Graph Transformations

based on Relational
Databases

Master Thesis
Aachen, August2008

Submited to
Department of Computer Science 3
Prof. Dr.-Ing. M. Nagl
RWTH Aachen

Written By
Qasim Ali

Born at Rawalpindi, Pakistan.

Reviewer: University professor Dr. -Ing. M. Nagl
University professor Dr. rer.nat. O. Spaniol

Supervisor: Dipl.-Inform. E. Weinell

RHEINISCH- Lehrstuhl fiir
WESTFALISCHE Informatik 3
TECHNISCHE

HOCHSCHULE Department of
AACHEN Computer Science 3

Author’s Declaration

Herby, I declare that I have written this thesis autonomously and I have not
used other resources than indicated.

This thesis is not presented at another institution and has not been pub-
lished.

Qasim Ali

Aachen , August 04, 2008

ii

Acknowledgments

This thesis is the final research work required for completion of my master’s
degree in software systems engineering at RWTH Aachen. During my studies in
this institution, I have got an esteemed knowledge and have been familiarized
with professional skills, which I believe will always provide me a healthy support
in my future endeavors.

First and most of all I would like to thanks my parents for their great support
through out my academic career. Their encouragement, love and support have
always driven me toward better approach of execution and produce my level
best.

This thesis would not have been possible without the support of my super-
visor Mr. Erhard Weinell. I would like to thank him for his guidance, advice
and encouragement throughout the course of this thesis. I have benefited enor-
mously from his valuables insights and mentoring. Despite his tight schedule,
he gave countless suggestions to improve the quality of my thesis.

I would also like to convey thanks to the Department of Computer Science
3 (Software Engineering) and its head Professor Dr.-Ing. M. Nagl for providing
academic support and laboratory facilities.

Abstract

After years of research graph transformations have evolved and acquired a ma-
tured state. Graph transformations are used in various application areas such
as rule based image recognition, translation of diagram languages, model driven
software development, service-oriented Applications, pattern recognition, se-
mantics of programming languages, implementation of functional programming
specification of database systems, specification of abstract data types, etc. This
thesis; however, explores the idea of supporting graph transformations based on
relational databases.

The approach discussed includes a query and transformation language (QTL).
This transformation language can act as a platform to build graph applications
using graph transformations. QTL can easily be extended with new constructs
and can serve as a base layer for domain-specific applications. By acting as a
base layer for other graph languages, it allows developers to work at a higher
level functionality provided rather than earlier approach of developing a new
code generation modules or interpreter for a new application.

The work is focused on adding graph transformation support in DRAGOS
graph database. DRAGOS eases the development of graph based applications
by providing a uniform graph-oriented data storage facility using a relational
database system as backend storage. DRAGOS so far, supports various back-
end relational databases such as MySQL, PostgreSQL, Derby etc. The standard
operations provided by the relational database’s underlying data manipulation
language can be used to implement graph transformation engine. This thesis ex-
ploits this very support to add a Query and Transformation Mechanism (QTM)
in DRAGOS. QTM adds support for graph transformations in DRAGOS.

ii

Contents

List of Figures e
List of Tables
Introduction
1.1 Graph Transformation System in DRAOGS
1.1.1 Universal Solution
1.1.2 Back-end Specific Solution
1.2 Objective of Thesis o o
1.3 Example Schema
1.4 Structure of Thesis

Technical Background

2.1 Relational Database System
2.1.1 Relation
2.1.2 Standard Query Language
2.1.3 Relational Algebra
2.1.4 Database design L.

2.2 DRAGOS Graph Database
2.2.1 DRAGOS Backend Storage
2.2.2 DRAGOS Kernel Layer

2.3 Datamodel of DRAGOS
2.3.1 General Datamodel oL
2.3.2 Database specific DataModel
2.3.3 Sample Data oL

Conceptual Background

3.1 Graph Transformation
3.1.1 MetaModel o
3.1.2 Imstance Model

3.2 PROGRES
3.2.1 Definition of Graph Schemata
3.2.2 Graph Transformations Using PROGRES

3.3 Pattern

3.4 Query Transformation Language (QTL)

3.5 DRAGOS Unified Language (DRAGULA)
3.5.1 Constraints o
3.5.2 Variables

iii

10
11
12
20
20
21
21
24
25
26
27

iv

7

8

Query Generation

4.1 Variables
Graph Variable
EdgeVariable
4.2 Constraints
Constant Constraint
Type Constraint
Incidence Constraint

4.1.1
4.1.2

4.2.1
4.2.2
4.2.3
4.24
4.2.5

Isomorphism Constraint
Containment Constraint

RuntimeExperiments

Related Work

6.1 Hybrid Query Language
The Extended Entity-Relationship Model (EER)
6.1.2 SQL for the Extended Entity-Relationship Model
6.1.3 Use of PROGRES for expressing graph model
6.2 Graph Transformation engine in RDBMS
6.3 Unified Data Model (UDM)

6.1.1

Conclusion and Future Work

Appendix

8 References

CONTENTS

51

53

............ 93

..... 53
54

...... o4
............. 95
............ 56

57

59

62

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

5.1

6.1

QTM without SQL Transformation 4
QTM: Back-end Specific Solution 5
Computer Science University Schema 6
Union Operation Example 13
Intersection Operation Example 14
Relational Algebra Difference Operation 15
Relational Algebra Product Operation 16
Selection Operation in Relational Algebra 17
Projection Operation in Relational Algebra 18
Join Operation in Relational Algebra 19
DRAGOS Architecture oo o 20
Graph Model [13] o 22
Graph Schema [13] oo 23
University Graph Schema in Progress 35
Example transformation rule in application-specific language . . 36
Integration with the DRAGOS QTM 37
Meta-Model of the Query and Transformation Language 38
Incidence and Type Constraints 39
Constant and Isomorphism Constraints 39
Identity and Containment Constraints 40
Variables L 40
Class Mates e 42
Node Variable o 43
Graph Variable o o 44
Edge Variable L 44
Constant Constraint 45
Type Constraint 46
Incidence Constraint 47
Isomorphism Constraint 48
Containment Constraint 49
Results of Runtime Experiments 52
UDM tools and architecture reproduced from[24] 56

List of Tables

2.1 Table Book 10
2.2 TableOrder e 11
2.3 Relational SQL Equivlant 12
2.4 Table Graph Entity Class 25
2.5 Table Graph Entity o oL, 25
2.6 Table EdgeData 26
2.7 Table Graph Entity L. 27
2.8 Table Edge in PostgreSQL 27
2.9 Table Graph Entity Class 27
2.10 Table Graph Entity L. 28
2.11 Table EDGE PostGRe 29
2.12 Table EDGE Data 29

vi

Chapter 1

Introduction

Graph transformation originally evolved in reaction to shortcomings in the ex-
pressiveness of classical approaches to rewriting, like Chomsky grammars[35]
and term rewriting, to deal with non-linear structures. The first proposals, ap-
pearing in the late sixties and early seventies according to [6] were concerned
with rule based image recognition, translation of diagram languages, etc. In
all of these years, graph transformations have been successful in approach-
ing solutions of various challenges related to software engineering. They have
been used in diverse application areas from model driven software development,
service-oriented applications to pattern recognition techniques[5]. There are al-
ready a wide range of tools available which use graph transformation in area of
simulation or verification like AGG[37], AToM3[12], DiaGen|[25], FUJABAJ29],
GReAT, GROOVE[31] and VIATRAJ10].

Another application of graph transformations is to model queries on a high
abstraction level[32]. During the past years, intensive research has been done on
use of graph transformation as a visual query and data manipulation language
for relational databases. A brief selection of work in this field is given as follows:

e Andries and Engels proposed in [3, 4], a hybrid database query language
(HQL/EER)based upon graph transformation. HQL has been discussed
in detail in section 6.1 of this document.

e In [40], Gergely Varro, recently, presented an approach to implement a
graph transformation engine as an EJB3-specific plugin by using EJB QL
queries for pattern matching. The essence of his approach is to create an
EJB QL query for the precondition of each graph transformation rule. Pat-
tern matching and updating phases of a rule application are implemented
in a public method of a stateless session bean by executing the prepared
EJB QL query and by manipulating persistent objects, respectively.

e Graph database GRACE [36] includes a graph query language called SA-
FARI, which supports both attribute and structural searches.

e GRAPHLOG [9] is a visual graph query language. GraphLog queries ask
for patterns that must be present or absent in the database graph. Each
such pattern, called a query graph, defines a set of new edges (i.e., a
new relation) that are added to the graph whenever the pattern is found.

2 CHAPTER 1. INTRODUCTION

GraphLog queries are sets of query graphs, called graphical queries. An
edge used in a query graph either represents a base relation or is itself
defined in another query graph. In 1995, Frank Ch. Eigler proposed a
mechanism of translating GraphLog in to SQL[15].

It is common in all these approaches that they investigate how graph trans-
formations can contribute to database management systems and tasks. How-
ever, it was PROGRES (PROGRAMMED GRAPH REWRITING SYSTEMS)[27]
which represented the first major application of graph transformation in soft-
ware engineering[17]. PROGRES is a language and a tool for programmed
graph rewriting Systems. It performs graph transformation by rewriting graph
systems. It offers language constructs for defining graph schema and graph
transformation rules. It uses directed, attributed, node and edge labeled graphs
as underlying data model. PROGRES uses GRAS as graph storage and it is
used at the runtime of the graph transformation system.

PROGRES offers a developing environment to work which includes an editor
with an integrated analyzer which points out all violations against the stated
semantics of the language. An interpreter is also included which supports the
incremental execution of a specification and presents the resulting graph struc-
ture in a graphical view[7]. Finally, a compiler translates the specification into
adequate and efficient code. The graph schema and the actual graph are saved
in GRAS(GRAPH Storage [20]). PROGRES interpreter operate on these stored
graphs. In other words, GRAS is used at run time by the graph transformation
systems. GRAS(GRAPH Storage [20]) has been succeeded by DRAGOS.

DRAGOS (Database Repository for Applications using Graph Oriented Stor-
age) is a graph oriented database management system. It uses relational database
system as back-end for storing graphs. DRAGOS supports various back-end re-
lational databases such as MySQL, PostgreSQL, Derby etc. GRAS and DRA-
GOS system have been developed at the department of Computer Science 3
RWTH Aachen University. Unlike, GRAS, DRAGOS has been designed on
a multi-layered architecture. This makes extensions in DRAGOS much eas-
ier. GRAS was not platform independent while DRAGOS’s implementation
has been done in java which makes it platform independent. DRAGOS offers
exchangeable storage back-ends. This gives user lot of options to choose a stor-
age mechanism of its choice. It provides a fast in-memory version for testing.
DRAGOS is discussed in detail in section 2.2. Currently, implementation of
graph transformation system in DRAGOS is only possible by using PROGRES.
The code generated by PROGRES can be used by applications using DRAGOS
to support graph transformations. This deployment procedure, however, is quite
complicated.

This thesis discusses an approach of supporting graph transformations in
DRAGOS involving a query and transformation language (QTL). The graph
transformation language can act as a platform to build graph applications us-
ing graph transformations. QTL can easily be extended with new constructs
and can serve as a base layer for domain-specific applications. QTL has been
discussed in detail in section 3.4. Along with QTL, DRAGOS’s support for
relational databases can be exploited to develop a transformation system.

As already discussed DRAGOS supports various back-end relational databases.
Standard Query Language (SQL) is the standard data access and manipulation
language for relational databases. The standard operations provided by SQL

1.1. GRAPH TRANSFORMATION SYSTEM IN DRAOGS 3

can be used to implement graph transformation engine. This thesis exploits
this support to add a graph transformation system in DRAGOS. The developed
system out-performs the traditional system developed by using PROGRES by
a huge margin. The results of runtime experiments conducted to compare both
system are part of this document. There were two ways of developing graph
transformation system in DRAGOS, they have been discussed in next sections.

1.1 Graph Transformation System in DRAOGS

Supporting graph transformations in DRAGOS requires development of a query
and transformation mechanism which should represent a graph transformation
system using a basic query and transformation language (QTL). The details of
QTL can be seen in detail in chapter 3.4. Query and transformation language of
DRAGOS is named DRAGULA [43], which is an abbreviation of DRAGOS Uni-
fied Language. There are two possibilities of executing graph transformations

in DRAGOS.

1. Universal Solution

2. Backend Specific Solution

The following sections describe pros and corns of both approaches.

1.1.1 Universal Solution

The DRAGOS API provides atomic retrieval and update operations. First pos-
sible solution is to create a solution using these operations. This approach
requires, a transformation manager in DRAGOS, as shown in figure 1.1, which
accepts a pattern created by the application in QTL. Transformation Man-
ager parses this pattern. The result is constructed by using atomic operations
provided by DRAGOS's core services. One important characteristic of this ap-
proach, as shown in figure 1.1, is that the operations provided by core services
use DRAGOS database implantations to access the underlying storage. Usu-
ally, one operation makes a single database access which is usually one SQL
statement at background. So result is prepared after execution of several SQL
statements or database accesses. Prepared result is then given back to applica-
tion. This solution is called Universal due to its back-end independence. This
back end independence suggests that this solution is valid for in-memory version
and for all other RDBMS‘s supported by DRAGOS.

Universal solution, as discussed above relies on the DRAGOS core API to
made database accesses. Each operation of core API executes at least one
SQL statement. So in order to compile results for a complex pattern, a lot
of atomic operations are required, subsequent result is the execution of lot of
database accesses. Database access is an expensive operation. So, end result
will be a significant performance trade off. It means an optimum solution should
accomplish the task of graph transformation with minimum database accesses.

4 CHAPTER 1. INTRODUCTION

gt Application . =
ﬂ ‘ Specialized Graph Model & Schema ‘ ﬁ
Pattern Result
. il
Graph Model & Schema

@ Transformation Manger

Pattern
Processor

ﬂ DRAGOS
L Core Service; e I::>‘ DB Specific Implementations ‘

H

Relational Database

Figure 1.1: QTM without SQL Transformation

1.1.2 Back-end Specific Solution

The second approach is based on direct utilization of DRAGOS'‘s support for
relational databases as storage back end. It requires development of a transfor-
mation mechanism which transforms a pattern in to a SQL statement. Then
that SQL statement is executed inside the backend RDBMS. Construction of a
single SQL statement for complex pattern reduces the number of database ac-
cesses to only one. So, the need of minimization of database accesses which was
discussed in universal solution approach is achieved. The figure 1.2 elaborates
the back-end specific solution.

