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Abstract. Triple graph grammars, an extension of pair graph grammars, were
introduced for the specification of graph translaters. We developed a framework
which constitutes an industrial application of triple graph grammars. It solves
integration problems in a specific domain, namely design processes in chemical
engineering. Here, different design representations of a chemical plant have to be
kept consistent with each other. Incremental integration tools assist in propagating
changes and performing consistency analysis. The integration tools are driven by
triple rules which define relationships between design documents.

1 Introduction

Triple graph grammars, an extension of pair graph grammars [1], were introduced at
the WG ‘94 workshop [2]. Originally, they were motivated by integration problems
in software engineering; later, they were applied to other domains as well. In general,
triple graph grammars may be used for the specification of graph translations, coupling
of graph structures, and consistency maintenance.

This paper reports on an industrial application of triple graph grammars. The Col-
laborative Research Centre IMPROVE [3] is concerned with the development of models
and tools for chemical engineering design. In IMPROVE, we realized a framework for
building incremental and interactive integration tools [4, 5]. The framework was de-
veloped in close cooperation with an industrial partner (innotec, a Germany software
company, which offers an engineering database system called COMOS PT).

In chemical engineering design, a chemical plant is described from different per-
spectives by a set of interrelated design documents, including various kinds of flow
sheets for describing the chemical process and the components of the chemical plant,
simulation models for steady-state and dynamic simulations, etc. Design proceeds in-
crementally, i.e., the design documents are gradually refined and improved. Throughout
the whole design process, interrelated design documents have to be kept consistent with
each other. Design documents may be represented as graphs in a natural way. Triple
graph grammars are used to define correspondences between graph structures. They
serve as specifications for rule-based integration tools.

Section 2 briefly recalls triple graph grammars. Section 3 introduces a motivating
example from the chemical engineering domain. Section 4 derives general requirements
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from the motivating example. Section 5 presents our framework for building incremen-
tal and interactive integration tools. Section 6 explains how triple rules are defined in
this framework. Section 7 is devoted to implementation issues. Section 8 discusses the
way we applied triple graph grammars and the experiences we made. Section 9 com-
pares related work. Section 10 presents a short conclusion.

2 Triple Graph Grammars

Pair graph grammars were introduced as early as 1971 by Pratt to specify graph-to-
graph translations [1]. A pair grammar defines a set of pair productions which mod-
ify the participating graphs and update correspondences between nodes. Triple graph
grammars [2] are an extension of pair graph grammars. They were motivated by the
study of integration problems in software engineering environments [6]. These studies
showed the need for a separate correspondence graph to be placed in between source
and target graph. The terms “source” and “target” denote distinct ends, but do not imply
a direction. A triple production consists of productions operating on source, correspon-
dence, and target graph, respectively, as well inter-graph mappings which are used to
relate elements of the correspondence graph to elements of the source and the target
graph, respectively.

Let us briefly recall some definitions from [2]:

– A graph is a quadruple
���������
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are defined such that they “preserve” source and target nodes.
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– A graph production & is applicable to a graph
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– A triple graph is a structure
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34�

,
; � , and
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denote source, correspondence, and target graph, respectively, and

�?687 and �?>#7 are graph morphisms.
– A triple production is a structure & �B�C� & 5 ��DCEF9:GH&�9=�JIKE �L� & � , where

� & , GM& ,
and

� & denote source, correspondence and target productions, respectively. ��DCE and
�NIKE are pairs of graph morphisms which map the left-hand and right-hand sides,
respectively.

– A triple production & is applicable to a triple graph
�

if its component produc-
tions are applicable to the component graphs and the production mappings may be
mapped onto the graph mappings. Application of & results in a triple graph

�O�
such

that the component productions are applied to the component graphs and the graph
mappings are updated according to the production mappings.

Based on these definitions, the following propositions were proved in [2]:

– A given triple production
& ���
��34(*�P34+��Q5 � DCE 9 � ; (*� ; +�� 9=� IKE �R�S@*(*��@*+��
�
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may be split into source-local production
& D�� ������3Q( �P3Q+ ��5�� 9 ��� ����� 9 �1�R��� �������
and a source-to-target production
& D I �'�
��34+O�
34+���5 � D E 9 � ; ( � ; +�� 9 � IKE �R�)@*( �
@*+����
such that & � &#D�� &#D I .

