topological structure of the document where they
originated. It can be used if port mappings are restricted to cardinality one-to-one. If two AspenPorts
(SP1, SP2) in the source document are connected (S1), the ports in the target document (TP1, TP2)
mapped to them are connected as well (T1) and a link between the two connections is created (L1).

L1 {new} :
ComplexLink

S1 :
AspenConnection

SP1 :
AspenPort

SP2 :
AspenPort

T1 {new} :
ComosConnection

TP1 :
ComosPort

TP2 :
ComosPort

PM1 :
AspenComosPortMapping

PM2 :
AspenComosPortMapping

:toComosPort

:toAspenPort

:toAspenPort

:toComosPort

:toComosPort

:toComosPort:toAspenPort

:toAspenPort

:toComos
Connection

:toAspen
Connection

{new}{new}

Fig. 10 Forward transformation rule for connections (1:1-port mapping)

5.2.3. Attribute Assignment
So far, only the structural aspects of correspondences and rules where adressed. In practice, each

component is further defined by a large number of attributes and their values. To deal with the consis-
tency of these attributes, each correspondence can be enriched by different attribute assignment state-
ments. Attribute assignments can be expressed using the OCL language. In our prototypic implementa-
tion Visual Basic Script is used to spare the translation of OCL to an executable specification. An at-
tribute assignment can access all attributes of the increments referenced by a link; those of context in-
crements can only be read, the others can be written as well. There are different situations in develop-
ment processes in which an integration is performed. Depending on the situation an appropriate attrib-
ute assignment is chosen. For instance, for each correspondence (i.e., for the set of resulting rules)
there is one attribute assignment for the initial generation of the simulation model, one to propagate the
simulation results back into the flow sheet, etc.

5.2.4. Concrete Instance Level
On the concrete instance level instances of source, target, and integration documents can be mod-

eled mirroring the structure of “real” documents. Here, the constructs introduced on type level can be
used like on the abstract instance level. Concrete instances of links found in actual integration docu-
ments can easily be abstracted to correspondences on abstract instance level. This is done by simply
replacing the identifiers of all objects by placeholders.

6. Related Work
At our department incremental integration tools were built for different areas of application, at first

for the domain of software engineering (Nagl, 1996). Recently, in our project being a part of the Col-
laborative Research Council IMPROVE (CRC 476) the domain of chemical engineering has been the
main focus (Cremer et al., 1999, Becker et al., 2002, Bayer et al., 2003). Our approach is based on
graph transformations and coupled graph grammars (Schürr, 1994).

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 13

We use UML (Booch et al., 1999) to express the multi-layered integration model. Therefore, exten-
sions to the UML meta model have to be made (Schleicher et al., 2001, Berner et al., 1999, Atkinson et
al., 2001).

In another project of the CRC 476 the data model CLiP for chemical engineering is developed
which consists of several partial models (Bayer, 2001). This data model is integrated in our document
models and the relations between the partial models defined in CLiP are used as a basis for the top-
down rule definition.

In current practice in chemical engineering (VDI, 2002), the dependencies between documents are
often managed by hand. This task is error-prone and time consuming. There are different approaches to
improve tool support: The definition and usage of standardized data models, the usage of central data-
bases or document management systems where all product information is stored, and batch converters
that generate a target document from a source document. While batch transformers lack user interac-
tion and incremental operation, the other approaches deal only with coarse grained integration or rely
on one-to-one relations between the documents' contents.

There are different research areas in computer science that deal with the problem of fine grained
dependencies between documents, mainly with software engineering as domain of application: Trace-
ability, model transformation, and inconsistency management.

Traceability is applied to track the requirements of a software system in products of later phases of
the development process (Ramesh et al., 2001). The main interest is to provide documentation of de-
pendencies that often have to be defined manually but not to give tool support for keeping dependent
documents consistent.

Model transformation deals with consistent translations between heterogeneous models. For in-
stance, this is of high importance for software development methods like model driven architecture
(Gerber et al., 2002). There are a lot of projects where graph grammars are used to specify the transla-
tion (Lara et al., 2002, Baresi et al., 2002). In (Milicev, 2002), UML is used. Most resulting translations
between models operate batch-like without user interaction and do not support incrementality.

The area of inconsistency management deals with the detection of inconsistencies between existing
documents (Spanoudakis et al., 2001, Olsson, et al., 2002). Methods are developed to interactively or
automatically resolve such inconsistencies.

In (Finkelstein et al., 1990), a framework is proposed that identifies different view points of a prod-
uct that is to be developed and provides the basis for their integration. One application of this frame-
work with emphasis on the integration between the different view points is presented in (Enders et al.,
2002). It is based on distributed graph grammars. This approach is similar to our work but it focuses on
the consistency check and the resolving of inconsistencies of existing documents. Operational rules are
defined as graph transformations from scratch, there is no prior definition of domain knowledge.

Xlinkit (Nentwich, 2001) is another project dealing with dependent documents. XML technology is
used to assure the documents’ mutual consistency. Because of the structure of the documents in our
domain, we believe that UML and graph grammars are better suited to model and execute integration
functionality.

7. Conclusion
We have reported on recent work on a framework for building incremental integration tools. The

framework has been developed in close cooperation with an industrial partner (innotec, which develops
and markets COMOS PT) under the umbrella of a long-term German research project (the Collabora-
tive Research Council IMPROVE) which is concerned with design processes in chemical engineering.
We have demonstrated how the UML may be used to define integration models for incremental inte-
gration tools. For creating models, we make use of a commercial CASE tool (Rational Rose). Current
work is concerned with analyzing UML models for consistency and with generating code for the inte-

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 7, No. 4, pp. 14

gration rules. Furthermore, the framework is generalized such that it can handle other domains as well
(so far, there are some domain-specific parts which assume PFD documents).