The approach very different from universal solution approach. In this, SQL
statement is sent directly to database, thus, by passing DRAGOS core services.
As already discussed, universal solution on the other hand constructs solution
using atomic operations provided by core services which access the DRAGOS's
database implementation. Execution of this single SQL statement compared
to multiple SQL statements to achieve the same solution is a significant per-
formance gain. The disadvantage of this approach is this solution is backend
specific and it does not function in in-memory version of DRAGOS.

Modern database systems employ various algorithms and techniques to en-
sure fast retrieval of data. The execution of SQL statement inside the RDBMS
is going to benefit from RDBMS'‘s features like query optimization, caching
and indexing. The performance gain provided by this approach has also been
included in this document in chapter 5.

1.2 Objective of Thesis

The objective of this thesis is to add a graph transformation support in DRA-
GOS graph database system using its back end RDBMS support. A query

1.2. OBJECTIVE OF THESIS)

and transformation mechanism (QTM) is developed which represents a graph
transformation system.

SQL, the data representation, manipulation and query language of RDBMS
is used to serve as an implementation technology for a mapping from graph
transformation systems to relational databases. QTM process a complex pattern
and transforms it in to a single SQL statement. A brief overview of the QTM
is given in figure 1.2.

— ~ Application =

ﬂ ‘Specialized Graph Model & Schema‘ ﬁ

Graph Model & Schema U

Q™™

SQL Statement

o Select [.,.]
Query
- E-E
[
Core Services U DRAGOS |pg Specific Implementations

Relational Database

Figure 1.2: QTM: Back-end Specific Solution

QTM comprises of following two parts.
e Pattern Parser
e Query Generator

Pattern Parser, parses the pattern. It accepts the pattern in DRAGULA
3.5. It prepares the pattern in a form readable for query generator.

Query Generator generates a SQL statement (as described in chapter 4)
based on the contents of the pattern. As a SQL statement is composed of three
parts i.e. select, from and where. Final SQL statement for every pattern is
made after making modifications during processing of a pattern depending on
its contents. This statement is then executed in a relational database.

Complete Workcylce of QTM

A complete work cycle of the Query and Transformation Mechanism (QTM)
shown in figure 1.2 can be explained in following steps.

e Pattern is received by QTM
e Pattern is parsed by the Pattern Parser

e Query Generator generates SQL statement

6 CHAPTER 1. INTRODUCTION

e Generated SQL statement is then executed in RDBMS. Caching is done
of these SQL statements to improve performance.

e DRAGOS gets the result of SQL statement back from RDBMS. This result
is the LHS of the graph transformation system. This has been explained
in section 3.1.2.

1.3 Example Schema

For better understanding of the document, an example has been added in this
section and frequent references to this example will be made during remaining
chapters. University Model has been taken as example schema. Its a simplified
version of a university administration system that manages the personal and
academic information of students and professors. The structural relationships
among the classes defined in the schema are given in Figure 1.3.

Farson

1‘3 Z‘S Student
Frofessor

supenias

teathes Couse takes
=

wiarks In Depatment majorsin

Figure 1.3: Computer Science University Schema

The class Person has two subclasses Professor and Student. A student is
supervised by a professor. A professor may be a supervisor for one or more
students. However, some students do not have a supervisor and some professors
do not supervise a student. Every professor works in a department and every
student studies a specific major in a department. Each department offers courses
for students. The professor teach these courses.

It means, the schema, when translated to graph technology contains follow-
ing five nodes.

1. Person

2. Student

1.4. STRUCTURE OF THESIS 7

3. Professor
4. Course
5. Department
There are five edges in the schema. which are:

1. supervises, relates a professor and a student. A new edge is created when
a professor is given a student to supervise.

2. teaches, relates a professor and a course. A new edge is created when a
course is taught by a professor

3. takes, relates a student and course. A new edge is created when a student
takes a course in the university.

4. employs, relates a department and a professor. A new edge is created
when a professor is asked to work for a department.

5. majorsin, relates a student and a department. A new edge is created when
student decides to major in a particular department.

1.4 Structure of Thesis

The structure of this document is as follows.

In chapter2, technical background is given to understand QTM. It includes
a brief look at DRAGOS with an insight on its graph schema and graph model.
it explains, how complex graphs are stored in DRAGOS. It provides overview of
relational database management system, concepts of relational database system,
relational model, relational operations and database design principles required
to understand the QTM. Lastly in this chapter a look at the QTM related tables
from the data model of DRAGOS .

Chapter 3 gives the conceptual background necessary to understand QTM.
It includes a look at the theoretical background of graph transformations. It has
an overview of query transformation language (QTL), its theoretical background
and usage. It provides a look at the concept of pattern. Lastly it includes a
look at relational algebra and its QTM related background information. This
chapter looks at the possible options in DRAGULA for pattern construction.

Chapter 4 provides details on query generation. It explains how SQL is
generated for different components of DRAGULA. An example pattern is taken
and passed through various phases to generate a complete SQL statement at
the end.

In chapter 5, the runtime experiments conducted with QTM are given. It
compares efficiency of QTM with implementation of same solution in-memory
and PROGRES.

Chapter 6 contains the work related with this thesis. It draws comparison
with the existing work done on the topics related to QTM. HQL, UDM and
PROGRES have been discussed in this chapter.

Chapter 7 provides the conclusion of this thesis work. It summarizes the
learning experiences during the course of this work and directions for any future
enhancement of the existing work.

CHAPTER 1. INTRODUCTION

Chapter 2

Technical Background

This chapter provides a look at the technical aspects necessary to understand
QTM. This chapter is divided in three sections. With a section on relational
databases, DRAGOS and on its database design each. Understanding of these
concepts is mandatory for clear understanding of QTM.

As QTM performs graph transformation on relational databases, first con-
cept which require understanding is relational database itself. First section of
this chapter is based on broad overview of relational database system and its
standard data manipulation language. Then it looks the mathematical founda-
tions of relational model and how equivalent SQL of its mathematical operations
is generated.

Section two of this chapter looks at DRAGOS. It provides an overview of
the product, its usage and its features. Then it looks at the architecture of
DRAGOS. It discusses how, why and where QTM should be added in DRAGOS.
It looks at graph schema and graph model of DRAGOS.

Last section of this chapter is based on the database model of DRAGOS. It
considers only those database tables which are relevant from QTM'’s perspective.
It shows how few sample insertions can be made in DRAGOS. In last sample
data is created for example provided earlier in section 1.3.

2.1 Relational Database System

Database management systems (DBMS) are probably one of the most success-
ful and most widely used products of software engineering. Various types of
DBMS systems exist based on the models used (e.g) hierarchal model, network
model, relational model, objected oriented model etc. QTM is only concerned
with relational databases as DRAGOS uses relational databases as underlying
storage.

Relational databases are database systems based on relational model. Most
popular commercial and open source databases currently in use are based on
this model. DRAGOS currently supports MySQL, PostGreSQL and the Derby
database systems. A Relational Database constitutes of set of relations (usually
referred as ’tables’). A relation is a set of tuples ('records’), while a tuple is a
set of attribute values (usually called ’columns’), each attribute is identified by
its name. The definition of a relational database results in a table of metadata

10 CHAPTER 2. TECHNICAL BACKGROUND

or formal descriptions of the tables, columns, domains, and constraints.

SQL is the standard data manipulation and query language in relational
database. Applications access data by specifying queries, which use operations
such as select to identify tuples, project to identify attributes and join to com-
bine relations. Relations can be modified using the insert, delete, and update
operators. Queries identify tuples for selection, updating or deleting.

Next section summarizes the relational database related terminologies used
through out this document. For better understanding an example of a book
database system is taken. The database system is required to store ISBN num-
ber, book title and author name of a book. the system should be able to store a
customer’s order containing customer name and the books it ordered. Suppose
there are two books to be stored. One is the autobiography of Nelson Mandela
name 'Long Walk to Freedom’ with ISBN number 0316548189. Second book is
Mohandas Gandhi’s autobiography called "The Story of My Experiments with
Truth’ with ISBN number 0486245934. One customer Smith buys Ghandi’s
book and another named Peter has bought Mandela’s book. This example will
be used through out this section.

2.1.1 Relation

The term relation is referred as ’table’ in common RDBMS terminologies. A
table is the basic entity of a relational database. A relation is defined as a
set of tuples that have the same attributes. A tuple usually represents an
object and information about that object. Objects are typically physical real
life concepts. All the data referenced by an attribute belong to the same domain
and conform to the same constraints. A database table with n columns denoted
by 7(A1,...,A,)is a relation. 7 and A; denote the name of the table and of
the i** column respectively. Column names have to be unique in the scope of
the a single table, thus a table cannot have columns sharing the same name.
Elements of a table are called tuples and are called rows in database terminology.
Similarly, The attributes are columns in database terminology.

Book database example given in Section 2.1 has two concepts namely book
and order. So two tables are made namely ’Book’ as shown in table 2.1 and ’Or-
der’ as depicted in table 2.2. The example required storage of three attributes
of book namely ISBN number, title and author name. The ’Book’ table has
three columns as well. There are two books to store in database, so, the table
books contains two rows. System required customer name and books ordered to
be stored for every order. The table ’Order’ has two columns. Two orders were
placed in example, ’Order’ tables contains these rows. Two more database con-
cepts related to relation that require understanding before proceeding forward
are primary key and foreign key. They are discussed in the next sections.

ISBN Title AuthorName

0316548189 Long Walk to Freedom Nelson Mandela

0486245934 | The Story of My Experiments with Truth | Mohandas Gandhi

Table 2.1: Table Book

2.1. RELATIONAL DATABASE SYSTEM 11

CustomerName ISBN
Smith 0486245934
Peter 0316548189

Table 2.2: Table Order

Primary Key

A primary key constraint for columns A;, As,..., A; of table 7(A4,...,A,)
guarantees the uniqueness of values in the selected column. Formally, Vr,s €
T:(r=s<<= Vi1 <i>j: r[A] = r[Aj]) [41]. In other words in relational
database, a primary key is a unique key to identify each row in a table. The
International Standard Book Number (ISBN) is a 10-digit number that uniquely
identifies books and book-like products published internationally. In table 2.1
ISBN is the primary key as it is unique for every row. There can never be two
books with same ISBN number.

Foreign Key

For two relations R and S, a foreign key constraint for column R.A referring to

Column S.B (denoted by R.A £, S.B) declares that all values of column R.A
should also be found in column R.B or formally R.ACR.B [41]. In other words in
relational databases, a foreign key is a referential constraint between two tables.
The foreign key identifies a column or a set of columns in one (referencing)
table that refers to a column or set of columns in another (referenced) table.
The columns in the referencing table must be the primary key in the referenced
table[39]. The values in one row of the referencing columns must occur in a
single row in the referenced table. In table 2.2 ISBN number is the foreign key.

2.1.2 Standard Query Language

As discussed earlier, SQL is a standardized language for defining and manipu-
lating data in a relational database. In accordance with the relational model of
data, the database is treated as a set of tables, relationships are represented by
values in tables, and data is retrieved by specifying a result table that can be
derived from one or more base tables [23].

SQL is built upon precise mathematical foundations. SQL statements are
executed internally by the a database system employing various modern tech-
niques for query optimization. SQL is a standard interactive and programming
language for getting information from and updating a database. Although SQL
is both an ANSI[19] and an ISO standard[16], many database products sup-
port SQL with proprietary extensions to the standard language. As DRAGOS
supports various relational databases, this issue of proprietary extensions by
different is handled in DRAGOS by using Template Based Code Generation|28]
which will be defined later in this document. Queries take the form of a com-
mand language that makes selection, insertion and updation possible. The
table2.3 summarizes some of the most important relational database terms and
their SQL database equivalents.

As already discussed relational databases are based on relational model.
It was proposed by Dr. Codd in 1969. It contains relational operations and

12 CHAPTER 2. TECHNICAL BACKGROUND

Relational Term SQL equivalent
relation (base relation) table
relation (derived relation) | view, query result
tuple row
attribute column

Table 2.3: Relational SQL Equivlant

relational operators. Next section describes this model and equivalent SQL of
its operators and operations.

2.1.3 Relational Algebra

Relational Algebra (RA) is the lower level data manipulation language for re-
lational model. It consists of several basic operations which is enable user to
specify retrieval requests. In his original relational algebra, Codd introduced
eight relational operations and operators in two groups of four each respec-
tively. The first four operators were based on the traditional mathematical set
operations, which are:

1. Union

2. Intersection

3. Difference

4. Cartesian product

Before proceeding further, and looking at all of these operations one by
one, there is a need to define, when are two relations union compatible. This
is required because Union, Intersection and Difference operations can only be
performed on Union Compatible Relations.

Union Compatible Relations

Two relations r(Al, A2, ..., An) and s(B1, B2, ..., Bn) are union compatible
if they have the same degree n and dom(Ai) = dom(Bi) forl <i <n [38].

This means two union compatible relations must have the same number of
attributes and each corresponding pair of attributes have the same domain. In
terms of SQL both relations must have same number of column with identical
data types.

Union

The Union operator combines two Union Compatible Relations into a single
relation via set theory union operation between two tuple sets. For two relations
rl and r2, who are union compatible in a database schema R. Union between
two relations is written as:

Notation : r1 U r2

2.1. RELATIONAL DATABASE SYSTEM 13

Formally union can be described as:

rlUr2 ={t|terlvter2} where r1(R) =r2(R)

A Union operation for given relations r1 and 72 can be performed in the
following steps:

e Make copy of first relation rl

e For each tuple t in relation r2, check whether it is in the result or not. If
it is not already in the result then place it there.

Union Operator in SQL

U (Union) operator in relational algebra is equivalent to UNION operator
of SQL. In SQL the UNION operator combines the results of two SQL queries
into a single table for all matching rows. The two queries must have the same
number of column references and identical data types of corresponding columns
to unite. Any duplicate records are automatically removed.