– A sequence of applications of triple productions &
	��
�
�)&�� is equivalent to the appli-
cation of all source-local productions &�	������
���)&������ , followed by the application of
all source-to-target productions &
	 ��� �
���)&�� ��� .
Triple graph grammars are used for the specification of graph-based integration

tools which may be classified as follows:

Synchronous coupling Source, correspondence, and target graph are modified syn-
chronously by applying triple productions.

Source-to-target translation Given a source graph
34�

and a sequence of source-local
productions, apply source-to-target productions, yielding a correspondence graph
; � and a target graph

@A�
.

Incremental change propagation Starting from a triple graph
� � �C34� � ; � �
@*�%� ,

first apply a sequence of source-local productions to
34�

and then propagate the
changes to ; � and

@*�
by applying corresponding source-to-target productions.

In the context of this paper, we will focus on incremental change propagation, which
in general may be performed bidirectionally.

3 Motivating Example

Incremental change propagation is essential in chemical engineering design, where
chemical plants are described in design documents from different perspectives. Below,
we focus on a problem which we have been studying in cooperation with an industrial
partner. innotec, a Germany software company, offers an engineering database system
called COMOS PT [7]. In particular, COMOS PT maintains flow sheets describing the
chemical process and the composition of the chemical plant to be designed. The prob-
lem was to integrate COMOS PT with Aspen Plus [8], a simulation environment pro-
vided by another vendor. In Aspen Plus, simulation models are created (and executed)
which have to be kept consistent with the corresponding flow sheets.

In chemical engineering, the flow sheet acts as a central document for describing
the chemical process. The flow sheet is refined iteratively so that it eventually describes
the chemical plant to be built. Simulations are performed in order to evaluate design
alternatives. Simulation results are fed back to the flow sheet designer, who annotates
the flow sheet with flow rates, temperatures, pressures, etc. Thus, information is prop-
agated back and forth between flow sheets and simulation models. Unfortunately, the
relationships between them are not always straightforward. To use a simulator such as
Aspen Plus, the simulation model has to be composed from pre-defined blocks. There-
fore, the composition of the simulation model is specific to the respective simulator and
may deviate structurally from the flow sheet.
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Fig. 1. Integration between flow sheet and simulation model

Figure 1 illustrates how an incremental integration tool assists in maintaining con-
sistency between flow sheets and simulation models. The chemical process taken as
example produces ethanol from ethen and water. Flow sheet and simulation model are
shown above and below the dashed line, respectively. The integration document for con-
necting them contains links which are drawn on the dashed line. The figure illustrates a
design process consisting of four steps:

1. An initial flow sheet is created in COMOS PT. This flow sheet is still incomplete,
i.e., it describes only a part of the chemical process (heating of substances and
reaction in a plug flow reactor, PFR).

2. The integration tool is used to transform the initial flow sheet into a simulation
model for Aspen Plus. Here, the user has to perform two decisions. While the heat-
ing step can be mapped structurally 1:1 into the simulation model, the user has to
select the most appropriate block for the simulation to be performed. Second, there
are multiple alternatives to map the PFR. Since a straightforward 1:1 mapping is
not sufficient, the user maps the PFR into a cascade of two blocks.

3. The simulation is performed in Aspen Plus, resulting in a simulation model which
is augmented with simulation results. In parallel, the flow sheet is extended with the
chemical process steps that have not been specified so far (flashing and splitting).

4. Finally, the integration tool is used to synchronize the parallel work performed in
the previous step. This involves information flow in both directions. First, the simu-
lation results are propagated from the simulation model back to the flow sheet. Sec-
ond, the extensions are propagated from the flow sheet to the simulation model. Af-
ter these propagations have been performed, mutual consistency is re-established.

4 Requirements

From the motivating example presented in the previous section, we derive the following
requirements:
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Functionality An integration tool must manage links between objects of inter-dependent
documents. In general, links may be m:n relationships, i.e., a link connects �
source objects with � target objects. They may be used for multiple purposes:
browsing, consistency analysis, and transformation.

Mode of operation An integration tool must operate incrementally rather than batch-
wise. It is used to propagate changes between inter-dependent documents. This is
done in such a way that only actually affected parts are modified. As a consequence,
manual work does not get lost, as it happens in the case of batch converters.