8. Acknowledgements
This work was partially funded by the CRC 476 of the Deutsche Forschungsgemeinschaft (DFG).

9. References
Aspen Technology, 2002, http://www.aspentech.com.
Atkinson, C., Kühne, T., 2001, “Processes and Products in a Multi-Level Metamodeling Architecture”,

International Journal of Software Engineering and Knowledge Engineering, World Scientific, Vol. 11, No. 6, pp.
761-783.

Baresi, L., Mauri, M., Pezzè, M., 2002, “PLCTools: Graph Transformation Meets PLC Design”, Proceedings
of the Workshop on Graph-Based Tools, GraBaTs 2002, Electronic Notes in Theoretical Computer Science, Vol.
72, No. 2, 11 pp.

Bayer, B., 2003, “Conceptual information modeling for computer aided support of chemical process design”,
Fortschritt-Berichte, VDI, Vol. 3, Nr. 787.

Bayer, B., Becker, S., Nagl, M., 2003, “Model- and Rule-Based Integration Tools for Supporting Incremental
Change Processes in Chemical Engineering”, Proceedings of the 8th International Symposium on Process
Systems Engineering, PSE2003, Elsevier, pp. 1256-1261.

Becker, S., Haase, T., Westfechtel, B. and Wilhelms, J., 2002, “Integration Tools Supporting Cooperative
Development Processes in Chemical Engineering”, Proceedings of the International Conference on Integrated
Process Technology, IDPT 2002, 10 pp.

Berner, S., Glinz, M., Joos, S., 1999, “A Classification of Stereotypes for Object-Oriented Modeling
Languages” Proceedings UML ‘99 - The Unified Modeling Language, Springer, LNCS 1723, pp. 249-264.

Booch, G., Jacobson, I., Rumbaugh, J., 1999, “The Unified Modeling Language User Guide”, Addison-
Wesley.

Cremer, K., Gruner, S., Nagl, M., 1999, “Graph Transformation based Integration Tools: Application to
Chemical Process Engineering”, Handbook of Graph Grammars and Computing by Graph Transformation Vol. 2,
World Scientific Publisher, pp. 369-394.

Enders, B., Heverhagen, T., Goedicke, M., Tröpfner, P., Tracht, R., 2002, “Towards an Integration of
Different Specification Methods by Using the Viewpoint Framework”, Transactions of the SDPS, Vol. 6, No. 2,
pp 1-23.

Finkelstein, A., Kramer, J., Goedicke, M., 1990, “ViewPoint Oriented Software Development”, Proceedings
of the 3rd International. Workshop on Software Engineering and its Applications, pp. 337-351.

Gerber, A., Lawley, M., Raymond, K., Stell, J., Wood, A., 2002, “Transformation: The Missing Link of
MDA”, Proceedings of the 1st International Conference on Graph Transformations, ICGT 2002, Springer, LNCS
2505, pp. 90-105.

innotec GmbH, 2002, http://www.innotec.de.
Lara, J. de, Vangheluwe, H., 2002, “Computer Aided Multi-Paradigm Modelling to Process Petri-Nets and

Statecharts”, Proceedings of the 1st International Conference on Graph Transformations, ICGT 2002, Springer,
LNCS 2505, pp. 239--253.

Milicev, D., 2002, “Automatic Model Transformations Using Extended UML Object Diagrams in Modeling
Environments”, IEEE Transactions on Software Engineering, Vol. 28, No. 4, pp. 413-430.

Nagl, M., 1996, “Building Tightly Integrated Software Development Environments: The IPSEN Approach”,
Springer, LNCS 1170, 709 pp.

Nentwich, C., Emmerich, W., Finkelstein, A., 2001, “Static Consistency Checking for Distributed
Specifications”, Proceedings of the International Conference on Automated Software Engineering, ASE 2001,
IEEE CS Press, pp. 115-124.

Transactions of the SDPS SEPTEMBER 2003, Vol. 7, No. 4, pp. 15

Olsson, T., Grundy, J., 2002, “Supporting Traceability and Inconsistency Management between Software
Artifacts”, Proceedings of Software Engineering and Applications, SEA 2002, ACTA Press, 6 pp.

Ramesh, B., Jarke, M., 2001, “Toward reference models for requirements traceability”, IEEE Transactions on
Software Engineering, Vol. 27, No. 1, pp. 58-93.

Schleicher, A., Westfechtel, B., 2001, “Beyond Stereotyping: Metamodeling Approaches for the UML”,
Proceedings of Hawaii International Conference on System Sciences, HICSS-34, 10 pp.

Spanoudakis, G., Zisman, A., 2001, “Inconsistency Management in Software Engineering: Survey and Open
Research Issues”, Handbook of Software Engineering and Knowledge Engineering, Vol. 1, World Scientific, pp.
329-380.

Schürr, A., 1994, “Specification of Graph Translators with Triple Graph Grammars”, Proceedings of the
International Workshop on Graph-Theoretic Concepts in Computer Science, WG '94, Springer, LNCS 903, pp.
151-163.

VDI, 2002, “Engineering in der Prozessindustrie” (in German), VDI-Berichte 1648.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Syntax
 /SyntaxBlack-Normal
 /SyntaxBlack-Ultra
 /Syntax-Bold
 /Syntax-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