Example The tables in 2.1 and 2.2 are not union compatible as these two
tables do not have same number of columns. A simple example to show union
would be a database having tables courses2005 and courses2006 as showed in
figure 2.1. They have identical structures but are separated because of per-
formance considerations. A UNION query would combine results from both
tables. The visual description of UNION operation is provided in figure 2.1.
The equivalent SQL statement is given as under:

Select x From courses2005
Union
Select * From courses2006

Courses 2005 Courses 2006 Result

Course Name | Language

Course Language Course Language Data Minning English

Name Name

DataMinning | English DataMinning | English —_— Introduction | English
todatabases

Introduction English 00 Software English

to databases Engineering Software German
Engineering

Software German Compiler German

Engineering Construction 00 Software English
Engineering
Compiler German
Construction

Figure 2.1: Union Operation Example

Intersection

The INTERSECTION operator combines two union compatible relations into
a single relation set theory intersection operation between two tuple sets. For
two relations rl and r2, who are union compatible in a database schema R.
Intersection between two relations is written as:

Notation : r1Nr2

14 CHAPTER 2. TECHNICAL BACKGROUND

Formally intersection can be defined as:

rinr2 ={t|terlAter2} where rl(R) =r2(R)

A Intersection operation for given rl and r2 can be performed in following
steps:

e Initially, result set is empty

e For each tuple t in relation rl, if t is in the relation r2 then place t in the
result set.

Intersection Operator in SQL

N (Intersection) operator of relational algebra is equivalent to SQL’s IN-
TERSECT operator. The intersection operator produces a single set, which is
comprised of those tuples who are common between the two relations. The SQL
INTERSECT operator takes the results of two queries and returns only rows
that appear in both result sets.

Example To show union same database is taken as in section 2.1.3. A
INTERSECT query gives a single relation which contains the common elements
between the two relations. The visual description of Intersection is provided in
figure 2.2. The equivalent SQL statement is given as under:

Select x FROM courses2005
INTERSECT
Select * FROM courses2006

Courses 2005 Courses 2006 Result
Course Language Course Language Course Name | Language
Name Name

r 1 —_— DataMinning | English
DataMinning | English Data Minning English
Introduction English 00 Software English
to databases Engineering
Software German Compiler German
Engineering Construction

Figure 2.2: Intersection Operation Example

Difference

The Difference operation finds the set of tuples that exist in one relation but
do not occur in the other Union Compatible Relation. For two relations r1 and
r2 who are union compatible in a database schema R. Difference between two
relations is written as:

Notation : r1\r2

Formally difference can be defined as:
riI\r2 ={t|terlAt¢r2} where rl(R) = r2(R)

e Initially, result set is empty

e For each tuple in rl, check whether it appear in r2 or not. If it does not
then place it in the result set. Otherwise, ignore it

2.1. RELATIONAL DATABASE SYSTEM 15

Difference Operator in SQL

SQL’s equivalent operator of \ operator of relational algebra is EXCEPT.
The difference operator acts on two relations and produces a single set, which
is comprised of tuples from the first relation that do not exist in the second
relation.

Example To show union same database is taken as in section 2.1.3. A
EXCEPT query gives a single relation which contains only the elements which
are contained in first relation but not in second relation. The visual description
of Difference is provided in figure 2.3. The equivalent SQL statement is given
as under:

Select » FROM courses2005
EXCEPT
Select x FROM courses2006

Courses 2005 Courses 2006 Result
Course Language Course Language Course Name | Language
Name Name

—_— Introductionto | English
Data Minning | English DataMinning | English databases
Introduction English 00 Software English Software German
to databases Engineering Engineering
Software German Compiler German
Engineering Construction

Figure 2.3: Relational Algebra Difference Operation

Cartesian Product

The Chartesian Product operation combines information from two relations
pairwise on tuples. For two relations r and s in database schema R. Chartesian
Product between two relations is written as:

Notation : r X s

Formally chartesian product can be described as:

rxs={(t1,t2) | t1 € r At2 € s} where r(R) = s(R)

Chartesian product operation between the given relations r and s can be
performed in following steps:

e For each tuple in r, form new tuples by pairing it with each tuple in s

e Place all of these new tuples in the result set

Chartesian Product Operator in SQL

The cartesian product of two relations is a join that is not restricted by any
criteria, resulting in every tuple of the first relation being matched with every
tuple of the second relation. The cartesian product is implemented in SQL as
the CROSS JOIN operator.

Example

A simple example to show chartisean product would be a database having
tables students and courses2006 as showed in figure 2.1. A CROSS JOIN query

16 CHAPTER 2. TECHNICAL BACKGROUND

would combine results in form of a chartesian product. The visual description of
CROSS JOIN operation is provided in figure 2.4. The equivalent SQL statement
is given as under:

Select x FROM

courses2006
CROSS JOIN
Students
Students Courses 2006 Result
Student | Degree Course Language Student Degree | Course Name Language
Name Name Name
Peter Masters x DataMining | English — Peter Masters | DataMining English
Lewis Bachelors oo _S°R"‘fa"3 English Peter Masters | OO Software English
Engineering Engineering
Compiler) German Peter Masters Compiler German
Construction ConEhacha
Lewis Bachelors | DataMining English
Lewis Bachelors | OO Software English
Engineering
Lewis Bachelors | Compiler German
Construction

Figure 2.4: Relational Algebra Product Operation

The remaining operations proposed by Codd are as follows:
1. Selection

2. Projection

3. Join operation

4. Relational division

The next sections discuss all these operations one by one.

Selection

The selection operation has one relation as input and output respectively. The
output relation is a subset of input relation containing those tuples who satisfy
the given selection condition. Basically it partitions the input relations in to
two sets of tuples (i) those tuples that satisfy the condition are selected and
(i) those who do not satisfy the condition are discarded. For a relation r in a
database Schema R the selection operation is written as follows:

Notation : O selection—condition (T)

Formally selection can be defined as:
op(r)={t|terAF(t)} where F is a boolean expression on attributes in r.
The selection condition is made up of a number of clauses of the form

e <attribute name> <comparison op> <constant value> OR/AND

2.1. RELATIONAL DATABASE SYSTEM 17

e <attribute name 1> <comparison op> <attribute name 2>

The clauses are connected by boolean operators ’AND’ and "OR’ operators. In
the clause, the comparison operations could be one of the following <, > | # |
=, > and <.

Selection Operation in SQL

The SQL equivalent of selection operation of relational algebra is the SE-
LECT query statement with a WHERE clause. The condition is given in the
WHERE clause.

Example A simple example to show selection would be a database having
table courses2006 as showed in figure 2.5. If courses whose language of instruc-
tion is English are to be retrieved the visual description of Selection operation
is provided in figure 2.5. The equivalent SQL statement is given as under:

Select » FROM

courses2006
WHERE
Language = "English”
Courses 2006 Result

Course Language
Name Course Language
DataMining | English Name
00 Software | English DataMining | English
Engincering O'Language=FEnglish’ (CO’UJ‘SGSQOOG) 0o English
Compiler German | Software
Construction i ing
00 Software | English 00 English
Engineering Software
Compiler German Enginesring

Construction

Figure 2.5: Selection Operation in Relational Algebra

Projection

The project operation is another unary operation. This operation returns a set
of tuples containing a subset of the attributes in the original relation. Thus, it
can be stated that the Selection operation selects some rows and discards the
others. The project operation, on the other hand, selects some columns of the
relation and discards the other column. The project operation can be viewed
as the vertical filter of the relation. For a relation r of a database schema R,
project is defined as

Tattribute—list (T)

Formally for a relation r and, X, a set of attributes of r, projection is defined
as follows:

mx (r) = {t[X]|t € r}

Projection Operation in SQL

18 CHAPTER 2. TECHNICAL BACKGROUND

The projection operation of relation algebra in SQL is also done by SELECT
operator. One difference between projection and selection is that in projection
after SELEC'T operator, the names of attributes are provided. Projection does
not care about duplicates. In order to remove duplicates DISTINCT keyword
is used in SQL.

Example: A simple example to show projection would be a database having
table courses2006 as showed in figure 2.6. If only the column coursename is to
be retrieved. The visual description of this Projection operation is provided in
figure 2.6. The equivalent SQL statement is given as under:

Select coursename FROM

courses2006

Courses 2006 Result
Course Name | Language Course Name
Data Mining English C Data Mining
00Software | English Fccmrsename (ourses 2006) 00 Software
Engineering I Engineering
Compiler) German Compiler
Construction Construction
Qo _Soft\n_lare English 00 Software
Engineering Engineering
Compiler . German Compiler
Construction Construction

Figure 2.6: Projection Operation in Relational Algebra

JOIN Operation

The join operation is used to combine related tuples from two relations into a
single tuple. There are various kinds of joins such as natural join, equi join,
outer joins. From QTM'’s perspective only natural join is relevant. So, here
only natural join is discussed. For two relations r and s in a database schema
R, natural join is described as:

Notation : r X s
Formally natural join can be described as:
r X s =Tus0(r X 5)

Natural join operation for given relations r and s can be performed in fol-
lowing steps:

e For each tuple in relation r, compare common attributes with those in
each tuple of s

e If two tuples match in their common attributes then combine tuples, re-
move duplicate attributes and add to the result.

2.1. RELATIONAL DATABASE SYSTEM 19

Join Operation in SQL

The join operation of relation algebra in SQL, like projection and selection
operations is also done by SELECT operator. The join operations combines
two relations over a join condition. The resultant relation contains only those
tuples that satisfy this condition.

Example:

A simple example to show join operation would be a database having tables
registeredcourses and students as showed in figure 2.6. Table student contains
all students and registeredCourses contains courses registered by those students.
The coursename column of registeredcourses contains the coursenames and SID
column contains the id of the student who has registered that course. The visual
description of this Projection operation is provided in figure 2.6. The equivalent
SQL statement is given as under:

Select studentname, coursename FROM
courses2006, students

WHERE
students. std — courses2006. sid
Students Registered Courses
Course SID
SiD Student N

Data Mining 10001

10001 | David

00 Software | 10002

10002 Peter . = G
students X registeredcourses | Eneineering

10003 Micheal Data Mining 10003
— 00 Software | 10003
- Engineering
Data Mining 10002
N] N @ *
TUstudentname, coursename O'students.sid = registeredcourses.sid (Student * courses)
Student Course Name
Name
David Data Mining
Peter 00 Software
Engineering
Micheal Data Mining
David 00 Software
Engineering
Peter DataMining

Figure 2.7: Join Operation in Relational Algebra

Division Operation

The division is a binary operation which requires two relations. The relational
division operation is slightly more complex operation, which involves essentially
using the tuples of one relation (the dividend) to partition a second relation
(the divisor). The relational division operator is effectively the opposite of the

20 CHAPTER 2. TECHNICAL BACKGROUND

cartesian product operator. For two relations r and s in a database schema R,
division can be written as:

Notation : r =+ s

2.1.4 Database design

In software engineering the term database design is the process of producing
detailed data model of a database based on the application requirements. This
logical data model contains all the needed logical and physical design choices and
physical storage parameters needed to generate a design in a Data Definition
Language, which can then be used to create a database. A fully attributed data
model contains detailed attributes for each entity. A data model is an abstract
model that describes how data is represented and accessed. In software industry,
the term datamodel is often a reference to a document which contains the logical
and physical structure of an underlying database of an application.

2.2 DRAGOS Graph Database

DRAGOS (Database Repository for Applications using Graph Oriented Stor-
age), as discussed earlier is a graph database system. It can store and retrieve
complex graph structures. Using graphs as as a fundamental data model en-
sures that even complex data structures are stored easily without the need of
helper elements. Its unlike relational model where additional storage elements
are required to cater many-to-many relations.

DRAGOS Extensions

Incremental Attribute

Graph Versioning Evaluation Graph references
DRAGOS Kernel Graph Model and
Schema
Rule Engine

Transaction
Event Manager Manager Graph Storage

Transaction TR
Event Manager Manager \ Commercial }

Figure 2.8: DRAGOS Architecture

2.2. DRAGOS GRAPH DATABASE 21

DRAGOS can be used by software applications such as Integrated devel-
opment environment (IDE), computer aided software engineering tools(CASE),
reverse engineering tools and other interactive applications who use complex
object structure. The common feature of all these applications from various ap-
plication domains is the necessity to handle different types of objects at different
levels of efficiency. All use coarse and fine grained objects which can have com-
plex hierarchical or non hierarchal inter references. These applications usually
require vast number of differently sized attributes. DRAGOS provides solution
to all of the above mentioned demands of applications. It effective handling of
complex graph objects, their inter-referencing and it supports attribute storage
for graph objects.

DRAGOS has a multilayer architecture. It is implemented in java which
makes platform independent. An overview of the structure of DRAGOS is
provided in Figure 2.8. Next section provides an overview of the structure of
DRAGOS.

Structure of DRAGOS

DRAGOS is structured in to a multi-layered architecture which gives it signifi-
cant advantages specially in the maintenance and evolution stage. As technolo-
gies and functionality requirements change over time, this layered architecture
makes adaptation easier for DRAGOS. Each layer of DRAGOS includes differ-
ent components. DRAGOS includes components for graph versioning, attribute
evaluation etc. The structure of DRAGOS system is illustrated in Figure 2.8.
Next sections look at these layers one by one.

2.2.1 DRAGOS Backend Storage

DRAGOS does not implement a dedicated storage module for graph storage,

instead it uses existing relational database systems for graph storage. DRAGOS

internally implements a mapping mechanism between graphs and RDBMS for

storing graphs. It supports many relational database systems such as MySQL[30],
PostgreSQL [26] and Derby [21] etc. DRAGOS has for every database, JDBC[22]

(java Database Connectivity) based written modules available, each of which has

its own graph model implementation. The DRAGOS user only has to specify

the database to be used, the rest is done by that implementation itself. For

testing purposes a fast in-memory model is available.

2.2.2 DRAGOS Kernel Layer

DRAGOS Kernel is the most significant layer of DRAGOS and provides most
of the services. Services provided by Kernel include opening and closing of
database connections, graph storage management, transaction management,
event management, and graph schema creation.

Graph Schema defines the fundamental structure of graph and graph model
is its instance. The next section describes graph model and details about graph
schema are included in section 2.2.2.