Direction In general, an integration tool may have to work in both directions. That is,
if
�
	 is changed, the changes are propagated into

���
and vice versa.

Mode of interaction While an integration tool may operate automatically in simple
scenarios, it is very likely that user interactions are required to resolve non-deter-
ministic choices.

Time of activation In single user applications, it may be desirable to propagate changes
eagerly. This way, the user is informed promptly about the consequences of the
changes performed in the respective documents. In multi user scenarios, however,
deferred propagation is usually required. In this case, each user keeps control of
the export and import of changes from/to his local workspace.

Integration rules An integration tool is driven by rules defining which object patterns
may be related to each other. It must provide support for defining and applying
these rules.

Traceability An integration tool must record a trace of the rules which have been ap-
plied. This way, the user may reconstruct later on which decisions have been per-
formed during the integration process.

Adaptability An integration tool must be adaptable to a specific application domain.
Adaptability is achieved by defining suitable integration rules and controlling their
application (e.g., through priorities). It must be possible to modify the rule base on
the fly.

A posteriori integration An integration tool must work with heterogeneous tools sup-
plied by different vendors. To this end, it has to access these tools via corresponding
wrappers which provide abstract and unified interfaces.

5 Framework for Building Integration Tools

Figure 2 provides an overview of the framework for tool integration which we have
developed with our industrial partner. At the heart of this framework, the integrator
core offers basic functionality. In particular, it includes the basic control logic, i.e., the
algorithms for document integration. The integrator core accesses the integration doc-
ument which stores fine-grained links and records the application of integration rules.
Furthermore, it is connected to the tools and documents to be integrated via respective
wrappers, which are used to abstract from tool-specific details (a posteriori integra-
tion). The integrator user interface is used to control the integrator interactively. The
rules which drive the integrator are specified in a rule definition tool. Rules are inter-
preted by the integrator core; alternatively, they may be hard-coded and compiled for
more efficient execution1.

1 Currently, the latter requires manual programming.
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Fig. 2. Framework for tool integration

Let us illustrate the operation of this framework by the example of Section 3:

1. The flow sheet designer creates an initial flow sheet in COMOS PT. Here, COMOS
PT is used as it stands.

2. The simulation expert uses the integrator to create a simulation model. The in-
tegrator accesses the flow sheet through the COMOS wrapper which provides a
graph-based view on the source graph. Similarly, the ASPEN wrapper offers an up-
datable view on the target graph. The simulation expert activates source-to-target
productions through the interactive interface of the integrator. Source-to-target re-
lationships are stored in the integration document, which plays the role of the cor-
respondence graph.

3. The flow sheet designer and the simulation expert operate in parallel locally on
their respective documents.

4. The changes are synchronized with the help of the integrator. To synchronize the
changes, both source-to-target and target-to-source productions are applied.

6 Definition of Rules

For the definition of rules, we decided to rely on the Unified Modeling Language [9]
primarily for pragmatic reasons. The UML is a wide-spread modeling language which
is supported by CASE tools such as Rational Rose, TogetherJ, etc. Although the UML
is based on an object-oriented rather than on a graph-based data model, there are strong
relationships to graphs and graph rewriting systems. For example, an object diagram
showing a set of objects connected by links may be viewed as a graph. Likewise,
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a collaboration diagram extending a static object diagram with operations for creat-
ing/deleting objects or links corresponds to a graph rewrite rule.

Figure 3 illustrates how graph rewrite rules are expressed as collaboration diagrams.
All of these rules deal with simple 1:1 correspondences between heater elements in
flow sheets and heater blocks in simulation models. Left- and right-hand side of a graph
rewrite rule are merged into a single diagram. Creation and deletion of objects and
links are indicated by annotations new and delete, respectively. Rules a) and b) are
constructive since they insert objects and links into the target (source) document after
the source (target) document has been extended. In contrast, the destructive rules c) and
d) are applied to propagate deletions: If the source (target) object is not present any
more, the target (source) object as well as the link object have to be deleted. Please note
that in general users may perform not only insertions, but also changes and deletions to
source and target documents. Thus, we have to deal with general graph rewrite rules
rather than only with generating productions.