22 CHAPTER 2. TECHNICAL BACKGROUND

Graph Model

DRAGOS offers a rich graph model originally inspired by the Graph eXchange
Language (GXL) [18]. It is an XML based exchange format, which is applied
for sharing data between software re-engineering tools. The major aim of the
GXL is to provide interoperability between tools which utilize graphs for the
representation of internal data. Typed, attributed and ordered directed graphs
constitute the base for GXL. In DRAGOS like specified by GXL nodes, edges
and relations can be identified and attributed [44]. Graph model is an instanti-
ation of graph schema.

The DRAGOS graph model is illustrated as a UML class diagram in Figure
2.9. Graph model instantiates nodes, edges and relations between these nodes
and edges. The instantiation is done of corresponding nodes, edges declared
in schema. Graph model contains classes for every graph element. All these
classes as shown in the graph model class diagram in 2.9 are inherited from a
GraphEntity class.

GraphEn#iiyClass HetaAtxibuiable Arvibuie
ffrom schema) (from schema) (from sehema)
—name:String :I —name :3tring
—abstract ‘booksan —lype Serializable
type Instance
GraphEntity AmributeValue
- —value: Seralizahl
0.1 " | ~valid :bookean
0.1 0.1 N
containg
o fram
Relalion End . Relation Edge Hode Graph GraphPool

——— —dimcted :boolkean —mle :String ————

Figure 2.9: Graph Model [13]

All graphs in the database are managed by a graph pool as shown graph
model class diagram. GraphPool object represents graph pool. In the graph
pool, an arbitrary number of graphs can be stored. These graphs are identified
by their name, which must be unique. A graph pool is capable of storing any
number of graphs but it contains only one graph schema.

A graph contains an arbitrary number of graph entities such as edges, nodes,
relations, and relation ends. which are all inherited from GraphEntity. A graph
is also one of the possible graph entities. Every graph entity can be attributed
in DRAGOS. The values of the attributes are represented in the Dragos graph
model by the class AttributeValue.

The graph object instantiates nodes, edges and relations. Object of class
Node is given on creation of a node, object of Edge is given for every edge and
object of class Relation is given on creation of every relation. However, the
relation ends are not directly part of graphs. Instead, a relation end belongs to

2.2. DRAGOS GRAPH DATABASE 23

relation. As already discussed, every graph entity can be attributed in DRA-
GOS. The values of the attributes are represented in the DRAGOS graph model
by the class AttributeValue. The difference between edges and relations is that
the relations can be connected with any number of graph entities by the relation
ends.

Graph Schema

Graph schema specifies the contained graph elements, there types and attributes
associated with them. It also specifies the relations between these graph ele-
ments, cardinalities of these relations and lastly the constraints over relations
ships.

The DRAGOS schema is represented in Figure 2.10 as a class diagram. For
storage of a graph, first step is the creation of its schema. Graph schema defines
what nodes and edges exist in a graph and which relations can exist between
these nodes and edges. DRAGOS schema declares a class for creation of every
graph element (e.g) NodeClass for a node, EdgeClass for an edge etc. All of
these classes as shown in the schema class diagram in 2.10 are inherited from a
GraphEntityClass.

GraphEntityClass is abstract, so, it cannot be instantiated. Each declared
GraphEntityClass is required to identify itself with a unique name in string
format. This unique name acts as an identifier for every GraphEntityClass. The
GraphEntity class object can later be retrieved from schema using this name.
An arbitrary number of attributes can be defined for every GraphEntityClass.
Every attribute, like other GraphEntityClass objects is identified by a name
that has to be unique for each graph entity class. The attributes inheritance
from super classes is not supported. Every attribute also has a type that defines
which values are valid.

GraphFool WetaAttributable

Schema .
-super -sub| * |

GraphEntityClass Attribute
attribs

-
elements | - name:String - name :String
»—] -

-abstract :boolean . |- type: Serializable

RelationEndClass

-direction :Direction |
-cardinality :Cardinality

souroe target

RelationClass EdgeClass MNodeClass GraphClass
> - directed :boolean

- sreCard: Cardinality
- tgCard : Cardinality

Figure 2.10: Graph Schema [13]

After describing the superclass GraphEntityClass, graph element classes are

24 CHAPTER 2. TECHNICAL BACKGROUND

discussed one by one. As already described graph schema declares a GraphEn-
tityClass for every graph element in a graph. It contains NodeClass for creation
of every node, EdgeClass for Edge, GraphClass for graph and, RelationClass
and RelationEndClass for relations.

For every node in a graph is instantiated from a NodeClass. Every new
NodeClass requires a unique name in string. The unique string name is then used
to retrieve this NodeClass object from storage. This NodeClass can declares its
attributes.

An edge connects two nodes. So, for creation of an edge class, DRAGOS
schema requires information about the source, the target and the cardinality of
there relationship. For this, the cardinality attribute is specified on the source
and target nodes. The DRAGOS graph schema supports directed as well as
undirected edges. This is realized using the attribute called directed. The
inheritance hierarchy is also considered. It means subclasses of an entity class
are also permitted.

Relations can be connected to any number of graph entities. For the real-
ization of this feature, the RelationClass and the RelationEndClass are defined.
For the declared RelationEndClass classes, it is defined, which cardinality the
RelationEndClass may have and which GraphEntityClass are allowed as tar-
get and whether the relation ends are directed or ordered. A name is specified
for every RelationEndClass. The relation end classes are related to the relation
classes. Thereby which relation ends may be connected by a relation is specified.

2.3 Datamodel of DRAGOS

As already discussed in section 2.1.4, in software engineering the term data-
model is often a reference to a document which contains the logical and physical
structure of an underlying database of an application. DRAGOS stores graph
structures. It has various storage options but from QTM’s perspective only re-
lational database is relevant. QTM generates a single SQL statement for every
pattern. To understand the process of generation of SQL statement, under-
standing of underlying data model is necessary. Due to this reason overview of
data model of DRAGOS is provided.

DRAGOS has a complex data model which includes numerous tables. This
section only looks at tables which are relevant to the QTM. Nodes, edges and
relations are the graph elements which constitute a graph. QTM performs
queries over these graph structures. So, its important to understand how nodes,
relations and edges are stored (i.e) which tables are required. This section
includes sample insertion of nodes and edges taken from example provided in
Section 1.3.

The table ’GraphEntityClass’ is the first one that QTM uses. As already
described in DRAGOS graph schema 2.2.2; all graph elements are instantiated
from a ’GraphEntityClass’ object. This object is represented in database by
table ’GraphEntityClass’ as shown in table 2.4. This table has four fields. There
description and data types are as follows:

1. Id: A unique identifier for every graph entity class. Its an integer which is
incremented on every new insertion of a graphentityclass. It the primary
key of the table.

2.3. DATAMODEL OF DRAGOS 25

2. Type: ’Type’ field describes whether the stored graph entity class is a
a node, edge or graph. It is an integer. DRAGOS uses constants to
represent edge class and node class (i.e) constant for edge class is 202, for
graph class it is 206 and a node has 204.

3. name: Every graph entity class entry requires a unique name. This at-
tribute is of data type string.

4. abstract: It indicated whether the graph entityclass is abstract or not.
It is of data type boolean.

Graph Entity Class
id | type | name | abstract

Table 2.4: Table Graph Entity Class

DRAGOS’s support for different RDBMS system is an attractive feature.
Up to now, it supports MySQL[30], PostgreSQL [26] and Derby [21]. However,
the datamodel is not exactly the same for all these databases. Datamodel for
PostgreSQL is different from rest of the database systems. So the datamodel of
DRAGOS can be divided in two categories. Which are:

1. General Datamodel

2. Database specific DataModel

2.3.1 General Datamodel

So far, apart from PostgreSQL all the database systems supported by DRAGOS
have identical datamodel. The general datamodel requires insertion of node only
in table 'GraphEntity’ as shown in table 2.5. Edge who is also a graph entity, is
stored in tables ’GraphEntity’ shown in table 2.5 and ’EdgeData’ as shown in
Table 2.6. The ’id’ field of ’GraphEntity’ table acts as the foreign key in table
"EdgeData’.

Graph Entity
id | type | class | parent

Table 2.5: Table Graph Entity

Table GraphEntity as depicted in Table 2.5 has four fields. There description
and data types are as follows:

1. Id: It is unique for every graph entity. Its an integer which is incremented
on every new insertion of a graphentity. It the primary key of the table.

2. Type: It is derived from this field that whether the stored graph entity
is a a node, edge or graph. It is an integer. DRAGOS has constants to
represent edges and nodes (i.e) value for constant for edge is 22, for graph
it is 26 and for node it is 24.

26 CHAPTER 2. TECHNICAL BACKGROUND

3. Class: As every graph element is instantiated from a ’GraphEntityClass’.
It identifies the GraphEntityClass thie graph entity belongs to. It is the
foreign key and contains the value given in id field of the GraphEntityClass
table. It is of data type integer.

4. Parent: It is id of the parent graph of the current graph entity. In case
of a graph its null. It is an integer.

The Edge data looks like this.

Edge Data
id | source | target

Table 2.6: Table Edge Data

Table EdgeData as shown in Table 2.6 contains three fields. There descrip-
tion and data types are as follows:

1. Id: It is the foreign key linked with table GraphEntity. It points to the
graph entity this edge belongs to. It is of data type Integer.

2. Source: It contains the id of the source of the edge. It is an integer.
Source is the unique identifier i.e value of ’Id’ field of the graph entity who
is the source of this edge.

3. Target: It contains the id of the target of the edge. It is also an integer.
Target is the unique identifier i.e value of ’Id’ field of the graph entity who
is the source of this edge.

To access a complete edge object, the tables 'EdgeData’ and 'GraphEntity’ are
required to be joined explicitly on field ’Id’. To provide a clear understanding of
the datamodel of DRAGOS, a few sample insertions are provided in following
sections using the example given in section 1.3.

2.3.2 Database specific DataModel

In database specific datamodels the example of PostGRSQL is taken. Post-
greSQL supports inheritance among tables. It means a table can inherit at-
tributes and fields from another table and relationship among the tables is done
internally by DBMS on the basis of a common primary key. As already discussed
in section DRAGOS schema 2.2.2, every node and edge is a graph entity too.
Datamodel contains one table for storing a graph node named ’GraphEntity’.
Edge has a source and a target, and edge is also a graph entity. PostgreSQL
has two tables for storing an edge. These are tables ’GraphEntity as depicted in
Table 2.7 and table Edge as shown in Table 2.8. The table Edge inherits from
table GraphEntity. The design of table ’GraphEntity’ is same for PostgreSQL
and general datamodel as shown by tables 2.7 and 2.8 respectively. So, there is
no need of repeating the field descriptions here. The description earlier given in
section on description of general data model is valid for table *GraphEntity’ of
the database specific data model.

2.3. DATAMODEL OF DRAGOS 27

Graph Entity
id | type | class | parent

Table 2.7: Table Graph Entity

Edge
source | target

Table 2.8: Table Edge in PostgreSQL

PostgreSQL supports inheritance, table Edge as show in 2.8 inherits from
table graph entity, shown in Table ch3:tabgraphentityPost. It means any SQL
statement referencing the table edge can also reference fields in table ’GraphEn-
tity’. The table ’Edge’ contains only two fields. There description and data
types are as follows:

1. Source: It contains the id of the source of the edge. It is of data type
integer.

2. Target: It contains the id of the target of the edge. It is of data type
integer.

2.3.3 Sample Data

As already described in previous Section 2.3 there are two types of relational
datamodels of DRAGOS, one for PostgreSQL and one for all others. This section
creates a sample data and then explains how insertions of that sample is done in
DRAGOS. The insertions made here will be referenced in later chapters as well.
Few patterns will be executed on this data and SQL queries will be generated
on this data.

Graph Entity Class

id type name abstract
1998 | 206 | UniversityGraphClass | FALSE
1999 | 204 Person TRUE
2000 | 204 Student FALSE
2001 | 204 Professor FALSE
2002 | 204 Course FALSE
2003 | 204 Department FALSE
2004 | 202 takes FALSE
2005 | 202 majorsin FALSE
2006 | 202 supervises FALSE
2007 | 202 teaches FALSE
2008 | 202 worksfor FALSE

Table 2.9: Table Graph Entity Class

28 CHAPTER 2. TECHNICAL BACKGROUND

Let the university schema of example provided in Section 1.3 has three stu-
dents namely Thomas, Micheal and Susain. two professors are teaching in uni-
versity namely Mr. Coenen and Mrs. Steinmayer. The table ’GraphEntityClass’
as a result of schema creation is shown in table 2.9. The constant 26 used in
field type of table 'GraphEntityClass’ denotes a graphclass, similarly constant
22 and 24 represent that rows entries are of type nodeclass and edge class re-
spectively. The entries in table marked blue are edges, green are nodes and the
entry in red indicates a graph.

Graph Entity
id type | class | parent

33402 | 26 | 1998
33403 | 24 | 2000 | 33402
33404 | 24 | 2000 | 33402
33405 | 24 | 2000 | 33402
33406 | 24 | 2001 | 33402
33407 | 24 | 2001 | 33402
33408 | 24 | 2003 | 33402
33409 | 24 | 2002 | 33402
33410 | 24 | 2002 | 33402
33411 | 22 | 2008 | 33402
33412 | 22 | 2008 | 33402
33413 | 22 | 2007 | 33402
33414 | 22 | 2007 | 33402
33415 | 22 | 2004 | 33402
33416 | 22 | 2004 | 33402
33417 | 22 | 2004 | 33402
33418 | 22 | 2004 | 33402

Table 2.10: Table Graph Entity

The university has a department named Information Systems. Mr. Coenen
and Mrs Steinmayar are working for this department. Mr. Coenen is teaching
Introduction to databases and Mrs. Steinmayar is teaching implementation of
databases. Thomas and Micheal have taken Introduction to databases. Susain
has taken both Introduction to databases and implementation of Databases.