So far, we have tacitly assumed that the rule base is given when the integrator is
applied. In fact, it is fairly difficult to define an appropriate and comprehensive rule set
beforehand. Rather, the rules have to be learned through experience. This is achieved
through a round-trip modeling process which is illustrated in Figure 4. Let us assume
an initial rule base to start with. The user may apply these rules to establish correspon-
dences between source and target document. If the user wishes to establish a certain cor-
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respondence even though a specific rule is not available, he may resort to built-in ad-hoc
rules by means of which “untyped” correspondences may be created. Here, the user has
to specify correspondences manually. Concrete correspondences stored in actual inte-
gration documents may be transformed into abstract correspondences defining mutually
related graph patterns. Subsequently, these static correspondences may be transformed
into dynamic rules. After that, the integrator may be used with the improved rule set.

Figure 5 gives an example of a complex correspondence which is represented by
an object diagram. This correspondence is abstracted from the link between the plug
flow reactor in COMOS and the cascade of reactor blocks in ASPEN, as illustrated in
Figure 12. From an object diagram, we may derive collaboration diagrams by introduc-
ing new and delete annotations. This may be performed in two steps. In the first step,
a synchronous rule is defined. In the second step, source-to-target and target-to-source
rules may be derived from the synchronous rule.

So far, only the structural aspects of correspondences and rules have been addressed.
In addition, attributes have to be considered. In practice, elements of flow sheets and
simulation models may carry a large number of attributes which have to be kept con-
sistent with each other. Therefore, rules for attribute assignments have to be provided
as well. In the UML, the relationships between attribute values may be defined in the
Object Constraint Language (OCL). For further details on attribute assignments, the
reader is referred to [5].

2 Please note that a simplified notation was employed in Figure 1, while Figure 5 shows the
actual internal graph representation. In particular, connections are represented as objects, as
well as the end points (ports) of both connections and devices.
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7 Implementation

The framework introduced in Section 5 was implemented in cooperation with our indus-
trial partner innotec, the provider of COMOS. The implementation was performed such
that the integrator would interact smoothly with COMOS (and ASPEN). Furthermore,
it was required to keep the implementation as slim as possible and to avoid rucksacks of
infrastructure software. For these reasons, we did not use the PROGRES environment
[10], which is still heavily used in other projects carried out in our group. Rather, a
light-weight implementation was realized which is tailored towards the specific require-
ments of our application domain and does not provide a general and powerful graph
rewriting machinery.

For the points to be made in the next section, it is not important to go into the
details of the implementation. However, we do have to convey an overall understanding
of how the integrator works. The integrator is provided with the source document, the
target document, and the integration document. Both the source document and the target
document may have been modified after the last run of the integrator (see e.g. the last
step of our example in Section 3). To re-establish consistency, the integrator searches
source and target documents for elements which do not participate in correspondences.
These elements are scheduled for source-to-target or target-to-source transformations.
In the next step, the set of candidate rules is identified for each scheduled element.
If there is no such rule, the user may apply a built-in ad hoc rule. If there is more
than one rule, the user has to select the appropriate one. If there is exactly one rule,
the rule is applied automatically. In addition, the integrator performs a run through the
integration document to check the consistency of the correspondences already stored
in the integration document. Each correspondence stores a reference to the respective
rule. All correspondences whose source or target patterns were modified as marked as
inconsistent. If essential elements of those patterns were deleted, the correspondence
is deleted as well. If possible, repair actions are initiated to re-establish consistency.
In addition to structural rules, the integrator also handles attribute rules (through the
execution of script code).

8 Discussion

After having recalled the theoretical foundations of triple graph grammars in Section 2
and having presented a practical application in the following sections, we now reflect
on the experiences we have made in the described application.

By and large, triple graph grammars constitute a powerful conceptual framework
for addressing integration problems for the following reasons:

– For complex m:n relationships, it pays off to introduce a correspondence graph in
between the source and the target graph.

– Triple productions declaratively specify coupling of graph structures and abstract
from the different possible modes of use: synchronous coupling, source-to-target
(and target-to-source) translation, and incremental change propagation.

On the other hand, the actual definitions as given in [2] bear some restrictions which
prevented their use in our context:
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– Graphs are not typed, and nodes do not carry attributes. Both types and attributes
are very important in our application domain.