To realise the example taken in section 1.3 and its sample data given above,
firstly creation of a new graph is required. DRAGOS inserts a new graph in
table ’GraphEntity’. When University graph was inserted in DRAGOS, it made
entries shown in row one of table 2.10 with id field equal to 33402. On insertion
of eight nodes nodes which were three students, two professors, two courses and
one department respectively. Eight entries were made in table ’GraphEntity.
The rows of table 2.10 with type attribute equal to 24 depicts the node entries.
As already discussed, tables which store edges are different for general model
and database specific models. The sample data contains eight edges. All rows
in table 2.10 with type attribute equal to 22 are edges. However as PostgreSQL
supports inheritance, it does not require storage of a foreign key. Data inserted
in PostgreSQL is shown in table 2.11. The general model require storage of

2.3. DATAMODEL OF DRAGOS 29

Edge
source | target

33409 | 33406
33410 | 33407
33408 | 33406
33408 | 33407
33403 | 33409
33404 | 33409
33405 | 33409
33405 | 33410

Table 2.11: Table EDGE PostGRe

foreign key. So, the graph entity id is stored as foreign key in table EdgeData
in the general model as shown in table 2.12. The entries in table marked blue
are edges, green are nodes and the entry in red indicates a graph.

Edge Data
id source | target

33411 | 33409 | 33406
33412 | 33410 | 33407
33413 | 33408 | 33406
33414 | 33408 | 33407
33415 | 33403 | 33409
33416 | 33404 | 33409
33417 | 33405 | 33409
33418 | 33405 | 33410

Table 2.12: Table EDGE Data

In chapter 4 various phases of SQL generation are described. It describes
steps involved in SQL statement generation. The understanding of the data
model of DRAGOS provided here is necessary to understand QTM’s most crit-
ical process of SQL statement generation. But, understanding of the process of
query generation requires understanding of the conceptual background of QTM.
This background have been discussed in next chapter.

30

CHAPTER 2. TECHNICAL BACKGROUND

Chapter 3

Conceptual Background

This chapter provides the conceptual background necessary for the implementa-
tion of query and graph transformation manager QTM. First section describes
the core concepts which are necessary to understand conceptual background of
graph transformations. In the beginning after a brief introduction, the defini-
tions of graph, meta model and instance model is provided. At the end of this
section formal definition of graph transformation is provided.

This chapter includes a brief overview of PROGRES. PROGRES is given
as an example of graph transformation system. As discussed earlier, currently,
graph transformation can only be supported in DRAGOS using PROGRES.
An example transformation is shown on the university example introduced in
section 1.3.

Last section of this chapter includes a section about the concept of query
transformation language (QTL). This section explains how this QTL can provide
a universal solution and how existing application can integrate with QTM using
QTL. It also includes details how QTM has been embedded in DRAGOS. At the
end of this chapter a brief overview of the DRAGO’s QTL called DRAGULA is
included.

3.1 Graph Transformation

Graph transformations have already been introduced in chapter 1, so there
is no need of repetition. The understanding of graph transformations require
introduction to its basic concepts like graphs, meta model and instance model.

Graph

A graph consists of a set of vertices V and a set of edges E such that each edge
e in E has a source and a target vertex s(e) and t(e) in V, respectively. Graphs
provide the most basic mathematical model for entities and relations. graphs
can represent concrete entities as vertices and relations between theses entities
as edges.

Meta model and instance models can be best understood by comparing them
to widely used UML notations. Unified modeling language (UML)[2] is the most
popular modeling language which is used to model object oriented systems. The

31

32 CHAPTER 3. CONCEPTUAL BACKGROUND

class diagram is the core of UML, which is good at describing static software
architecture. UML is widely used to model object oriented in software engi-
neering, it is assumed that reader is familiar with object oriented paradigm and
basic UML notations such as class diagram, object diagram etc. When graphs
modeled on object oriented principles, modeling occurs at two levels:

1. Type level, given by the class diagram. The model that describes the type
level graphs is called the meta model.

2. Instance level, given by object diagram. The model that contains instance
level graph is called an instance model.

3.1.1 Meta Model

Meta model is comparable to class diagram. Nodes in the meta model are called
classes. A class may have attributes that define some kind of properties of the
specific class. Inheritance may be defined between classes, which means that the
inherited class has all the properties its parent has, but it may further contain
some extra attributes. Associations define binary connections between classes
(edge types between node types).

3.1.2 Instance Model

The instance model is a well formed instance of the meta model. Nodes and
edges are called objects and links respectively. Objects and links are the in-
stances of metamodel level classes and associations respectively. Attributes in
metal model appear as slots in the instance model. Inheritance in the instance
model imposes the instances of the subclass can be used in every situation where
instances of the super class are required.

After having a look at the definitions of terms and concepts necessary to un-
derstand graph transformations. Its formal definition is provided in the section
underneath.

Graph Transformation

Graph transformation [14] provides a pattern and rule based manipulation mech-
anism of graph models. Each rule application transforms a graph by replacing
a part of it by another graph. A graph transformation rule R can be written
as:

R =(LHS,RHS,NAC)

Here, R contains a left-hand side graph LHS, a right-hand side graph RHS,
and negative application condition graphs NAC. The LHS and the NAC graphs
are together called the precondition PRE of the rule. and RHS are called post
condition of the rule.

Rule application

The application of a rule to an instance model replaces a matching of the LHS
in the model by an image of the RHS. Informally, this is performed by

e finding a match of the LHS in model

3.2. PROGRES 33

e checking the negative application conditions(which prohibits the presence
of certain object and links)

e removing the part of the model that can be mapped to LHS but not to
the RHS, yielding a context model

e replacing in context model, the parts found in earlier step with an image
of RHS and at the end, a derived model is obtained.

Graph transformations in an application can also be supported by using
relational databases as underlying implementation technology. This idea was
presented by the authors of [41]. It involved following three salient points:

1. Creation of database schema based on the meta model
2. Implementation of pattern matching of rule using database queries

3. Handling of data manipulation

This thesis attempts to support graph transformations in DRAGOS based
on its relational database support. An application using the developed QTM
is going to create graph schema in DRAGOS. So, the first step is handled by
DRAGOS itself. DRAGOS provides graph manipulation operations in its core
services. These operations are used for data manipulation. So, DRAGOS API
is used to do the third step. Coming to second step, implementation of pattern
matching has been done by constructing SQL statement for the LHS and the
NAC. The SQL statement is generated during parsing of QTL of DRAGOS
which is called DRAGULA. The SQL generation is explained in detail in chapter
4. The explaination of QTL and DRAGULA is included in later sections of this
chapter.

As already argued in chapter 1, currently DRAGOS supports graph transfor-
mations using PROGRES[33]. In next section a brief description of PROGRES
is provided and later on it will be shown how DRAGOS uses PROGRES for
graph transformation.

3.2 PROGRES

PROGRES (PROgramming with Graph Rewriting Systems) is a very high level
language based on graph grammars, developed by Andy Schiirr and Albert
Zindorf of RWTH, Aachen in 1991. It is used to define, create, and manipulate
graphs which are directed, typed, and attributed. It is available as free software.
As The name suggests PROGRESS is for programming with graph rewriting
systems.

PROGRES is a visual programming language having a graph-oriented data
model: It has a graphical syntax for its most important language constructs.
It was developed, according to its specification[34], having the following design
goals in mind:

e Using graphical syntax where appropriate but at the same time not ignor-
ing textual syntax when it can be more natural and concise.

34 CHAPTER 3. CONCEPTUAL BACKGROUND

e Distinguishing between data definition and data manipulation as database
programming languages. Using and doing graph class declarations to type-
check graph manipulations.

e Refrain users from the task to guarantee confluence of defined rewriting
systems by keeping track of rewriting conflicts and backtracking out of
dead-end derivations[34].

e Finally, not to always rely on the rule-oriented programming paradigm for
all purposes but also supporting imperative programming of rule applica-
tion strategies.

Use of PROGRES starts with definition of graph schemata. Next sections
provides only broad overview of graph schemata and graph transformations
using PROGRES, with the university example provided in section 3.2.2.

3.2.1 Definition of Graph Schemata

The idea of meta model has been explained before in section 3.1.1. Defining
graph schema is identical to meta model. Nodes and edges are objects and re-
lationships between these objects, respectively. In PROGRES, they are called
node types and edge types respectively. Attributes are used to store the infor-
mation that is local to a particular node. Edges cannot be attributed.
PROGRES offers the following syntactic constructs for defining the compo-
nents of a particular class of graphs and their legal combinations. These are:

e Node types: which determine the static properties of nodes instances

e intrinsic relationships: which are called edge types, are explicitly con-
cerned with the types of their sources and targets

e derived relationships: which model often needed paths of a given graph
and which are defined by means of path expressions

e intrinsic attributes: which are defined for a particular set of node types
and which are explicitly manipulated

e derived attributes: which are defined by means of directed equations
and which may have different definitions for different node types

The graph schemata in PROGRESS for university example schema described
in section 1.3 is shown in figure 3.1. It is read in following manner:

e Normal boxes represent node classes which are connected to their super-
classes by means of dashed edges. In figure 3.1 professor, student, course,
department and person are node classes.

e Boxes with round corners represent node types which are connected to
their uniquely defined classes by means of doted edges.

e Solid edges between node classes represent edge type definitions; the edge
type ’takes’ is for instance a relationship between student node and course
node.

3.2. PROGRES 35

(oparmen)

wse 10

| Course course name | Department '|—O Department name
Student] [Professor
| Student Professor |
-
S -~
~ e
~ i
~ -
~ -
~ ~ PR g
“aa”

| Person 'I_O name
______ .’)
| Node Class | subclass of ‘:(den'v —~) attribute type

................................. > attribute
[Node T] subtype of
e
yee ’ R O attribute type
edge type of intrinsic
attribute
Symbols:

Figure 3.1: University Graph Schema in Progress

e Circles attached to node classes represent attributes with their names
above or below the connection line segment and their type definition
nearby the circle. A double line segment connects a derived attribute
and a normal line segment connects an intrinsic attribute like 'Name’ to
its class.

3.2.2 Graph Transformations Using PROGRES

As already discussed in chapter 1, currently, in DRAGOS, graph transforma-
tions are only supported using code generated by PROGRES. This could be
better explained by a real life example. As example University schema given in
section 1.3 is taken. If a rule describing a professor employed by a department
is to be transformed in to a professor starts teaching a course. The PROGRES
syntax is given in figure 3.2. Here the so called left hand side (LHS) consist-
ing of an edge ’employs’ between two nodes ’department’ and ’professor’ is to
be transformed in to so called RHS which constitutes of three nodes namely
"department’, 'professor’ and ’course’ having two edges namely ’employs’ be-
tween ’department’and professor and ’teaches between ’professor’ and course
respectively.

In this case, two nodes of type ’department’ and ’professor’ connected by
edge of type ’employs’ are queried. If this pattern is found in the graph storage,
it is transformed corresponding to the rule’s right-hand side (RHS, lower part).
nodes assigned to ‘1 and ‘2 are preserved, as corresponding variables (‘1 resp. ‘2)
are present on the RHS. A new node of type 'course’ is created and assigned to
‘3. As edges are neither identified nor attributed in the PROGRES graph model,

36 CHAPTER 3. CONCEPTUAL BACKGROUND

transformation sample =

employs
I 1 : Department I p_oy ﬁ"ll * 2: Professor I

1
I * 1: Department IM%I * 2: Professor I

teaching

I * 3 : Course I

Figure 3.2: Example transformation rule in application-specific language

they do not need to be preserved explicitly: Removing all edges of the LHS and
inserting edges corresponding to the RHS has the same effect as preserving edges
if possible.

As a result of this thesis DRAGOS has been provided QTM which provides it
an internal graph transformation mechanism. QTM parses a a pattern composed
in DRAGOS’s QTL. Pattern and QTL and discussed in next sections.

3.3 Pattern

A pattern, from the French patron, is a theme of reoccurring events or objects,
referred to as elements of a set. These elements repeat in a predictable manner.
A pattern in DRAGOS is written following DRAGOS’s rule language called
DRAGULA. as described in the figure 3.4, each Pattern consists of a set of
PatternElements, which are sub-divided into Variables and Constraints. Con-
straints are connected to at least one Variable via Restricts edges, which can be
distinguished using the role attribute. To support manipulation of graphs, the
complete metamodel additionally provides Operators, which are not discussed
in this document.

3.4 Query Transformation Language (QTL)

As elaborated in chapter 1, DRAGOS QTL provides tool support for existing
graph languages. It acts as a base layer for graph languages and require devel-
opers to work at a higher level functionality provided rather than developing
each time interpreters or code generation modules from scratch. QTL covers
the entire DRAGOS graph model, e.g. querying nested graph structures and
hyperedges are supported.

3.4. QUERY TRANSFORMATION LANGUAGE (QTL) 37

The Query and Transformation Language presented here, is able to repre-
sent rules on universal basis. By universal basis, it is meant that QTL is not
limited to DRAGOS only. It means an application modeled in an application
specific language has to convert its transformation rules in to the DRAGOS core
language. Its done by importing the ASGs in to the graph database (e.g) by
parsing a textual representation. The translation results in a graph structure
representing a set of QTL rules, which are processed by the QTM’s language
implementation. Figure 3.3 shows how a graph transformation system modeled
in an application-specific language interacts with DRAGOS QTM.

— el
Application-specific language (GTS
specific language specific
meta-model query / transformation rules
TE

Transition 1:

Speific Language
Mapping

SQL Statement

Pattern Query Select [...]
Parser - Generator - From [...]
Where [...]

‘ Core Language ‘

Core Query /
Meta Model

Transformation Rules

Core Sgr\[jcej | DRAGOS DB Specific Implementations

Transition 2;
Core Language

\/ Implementation

Relational Database

Figure 3.3: Integration with the DRAGOS QTM

Figure 3.4 shows an excerpt of the meta-model of the core of QTL. A Pattern
contains a set of PatternElements, i.e. Variables, Constraints and Operators.
Variables represent the entities found during pattern matching. Variables and
constraints are connected to each other via object of Restricts association. Con-
straints are used to put restrictions on assignments possible with Variables. Dif-
ferent constraints do different kind of restrictions. (E.g) Type constraint restrict
assignment only to specific type, similarly containment restricts to a particu-
lar graph. The role attribute of the Restricts association describes the type of
association between constraint and variable. For example, Incidence constraint
determines from role attribute whether the attached variable is a source, target
or connector.

An assignment of graph entities to variables of a Pattern not violating any
of its Constraints is called a Match. Each Match is an aggregation of a set of
Assignments, which relate a Variable to exactly one GraphEntity. It is required
that each Variable with an attached Constraint has to be present in a Match, so
partial matches are not allowed. Unconstrained Variables are not bound during
pattern matching.

Operators define transformation of entities bound to a Match. Each Opera-
tor effects exactly one entity assigned to a Variable. For this purpose, operator
require values of other variables as parameter. Required variables are distin-

38 CHAPTER 3. CONCEPTUAL BACKGROUND

Pattern PatternElement
pattern contains

[]

Match Assignment Variable 1.7 * Constraint
* T
(from matches) g *| (from matches) sart: EntitySort i
assignments variable m
role: String YA
__'u’alu? [|
GraphEntity TypeConstraint IncidenceConstraint| [IsomorphismConstraint

I
(from model} reqTyps: String

Figure 3.4: Meta-Model of the Query and Transformation Language

guished by a role name. Creation of an entity extend while deletion of an entity
reduces the match by the effected variable. Operators are executed only when
all required Variables are bound. This indirectly imposes an order on the oper-
ator’s execution, as required variables are needed to be bound in advance.

The QTL for DRAGOS has been named DRAGULA and is presented in
section 3.5. So, more details on constraints and variables are provided in that
section. Next section shows how query and transformation mechanism has been
embedded in DRAGOS. It also shows how existing applications can be inte-
grated with DRAGOS to ensure the universal basis of QTL claimed earlier in
this section.

3.5 DRAGOS Unified Language (DRAGULA)

The Query and Transformation language developed for DRAGOS is called DRAG-
ULA which is an abbreviation of DRAGOS Unified Language. DRAGULA is
composed of constraints and variables.

3.5.1 Constraints

Constraints are used to put different type of restriction clauses in a pattern.
There are six type of constraints available in DRAGOS. These are incidence,
type, constant, identity, isomorphism and containment constraints respectively.
These are discussed one by one in next sections.

Incidence Constraint

Incidence constraints is used to represent an edge. The source role variable
points to the source of edge, the target variable points to the target of the edge
and the concerned edge is pointed by the role Variable. Graphical representation
of incidence constraint is provided in figure 3.5a.

3.5. DRAGOS UNIFIED LANGUAGE (DRAGULA) 39

Restricts
[role= target]

Restricts

Incidence Restricts

Constiaint

Type
Lonstia int

Restricts

[role= connector] Restricts

(a) incidence constraint (b) Type constraint

Figure 3.5: Incidence and Type Constraints

Type Constraint

Type constraint is used to restrict entities to a particular type. This constraint
can restrict both the edges and nodes. The type attribute indicates to the type
to be restricted. Graphical representation of type constraint is provided in figure
3.5b.

Constant Constraint

Constant constraint is used to restrict entities to a specific entity. If search is to
be restricted to a specific entity. Graphical representation of constant constraint
is provided in figure 3.6a.

Isomorphisiin

Constant

Constraint Constraint

(a) Constant constraint (b) Isomorphism
constraint

Figure 3.6: Constant and Isomorphism Constraints

Isomorphism Constraint

Isomorphism constraint is used to show that variables are related to each other.
It shows the values of the variables are not equal. (e.g) let nl, n2 and n3 be
connected via isomorphism constraint. it means nl != n2, n2 = n3 and nl !=
n3. Graphical representation of isomorphism constraint is provided in figure
3.6b.

Identity Constraint

Identity constraint is used to show that variables are related to each other. It
shows the values of the variables are equal. Graphical representation of identity
constraint is provided in figure 3.7b.

40 CHAPTER 3. CONCEPTUAL BACKGROUND

Restricts
[role= container]

P

E:ontainme Identity

Constraint Constrain

Restricts
[role= containment]

(a) Containment constraint (b) Identity con-
straint

Figure 3.7: Identity and Containment Constraints

Containment Constraint

Containment constraint is used to represent nested datastructure. It has two
role variables:

1. Container
2. Containment

Container points to the container which contains the variables pointed by con-
tainment variable. Graphical representation of containment constraint is pro-
vided in figure 3.7a.

3.5.2 Variables

Nodes are represented by variables. Graph variables are used to represent
graphs, edge variables are used to represent edges and nodes are represented
by node variables. The pictorial representation of edge, graph and node vari-
ables is provided in figures 3.8a , 3.8b, 3.8c respectively.

Edge Graph Node
Variablel Variablel Variablel

(a) Edge Variable (b) Graph Variable (¢) Node Variable

Figure 3.8: Variables

The conceptual background of QTM has been discussed in this chapter.
Work cycle of QTM has been discussed in chapter 1, so, there is no need of
repetition. After discussion of important elements of QTM such as pattern and
QTL, next chapter explains how and on what principles QTM generates SQL
statement.

Chapter 4

Query Generation

After the addition of QTM, DRAOGS supports graph transformation by gen-
erating SQL statement. This chapter describes details on SQL generation in
QTM. It describes steps and phases involved in SQL generation. As already
discussed a DRAGULA pattern is composed of node variables and constraints.
In this chapter each constraint and node variable is described in terms of the
SQL generation. An example pattern is taken on example schema 1.3 and then
explained how SQL is generated in several phases. At the end, It gives a com-
plete SQL statement for the example pattern.

Main jobs of a RDBMS is efficient storage and retrieval of data. Only the lat-
ter is relevant from QTM’s perspective. Almost all of the modern day relational
database management systems use different indexing and query optimization
techniques to ensure efficient retrieval. When SQL query is generated, QTM
assumes that RDMBS will ensure quick retrieval of records employing its opti-
mization techniques. SQL is the standard manipulation language of relational
databases. A typical SQL query is divided in to following three parts:

1. Select
2. From
3. Where

In QTM modifications are made at every phase in these three parts. At the
end a complete SQL statement is prepared. For better understanding of this
process, the example schema of section 1.3 is taken. The database design of
DRAGOS has already been explained and sample insertions have been made in
section 2.3.3. Several patterns can be executed on this schema, such as finding
classmates of a particular student, checking whether a student is taken course
of a particular professor or not, who are the professors from which a student is
studying or courses taken by a student.

Suppose there is need to find class mates of a student susain as inserted in
section 2.3.3. Class mates are the students, who have taken at least one same
course as susain. it requires following two steps.

e In first step, find courses taken by a student.That means firstly look for
edges of type ’takes’ who have susain as source. The target field will give
us courses taken by susain.

41

42 CHAPTER 4. QUERY GENERATION

Restricts
[role= container]

Containment Constr 4 Graph)

Restricts
[role= containment]

Restricts

- Restricts
Restricts
[role= source] [role= target]
Inc Constrl

Restricts
[role= connector]

Restricts
Edge
ISO Constr
. Restricts
Restricts [role= connector] [Edge

Restricts Restricts
[role= source] Inc Constr2 [role= target]

Figure 4.1: Class Mates

e In second step, look for the students who have taken these courses. Look
for all "takes’ edges who have these courses in target field.

The Source field gives nodes which are class mates of a student susain. As
already discussed in section 3.4, QTM needs patterns to be written in DRAG-
ULA. The classmates pattern given in figure 4.1 finds class mates of susain.

The id attribute of constant constraint in figure contains 33405 as value.
This is the value of attribute Id in table GraphEntity which represents susain in
database. Incidence constraintl has a node variable as its source and its target
field contains all the courses taken by susain. The edge variable is restricted with
edges of type 'takes’. Target field of Incidence constraint2 contains the courses
taken by susain and source field give us the class mates. The edgevariable
attached to the incidence constraint is also restricted by edges of type 'takes’ via
type constraint. as in source field node susain will be found too. Isomorphism
constraint will ensure that node susain is not included among the classmates.

Next section provides a look at the modifications that are made on presence
of different DRAGULA components. Class mates pattern is taken as example,
modifications made are shown at each phase and at the end a complete SQL
generated is given. As already described in description of DRAGULA in section
3.5 that it is composed of variables and constraints. Next section describes
modifications made in SQL statement whenever variables are encountered.

4.1. VARIABLES 43

Node
Variable1

Figure 4.2: Node Variable

4.1 Variables

As already discussed in Section 3.5, DRAGULA is composed of various types of
variables namely node, edge, graph, relation and relationend variables respec-
tively. Edge variable and graph variables are treated differently than the rest.
These two are described later in sections 4.1.2 and 4.1.1 respectively. Others
variables node, relation and relationend are explained here. For each of the
variables mentioned, following modifications are made in each of the three parts
of a SQL statement:

1. Field ’id’ is added in SELECT part of the SQL statement

2. Instance of table 'GraphEntity’ is created in FROM part of the SQL
statement

3. None in WHERE part

The working will be better understood by generating SQL for ’ClassMatePat-
tern’. This pattern has three node variables. So, according to steps given above,
three instances of table ‘GraphEntity’ should be created in FROM part of the
SQL statement and ’id’ field attribute associated with these instances should be
added in SELECT part. After doing modifications, the SQL statement gener-
ated is as follows:

SELECT n1.id, n2.id, n3.id FROM graphentity nl |,
graphentity n2, graphentity n3

4.1.1 Graph Variable

On occurrence of a graph variable in a pattern following modifications are made
in each of the three parts of a SQL statement:

1. Field ’id’ is added in SELECT part of the SQL statement

2. Instance of table 'GraphEntity’ is created in FROM part of the SQL
statement

3. None in WHERE part

The 'ClassMatePattern’ taken: has only one graph variable So, after fol-
lowing the steps given above, one instance of table ’GraphEntity’ is created
in FROM part, of the SQL statement and ’id’ field attribute associated with
this instance is added in SELECT part. After doing modifications, the SQL
statement generated is as follows:

44 CHAPTER 4. QUERY GENERATION

Graph
Variable1

Figure 4.3: Graph Variable

SELECT ni.id, n2.id, n3.id FROM graphentity nl
graphentity n2, graphentity n3, graphentity gl

4.1.2 EdgeVariable

Edges are retrieved by edge variable. For each edge variable following modifi-
cations are made in SQL statement:

1. Field ’id’ is added in SELECT part of the SQL statement

2. Instance of table ’GraphEntity’ is created in FROM part of the SQL
statement

3. None in WHERFE part

Edge
Variable1

Figure 4.4: Edge Variable

SQL generation for example ’ClassMatePattern’ will help in understanding.
This pattern has two edge variables. So, according to steps given above, two
instances of table "Edge’ should be created in FROM part of the SQL state-
ment and ’id’ field attribute associated with these instances should be added in
SELECT part. After doing modifications, the SQL statement generated is as
follows:

SELECT ni1.id, n2.id, n8.id FROM graphentity nl,
graphentity n2, graphentity n3, graphentity g4,
edge eb, edge eb6

4.2 Constraints

Constraints, as already described in chapter 4.2 are used to restrict values of
the variables. In sections to follow, a brief overview of each constraint is pro-
vided. It is explained, how SQL statement is modified on occurrence of various
constraints.

4.2. CONSTRAINTS 45

Consta
Constiia

Figure 4.5: Constant Constraint

4.2.1 Constant Constraint

Constant constraint is used to restrict variables to a specific entity. Constant
constraint is attached to the variables whose values are to be restricted to a
single variable. Pictorial representation of a type constraint is given in figure
4.6. The Id attribute contains the database primary key of the entity who is to
be restricted. For each constant constraint following modifications are made in
a SQL statement:

1. None in SELECT part
2. None in FROM part

3. Id attribute of the processed ’ConstantConstraint’ object is assigned to
the ’id’ fields of the attached objects of the variables. Database instances
of the attached variables have already been on processing of variables as
described in section 4.1. The ’id’ field of the instances created are assigned
the value contained in Id attribute of the constraint object.

Continuing with the ’ClassmatesPattern’ example taken above, pattern con-
tains one constant constraint. The id attribute contains 32935 which is value
of the id field of graph entity that represents Susain in database. This value
is the primary key of the student whose class mates are to be searched. After
following the steps mentioned above, following SQL is generated:

SELECT ni.id, n2.id, n3.id FROM graphentity nl,
graphentity n2, graphentity n8, graphentity g4,
edge eb, edge eb

WHERE

nl.id = 33405

4.2.2 Type Constraint

Type constraint is used to restrict entities to a particular type. This constraint
can restrict all types of entities. Pictorial representation of a type constraint is
given in figure 4.6. The value of *Type’ attribute contains the database primary
key of the type to be restricted. For each type constraint following modifications
are made in a SQL statement:

1. None in SELECT part

46 CHAPTER 4. QUERY GENERATION

2. None in FROM part

3. type attribute of the processed "TypeConstraint’ object is assigned to field
‘class’ of table ’GraphEntity’.

Type

‘anstrai

Restricts
Figure 4.6: Type Constraint

Example pattern ’ClassmatesPattern’ contains one type constraint restrict-
ing two edge variables. Instances of two edge variables in section 4.1.2 have
already been created as eb and e6 respectively. The ’class’ field contained by
these instances is assigned the value contained in type attribute of type con-
straint. The type attribute contains 2004 which is the value indicating the
"GraphEntityClass’ id. This is the primary key of the graph entity class that
represent, student NodeClass in database. After following the steps mentioned
above, following SQL is generated:

SELECT ni1.id, n2.id, n8.id FROM graphentity nl,
graphentity n2, graphentity n3, graphentity g4,
edge eb, edge eb

WHERE

nl.id = 83405 AND

e5.class = 2004 AND e6.class = 2004

4.2.3 Incidence Constraint

IncidenceConstraints demand connectivity of entities, using role names to dis-
tinguish between variables for the source, the target and the connector. Pictorial
representation of a type constraint is given in figure 4.7. This distinction is nec-
essary as DRAGOS allows edges to be connected to other edges, and so querying
these structures needs to be supported. For each incidence constraint following
modifications are made in SQL statement:

1. None in SELECT part

2. None in FROM part

3. The ’id’ field of the instances of source and target variables of the processed
"IncidenceConstraint’ object is assigned to ’source’ and ’target’ fields of
table 'Edge’ respectively. The selection of the instance of "Edge’ table is
made on the basis of indication by the connector variable.