– Inter-graph relationships are represented by graph morphisms. Usually, morphisms
are defined between graphs of the same type. Furthermore, they have to preserve
not only source and target nodes of edges, but also types. This is not the case for
the relationships between the correspondence graph and source or target graph. In
addition, a correspondence node may be related to only one source and target node,
respectively. Thus, complex correspondences cannot be modeled in the way we
have done it (see Figure 5); rather, they have to spread over multiple correspondence
nodes which are grouped only implicitly3. Altogether, it seems more appropriate to
represent inter-graph relationships by inter-graph edges instead.

– The definitions deal only with graph grammars. However, we are concerned with
graph rewriting systems: The user may also apply deleting or modifying transfor-
mations. Grammars are adequate for batch translations: Given a source graph

34�
,

construct a target graph
@*�

. However, we have to deal with general editing rather
than merely with constructing operations.

Finally, we faced some practical problems in our application domain:

– The original proposal tacitly assumes that we may start from given grammars for
the source and target graphs. In practice, these grammars are not available. Usually,
tools provide a procedural interface (e.g., OLE) for reading and writing the data
stored in native data structures. There is no definition of the underlying graphical
language. At best, the tool builder may provide a documented textual interchange
format (typically XML).

– Likewise, it is by no means straightforward to define the triple rules. In fact, the
correspondences between flow sheets and simulation models may be defined only
through practical experience. Therefore, we introduced our round-trip modeling
process illustrated in Figure 4.

– In our application domain, we only have a fairly weak notion of consistency. The
rules describing correspondences between flow sheets and simulation models are
of heuristic nature. Similar observations apply e.g. to the relationships between
requirements definitions and software architectures in software engineering [6].

– In [2], it is assumed that the decoupling of transformations is achieved with the
help of graph parsers: Only when we know the production sequence on the source
graph can we apply the corresponding productions on the target graph. Building of
graph parsers is complicated anyway, but it completely breaks down when the pars-
ing problem is undecidable4. For these reasons, we have never considered building
graph parsers. Rather, the changes performed on source and target graph are deter-
mined in a completely different way by traversing source, target, and correspon-
dence graph, as described in Section 7.

3 In the example given in [2], this grouping is introduced informally by composite node identi-
fiers.

4 The original proposal assumes monotonic productions to guarantee decidability.
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9 Related Work

Triple graph grammars have their roots in the IPSEN project [11] which dealt with
tightly integrated software development environments. Originally, only a priori integra-
tion was considered, i.e., tools were designed for integration from the very beginning.
Lefering [6] used triple graph grammars to develop incremental integration tools for the
coupling of requirements definitions and software architectures. Later on, triple graph
grammars were applied in several software engineering projects outside the scope of
the IPSEN project. In particular, they were used for the re-engineering of software sys-
tems. In the Varlet project [12], incremental integration tools were built for mapping
relational to object-oriented database schemas. In ReforDi [13], tools were developed
for migrating mainframe applications to a client-server architecture. Here, the structure
graph of the original Cobol application was mapped to an object-based architecture
with the help of triple rules. Both projects relied on the PROGRES environment [10]
as the underlying specification and implementation machinery. Finally, [14] reports on
an application of triple graph grammars in chemical engineering. To some extent, this
work served as a starting point for the project described in this paper.

Graph transformations have been used for the specification of integration tools in
a couple of other projects as well. Some of this work is devoted to model transforma-
tions, where a given model is transformed into another notation [15, 16]. Model trans-
formation tools usually operate in batch mode without user interaction, i.e., they work
like a compiler. In contrast, the applications we study demand for incremental, inter-
active integration tools. Closely related problems are studied in the ViewPoints project
[17], which investigates methods and tools for maintaining consistency between related
view points (documents in our terminology) in software engineering. Enders et al. [18]
describe how consistency analysis and repair actions in the ViewPoints approach are
specified with the help of distributed graph transformations. Here, the more restricted
pair graph grammar approach coined by Pratt [1] is applied.

10 Conclusion

We have presented an industrial application of triple graph grammars. Incremental in-
tegration tools are used to maintain consistency between inter-dependent design docu-
ments in chemical engineering. We have also discussed the strengths and limitations of
the triple graph grammar approach. In our future work, we will evaluate the tools which
we built in cooperation with our industrial partner. Furthermore, we will generalize the
framework such that it can be applied outside the chemical engineering domain.
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