4.2. CONSTRAINTS 47

Restricts
[role= target]

Incide
Constii

N
Restricts

[role= connector]

Figure 4.7: Incidence Constraint

"ClassmatesPattern’ contains two incidence constraints attached to two edge
variables. Instances of two edge variables in section 4.1.2 have already been cre-
ated as eb and e6 respectively. Process of creation of instances have already been
explained in section 4.1. After following the steps mentioned above, following
SQL is generated:

SELECT ni.id, n2.id, n3.id FROM graphentity nl,
graphentity n2, graphentity n8, graphentity g4,
edge eb, edge eb

WHERE

nl.id = 83405 AND

e5.class = 2004 AND e6.class = 2004

AND eb5.source = nl.id AND eb5.target = n2.id AND
e6.target = n2.id AND e6.source = n3.id

4.2.4 TIsomorphism Constraint

Isomorphism constraint is used to ensure that variables are related to each other.
It shows the values of the variables are not equal. Pictorial representation of a
isomorphism constraint is given in figure 4.7. For each isomorphism constraint
following modifications are made in SQL statement:

1. None in SELECT part
2. None in FROM part

3. The objective of modification is to depict pairwise inequality of variables.
So, in equality relation is created among the ’id’ fields of the instances of
the table ’GraphEntity’ representing a variable. The mechanism can be
better understood by an example. Let there be an isomorphism constraint
attached to two node variables. The resultant SQL will be

Select [..] From [..] ,[..] where nl.id != n2.id

"ClassmatesPattern’ contains a single isomorphism constraint attached to
two node variables. Instances of these node variables in section 4.1 have already
been created as nl and n2 respectively. After following the steps mentioned
above, following SQL is generated:

48 CHAPTER 4. QUERY GENERATION

Isomor]
Constii

Figure 4.8: Isomorphism Constraint

SELECT ni.id, n2.id, n3.id FROM graphentity nl,
graphentity n2, graphentity n3, graphentity g4,
edge eb, edge eb6

WHERE

nl.id = 83405 AND

ed.class = 2004 AND e6. class = 2004

AND e5.source = nl.id AND e5.target = n2.id AND
e6.target = n2.id AND e6.source = n8.id AND
nl.id = n3.id

4.2.5 Containment Constraint

Containment constraint is used to represent nested data structure. Pictorial
representation of a containment constraint is given in figure 4.9. It has two
role variables namely container and containment respectively. Container points
to the container which contains the variables pointed by the containment vari-
ables. For each containment constraint following modifications are made in SQL
statement:

1. None in SELECT part
2. None in FROM part

3. In where part, equality is ensured among ’parent’ field of the instance of
the table 'GraphEntity’ of the variable attached to role variable contain-
ment and ’id’ field of the instance of table *GraphEntity’ of the variable
attached to the role variable containment. This could be better under-
stood by an example. Let there be a containment constraint as shown in
figure 4.9 and its attached to two node variables. The resultant SQL will

be
Select [..] From [..] ,[..]
where nl.parent != n3.id and n2.parent = n3.id

The example "ClassmatesPattern’ followed so far contains a single contain-
ment constraint which is attached to a graph variable and a node variable.

4.2. CONSTRAINTS 49

Restricts
[fole= container]

Contain
Constiia
Restricts

[fole= containment]

Figure 4.9: Containment Constraint

Instances of node and graph variable has already been created and explained
in sections 4.1 and 4.1.1 as nl and g4 respectively. After following the steps
mentioned above, following SQL is generated:

SELECT ni.id, n2.id, n3.id FROM graphentity nl,
graphentity n2, graphentity n8, graphentity g4,
edge eb, edge eb

WHERE

nl.id = 88405 AND

es.class = 2004 AND e6.class = 2004

AND eb5.source = nl.id AND eb.target = n2.id AND
e6.target = n2.id AND e6.source = n3.id AND
nl.id != n3.id AND

nl.parent = g4.1id

Summary

After parsing the complete pattern and making all above mentioned modi-
fications, a complete SQL statement is generated. DRAGOS uses template
base code generation technique. This technique ensures that when underlying
database is changed, there no requirement of change in source code. Instead
only the template file is changed. The template file which generates SQL state-
ment in QTM is included in Appendix(chapter 8) of this document. The SQL
statement generated is then executed directly in RDBMS. The resultant graph
is then returned by QTM. The complete SQL statement generated for example
classmates pattern is given as follows:

SELECT n1.id, n2.id, n3.id FROM graphentity nl,
graphentity n2, graphentity n8, graphentity g4,
edge eb, edge eb

WHERE nl.id = 33405 AND

ed.class = 2004 AND e6. class = 2004

AND e5.source = nl.id AND e5.target = n2.id AND
e6.target = n2.id AND e6.source = n3.id AND
nl.id = n3.id AND

nl.parent = g4.14d

50

CHAPTER 4. QUERY GENERATION

Chapter 5

RuntimeExperiments

This chapter includes the results of the runtime experiments conducted to eval-
uate the performance of QTM. In this chapter QTM’s performance is compared
with an implementation of same solution using in-memory version of DRAGOS
and another version of DRAGOS which uses PROGRES for graph transforma-
tions. The schema presented in section 1.3 were taken as example. The results
obtained after these runtime experiments are part of this chapter.

To evaluate performance of QTM three application were developed using
different development options in DRAGOS. All these applications had similar
schema given in section 1.3. All these applications were run on a computer with
following specifications:

e Operation System: Linux
e CPU: Intel Core2 DUO, 2.6 GHZ
e RAM: 2 GB

Similar patterns were executed on graphs of similar sizes in all these applications.
Graphs of different graph sizes were inserted in database ranging from graph
size of 2000 to 4000. At the end time measurements were taken to compare
their performance with each other.

First application was implemented with DRAGOS containing QTM. Post-
greSQL was selected as a storage back-end.

An application with university schema referred in section 1.3 was imple-
mented in DRAGOS’s in memory version which is the fastest among the DRA-
GOS’s different back-end exchangeables. The in-memory version does not have
a persistence storage. It keeps the data in volatile memory and when applica-
tion is ended, the data is not saved to be retrieved later. This application used
atomic operations provided by core services of DRAGOS to construct result.
Due to its capability of storing data in main memory it provide the fast access
among the different DRAGOS back-end exchangeables.

An application with similar functionality was implemented in DRAGOS’s
version before the addition of QTM. PROGRES was used in this version to
support graph transformation operations.

Two patterns were executed. The executed patters were classmates and
finding common students between the two departments specified. Class mates

o1

52 CHAPTER 5. RUNTIMEEXPERIMENTS

of a particular student are those students who have taken at least one course with
the specified student. The second pattern looked for common students among
the two departments specified. It means the students have taken courses in both
the departments specified. The run time results obtained for pattern classmates
and findcommonstudentsamongdepartments are shown in figures 5.1a and 5.1b
respectively.

40000

12

s [

1000 =

o DPROGRESS
Memory

w =

25000

20000

15000

10000
3000
t # o lnlm
(a) Class Mates (b) find common students among depart-
ments

Figure 5.1: Results of Runtime Experiments

The y-axis show the time taken in retrieval of graphs of different sizes. The
scale used for time is milliseconds. The five bars show from left show graphs of
sizes 2000, 2500, 3000, 3500, 4000 respectively. The pattern shown in figure 5.1b
display results only of in-memory version and QTM. The PROGRES version is
excluded due to the fact that the difference of retrieval between PROGRESS
and other two applications is tremendous. Its in factors of 100s and displaying
that graphs results in ignorable time display of the other two applications. In
figure 5.1a, retrieval time is not available for QTM because its value is so small
as compared to PROGRES version that its not possible to display it in the
chart.

The run time experiments reveal that QTM provides a performance edge by
factors of 100s when its compared to traditional method of supporting graph
transformations using PROGRES. The performance gain is even more in larger
graph sizes. The fast in memory version of DRAGOS yields far better result
than the application developed with using PROGRES. QTM, however, performs
better than the in-memory version with a factor of 1:6. This factor reduces for
small graph sizes but for larger graph sizes it increases.

Chapter 6

Related Work

In recent years lot of research has been carried out in investigating how graph
transformations systems can be developed. They have been used in application
areas such as model driven software development, service-oriented applications
and pattern recognition techniques. A couple of them have been discussed in
chapter 1, in this section a comparison will be drawn with work done related
to this thesis. At the end of each section the work is compared with DRAGOS
QTM.

6.1 Hybrid Query Language

In [3] Andries and Engels proposed Hybrid query language (HQL) including a
method which translates hybrid queries into traditional textual queries by graph
transformation. HQL queries are expressed by means of a mixture of graphical
and textual elements. For graphical expression, they use extended version of
the Entity Relationship model (named ’EER’-model). Based on this model, a
formally defined SQL-like query language, named SQL/EER can be executed.

Brief description about the Extended Entity-Relationship Model (EER),
SQL for the Extended Entity-Relationship Model and use of PROGRES is given
in following sections.

6.1.1 The Extended Entity-Relationship Model (EER)

The Extended EntityRelationship (EER) model is based upon the entity rela-
tionship model[8] and according to its description[3], it is extended with the
following concepts:

e Components: which are the object-valued attributes to model complex
structured entity types

e Multivalued attributes and components to model association types
e Type construction in order to support specialization and generalization
e Several structural restrictions like the specification of keys, cardinality

constraints, etc

53

54 CHAPTER 6. RELATED WORK

6.1.2 SQL for the Extended Entity-Relationship Model
SQL/EER directly supports following concepts of the EER model:

1. Relationships, attributes of relationships, components and type construc-
tions

2. Arithmetic

3. Aggregate functions

4. Nesting of the output

5. Subqueries as variable domains

Analogous to relational SQL which is discussed in chapter2, SQL/EER uses
the select-from-where clause. SQL/EER, supports sub-queries, inheritance and
the use of relationship types as predicates.

Graphical alternatives are offered for the textual language constructs. These
graphical alternatives do not replace their textual counterparts but are offered
as alternatives, thus obtaining a hybrid query language . The language resulting
from this extension is therefore called the hybrid query language HQL/EER .
Briefly, a query in HQL/EER consists of an attributed labeled graph, a piece of
text (SQL/EER). In case of only textual part, the graph generally consists of
declarations, conditions, as well as selections.

6.1.3 Use of PROGRES for expressing graph model

PROGRES which is already discussed in 3.2 is used by HQL to express its
graph model. Details of term graph model can be seen in section 2.2.2. Accord-
ing to specification of HQL[3], the entire specification of the graphical part of
HQL/EER is made using the PROGRES. The specification is entered using the
PROGRES system syntax directed editor which allows the specification to be
analyzed by the system’s incrementally working type-checker and executed by
the system’s integrated interpreter . The interpretation (the execution of a se-
quence of productions) is generated using the PROGRES system. The graphical
part of HQL/EER queries are formalized by means of a PROGRES specification
in following two step process:

1. The syntactic structure of the graphical part of HQL/EER queries is cap-
tured in a PROGRES specification

2. The semantics are defined from the specification. The specification is
extended with additional node attributes and attribute derivation rules.
These rules translate the graphical part of the HQL/EER query into a
SQL/EER query which is combined with the textual part of the hybrid
query into a full SQL/EER-query.

QTM generates SQL statement for every pattern composed in DRAGULA
pattern and this SQL statement is used for pattern matching and performing
graph transformations. HQL on the other hand uses graph transformation to
convert hybrid queries in to textual queries. PROGRES tool is used for graph
model storage and operations. The conversion of hybrid queries in to textual

6.2. GRAPH TRANSFORMATION ENGINE IN RDBMS 55

queries is also performed using PROGRES. On the other hand QTM is internal
to DRAGOS and it is not dependent on any other application specific trans-
formation language. One more worth mentioning difference between HQL and
DRAGULA is that HQL is conceptually very close to SQI which eases the trans-
lation while DRAGULA is not directly related to SQL. DRAGULA, however,
adopts the concepts of predicates.

6.2 Graph Transformation engine in RDBMS

Implementation of a graph transformation engine using standard relational
database management systems (RDBMSs) was first suggested by Gergely Varrd
and his colleagues in [42]. They suggested various steps to develop a graph
transformation engine in relational database. The steps are:

1. Mapping metamodel to database tables: which is to generate the
schema of the database from the metamodel

2. Creating database representation of instance models: which is
storing the instance models representing the system in the database tables.

3. Creating database Views for LHS and NAC: which means to match-
ing patterns of a graph transformation rule by using views which contain
all matchings of the rule. They suggested a separate view for each LHS and
NAC graph. They proposed that when the view for the precondition graph
is calculated, views of all its positive and negative application conditions
are available. If the precondition has no negative application conditions
then the view defined for the LHS contains the database representation of
all matchings of the precondition graph.

4. Model manipulation in relational databases: it is done by operations
in the graph manipulation phase are implemented by issuing several data
manipulation commands (INSERT,DELETE, and UPDATE) in a single
transaction block. The transaction block is needed to ensure that a graph
transformation step is atomic, i.e., either all commands or none of them
are executed to ensure a consistent model after rule application.

First difference between the above mentioned approach to DRAGOS is that
they suggest a conversion of meta model in to relational database tables for ev-
ery graph application while DRAGOS graph model constitutes a common meta
model for all applications. Usage of a new application does not result in gener-
ation of new database tables in DRAGOS. QTM generates SQL code from the
DRAGULA pattern while in above mentioned approach SQL is generated on
the basis of application rules stored in database. The concept of query trans-
formation language is not present in Varré’s work while QTM generates SQL
after parsing query transformation language of DRAGOS called DRAGULA.
Varr6 constructs database views for application rules while QTM generates a
single SQL statement for every complex pattern. Graph replacement in QTM
is done by using operations provided by DRAGOS core API while Varr6 uses
SQL statements to replace graphs.

56 CHAPTER 6. RELATED WORK

6.3 Unified Data Model (UDM)

The UDM (Universal Data Model) framework defines a development process
and a set of supporting tools that are used to generate programmatic interfaces
from UML class diagrams. The working of UDM can be better explained by
figure 6.1.

GME
%% GME UML
dr il Binary E—DE
ta e file Network FE7

GME/UML
Interpreter

XML
(Meta)

<Unil ded=

Figure 6.1: UDM tools and architecture reproduced from[24]

As described in [24], the first step while using the UDM framework is to
create a UML class diagram in the its GME/UML modeling environment. The
second step is to interpret the class diagram by using a GME [11] model in-
terpreter. This interpreter module traverses the class diagram and generates a
corresponding XML description of the UML classdiagram. This xml description
is referred as as Metamodel. The third step is to generate the API code for the
Metamodel. it is done by the 'Udm.exe’ tool. This tool reads the input XML
and generates corresponding .h, .cpp, and .dtd files.

UDM relies on a limited set of base classes while DRAGOS uses a com-
plex graph model for data representation. UDM generates APIs from provided
‘Metamodel’, this functionality is not provided by DRAGOS. Like DRAGOS,
UDM environment provides persistent storage using databases through the
Generic Modeling Environment (GME) [11]. UDM does not incorporate a model
processing engine, but can be used by the GReAT transformation engine[1].

Chapter 7

Conclusion and Future Work

As per requirement, this thesis adds graph transformation support in DRAGOS
graph database. The developed graph transformation is based on DRAGOS’s re-
lational database support. It implements a graph transformation by a Query and
Transformation Mechanism (QTM). The idea of developing a graph transforma-
tion system based on the relational databases is not new. QTM implements a
transformation mechanism which uses a query transformation language (QTL)
which provides an extensible and adaptable graph language with a standardized
mechanism to access access RDBMS.

This transformation language acts as a building block for various kinds of
graph languages which allows developers to work at a higher level functional-
ity. Integrations of external applications with QTM is performed by converting
their language-specific rules in to DRAGOS’s QTL called DRAGULA. Most
critical operation of a typical graph transformation system, pattern matching
is performed by generating a single SQL statement after parsing a pattern in
DRAGULA. The problem with SQL is that its syntax varies from database to
database.

QTM’s deficiency of generating RDBMS specific SQL is overcame by tem-
plate based code generation. Open source tool for this purpose called Velocity
has been used. The template based code generation ensures separation between
program and code. It means that changing database design or database does
not require modification in DRAGOS code rather only it requires change in
template file.

QTM provides a significant performance gain. The runtime experiments
conducted during course of this thesis have cemented this performance gain.
The experiments were conducted to compare performance of QTM with a simi-
lar functionality versions developed with GRAS, older version of DRAGOS with
PostgreSQL support and with fast in-memory version. The experiments con-
ducted showed that QTM has significantly outperformed its rivals. This thesis
adds a fast and robust transformation engine in DRAGOS.

Future Work

As a future extension of this thesis work, number of extensions are proposed.
Currently, QTM does not support attribute based evaluation and data trans-

57

58 CHAPTER 7. CONCLUSION AND FUTURE WORK

formation. Operators in DRAGULA are currently not handled by QTM. These
are the extensions that could be made in current system. Moreover, to han-
dle interaction between graph transformation system, the control structures for
handling iterations and conditional branching should be introduced. All these
features were not mandatory for the current QTM extension of DRAGOS and
they remain as future extension.

Chapter 8

Appendix

/%% One variable each for three parts of SQL query x/

#set ($selectQuery = "")
#set ($fromQuery = "")
#set ($whereQuery = "")

/*+ Code generation of Node variables x*x/

/#x The QTMmap is the object of java class java.util.mapx/

/*x The helper.int method returns an integer which is
incremented by one on each call to helper.int

*

/

/*% Node list object contain all the Node variables x/

#foreach ($item in $nodeList)
#set ($selectQuery = "$selectQuery ,nS$helper.int .id")
#set ($fromQuery = "$fromQuery ,GraphEntity as n$helper.int")
$qtmMap . addNode ($item ,"n$helper.int ")

$helper. next
#end

/*xx Code generation of edge variables x/
/% edgelist contains list of all edge variables. x/

#foreach ($item in $edgeList)
#set ($selectQuery = "$selectQuery ,e$helper.int .id")
#set ($fromQuery = "$fromQuery , GraphEntity as e$helper.int")
$qtmMap . addNode ($item ,$§"e$helper.int")
Shelper. next
#end

/% Code generation of Incidence Constraint x/

/*% incidenceList contains list of all incidence constraints. x/
/*% item.connecter gives attached variable with role connector x/
/*% item.source gives attached variable with role source x/

59

60 CHAPTER 8. APPENDIX

/*% item.target gives attached variable with role target x/
/+x .alias gives database alias attached the wvariable.
* note: this alias was saved in mapped earlier.

*/

#foreach ($item in $incidenceList)
#if ($qgtmMap. isThereVariable (§item . connector))
#set($var = "$qtmMap. getVariable ($item.connector). alias")
#set ($whereQuery="3whereQuery and $var.source=
SqtmMap . get Variable (§item . source). alias.id and
$var. target=
SgtmMap . get Variable (§item. target). alias.id")
#end
$helper. next
#end

/+*x Code generation for Type Constraints x/
#foreach ($item in $typeList)

#foreach ($iteml1 in $item.constrainedVariables)
#set($var = "$qgmMap. getVariable ($item1). alias")

#set ($whereQuery = "$SwhereQuery and $var . class
= $item.getTypeld ()")
#end
#end

/+x Code generation for Constant Constraints x/

#foreach ($item in $constList)
#foreach ($item1 in $item.constrainedVariables)
#set ($whereQuery = "$SwhereQuery and
SqgtmMap . get Variable ($item1). alias . id= $item.id")
#end
#end

#+% Isomorphism Constraint x#

#foreach ($item in $isoList)
#foreach($item1 in $item.allVariables)
#if ($qtmMap . isThereVariable ($item1.variablel1))
#set ($whereQuery = "$whereQuery and
SqgtmMap . getVariable ($item 1. variable1). alias.id!=
$qgtmMap . get Variable ($item 1. variable2). alias.id")
#end
#end
#end

#x Identity Constraint x#

#foreach($item in $identityList)

#foreach($item1 in $item.allVariables)
#if ($qtmMap . isThereVariable ($item 1. variablel))
#set (SwhereQuery = "$whereQuery and
SqtmMap . get Variable ($item 1. variable1). alias . id=
$qgtmMap . get Variable ($item 1. variable2). alias.id")
#end

#end

#end

#+ Containtment Constraint x#

#foreach($item in $contList)
#foreach ($item! in $item.constained)
#set ($whereQuery = "$whereQuery and
SgtmMap . get Variable (§item. cotainer). alias.parent
$qtmMap . getVariable (§item1). alias .id")
#end
#end

61

Bibliography

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

A. Agrawal, G. Karsai, S. Neema, F. Shi, and A. Vizhanyo. The design
of a language for model transformations. Journal on Software and System
Modeling, 5(3):261-288, September 2006.

Sinan S. Alhir. UML in a Nutshell (In a Nutshell). O’Reilly, September
1998.

Andries and G. Engels. A hybrid query language for an extended entity-
relationship model. Journal of Visual Languages and Computing, 7(3):321—
352, September 1996.

Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-
Jorg Kreowski, Sabine Kuske, Detlef Plump, Andy Schiirr, and Gabriele
Taentzer. Graph transformation for specification and programming. Sci.
Comput. Program., 34(1):1-54, 1999.

Renzo Angles and Claudio Gutierrez. Survey of graph database models.
ACM Comput. Surv., 40(1):1-39, 2008.

Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transfor-
mation: A software engineering perspective. In ICGT ’02: Proceedings of
the First International Conference on Graph Transformation, pages 402—
429, London, UK, 2002. Springer-Verlag.

Boris Bohlen and Ulrike Ranger. Concepts for specifying complex graph
transformation systems. In Ehrig et al. [14], pages 96-111.

Peter Pin-Shan Chen. The entity-relationship model—toward a unified
view of data. ACM Trans. Database Syst., 1(1):9-36, 1976.

Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual for-
malism for real life recursion. In PODS ’90: Proceedings of the ninth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 404-416, New York, NY, USA, 1990. ACM.

G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro.
Viatra: Visual automated transformations for formal verification and vali-
dation of uml models, 2002.

James Davis. Gme: the generic modeling environment. In OOPSLA
08: Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 82-83,
New York, NY, USA, 2003. ACM.

62

BIBLIOGRAPHY 63

[12] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism
and meta-modelling. In FASE ’02: Proceedings of the 5th International
Conference on Fundamental Approaches to Software Engineering, pages
174-188, London, UK, 2002. Springer-Verlag.

[13] Germany Department of Computer Science 3 RWTH
Aachen University, Aachen. Official documentation of dragos.
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index. jsp
7topic=/com.ibm.db2.udb.admin.doc/doc/c0004100.htm.

[14] Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz
Rozenberg, editors. Graph Transformations, Second International Confer-
ence, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Proceed-
ings, volume 3256 of Lecture Notes in Computer Science. Springer, 2004.

[15] Frank Ch. Eigler. Translating graphlog to sql. In CASCON ’9/: Proceedings
of the 199/ conference of the Centre for Advanced Studies on Collaborative
research, page 14. IBM Press, 1994.

[16] International Organization for Standardization. Structured query language
(sql). http://www.iso.org/, 2008.

[17] Reiko Heckel. Graph transformation in a nutshell. In Jean Bezivin
and Reiko Heckel, editors, Language Engineering for Model-Driven Soft-
ware Development, number 04101 in Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFT),
Schloss Dagstuhl, Germany, 2005.

[18] Richard C. Holt, Andreas Winter, and Andy Schiirr. Gxl: Toward a stan-
dard exchange format. In WCRE °00: Proceedings of the Seventh Working
Conference on Reverse Engineering (WCRE’00), page 162, Washington,
DC, USA, 2000. IEEE Computer Society.

[19] American National Standards Institute. Structured query language (sql).
http://www.ansi.org/, 2008.

[20] N. Kiesel, A. Schiirr, and B. Westfecthtel. Gras: a graph-oriented software
engineering database system. In Building tightly integrated software de-
velopment environments: the IPSEN approach, pages 397-425, New York,
NY, USA, 1996. Springer-Verlag New York, Inc.

[21] Anja Klein, Rainer Gemulla, Philipp Rosch, and Wolfgang Lehner. Der-
by/s: a dbms for sample-based query answering. In SIGMOD "06: Proceed-
ings of the 2006 ACM SIGMOD international conference on Management
of data, pages 757-759, New York, NY, USA, 2006. ACM.

[22] Manu Konchady. An introduction to jdbe. Linuz J., page 2, 2005.

[23] International Business Machines(IBM). Structured query language (sql)
(html). http://www-i3. informatik.rwth-aachen.de/research/dragos/,
2008.

[24] Endre Magyari, Arpad Bakay, Andras Lang, Tamas Paka, Attila Vizhanyo,
Aditya Agrawal, and Gabor Karsai. Udm: An infrastructure for imple-
menting domain-specific modeling languages, October 2003.

64

[25]

|26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

|38]

[39]

BIBLIOGRAPHY

M. Minas and G. Viehstaedt. Diagen: a generator for diagram editors
providing direct manipulation and execution of diagrams. In VL ’95: Pro-
ceedings of the 11th International IEEE Symposium on Visual Languages,
page 203, Washington, DC, USA, 1995. IEEE Computer Society.

Bruce Momjian. PostgreSQL: introduction and concepts. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

Manfred Miinch. Programmed graph rewriting system progres. In AGTIVE
’99: Proceedings of the International Workshop on Applications of Graph
Transformations with Industrial Relevance, pages 441-448, London, UK,
2000. Springer-Verlag.

Giuseppe Naccarato. Template-based code generation with apache veloc-
ity. http://www.onjava.com/pub/a/onjava/2004/05/05/cg-vell.html,
2004.

Ulrich Nickel, Jorg Niere, and Albert Ziindorf. The fujaba environment.
In ICSE ’00: Proceedings of the 22nd international conference on Software
engineering, pages 742-745, New York, NY, USA, 2000. ACM.

Matthew Norman. Database Design Manual: using MySQL for Windows
(Springer Professional Computing). Springer, September 2003.

Arend Rensink. GROOVE: A graph transformation tool set for the simu-
lation and analysis of graph grammars, 2003.

Grzegorz Rozenberg, editor. Handbook of graph and computing by graph
transformation: volume I. foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

A. Schfiirr. Programmed graph replacement systems. In Handbook of graph
grammars and computing by graph transformation: volume I. foundations,
pages 479-546, River Edge, NJ, USA, 1997. World Scientific Publishing
Co., Inc.

Andy Schiirr. Progres for beginners.

Bengt Sigurd. Implementing the generalized word order grammars of chom-
sky and diderichsen. In Proceedings of the 13th conference on Computa-
tional linguistics, pages 336-340, Morristown, NJ, USA, 1990. Association
for Computational Linguistics.

Mistry Harjinder Singh and Srinath Srinivasa. Grace: A graph database
system. International Conference on Management of Data COMAD, 2005.

Gabriele Taentzer. AGG: A tool environment for algebraic graph transfor-
mation. In AGTIVE, pages 481-488, 1999.

Toby J. Teorey. Database Modeling € Design. Morgan Kaufmann, January
1999.

J. D. Ullman. Principles of Database Systems, 2nd Edition. Computer
Science Press, Rockville, MD, 1982.

BIBLIOGRAPHY 65

[40]

[41]

[42]

[43]

[44]

Gergely Varré. Implementing an ejb3-specific graph transformation plugin
by using database independent queries. Electr. Notes Theor. Comput. Sci.,
211:121-132, 2008.

Gergely Varro, Katalin Friedl, and Déaniel Varré. Graph transformation in
relational databases. Journal of Software and Systems Modelling, 5(3):313—
341, September 2006.

Gergely Varrd, Katalin Friedl, and Daniel Varr6. Implementing a graph
transformation engine in relational databases. Software and System Mod-
eling, 5(3):313-341, 2006.

Erhard Weinell. Adaptable Support for Queries and Transformations for
the DRAGOS Graph-Database. In Andy Schiirr, Manfred Nagl, and Albert
Ziindorf, editors, Proc. of the 3"% Intl. Workshop on Applications of Graph
Transformation with Industrial Relevance (AGTIVE’07), volume 5088 of
Lect. Notes in Comp. Sci., pages 369—411. Springer, 2008.

Erhard Weinell. Extending graph query languages by reduction. In Claudia
Ermel, Reiko Heckel, and Juan de Lara, editors, Proc. of the 7" Intl.
Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT’08), volume 10 of Elec. Communications of the EASST, 2008.

