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Preface

In the year 2000, I started my education in Computer Science at the University of Utrecht [Utr] in
the Netherlands. As the last task of my education, the fulfilment of a thesis project was planned. In
this report, that thesis project will be described. This project was completed at the RWTH Aachen
University [RWT] in Germany and accomplished in eight and a half months.

As I am Belgian and studying in the Netherlands, my education was already quite internationally.
My residence is not distant of Germany, which developed the idea to accomplish my thesis there.
At secondary school, already some German was taught which gave me a reasonable linguistic basis.
Nevertheless, in order to communicate properly with my colleagues and supervisor, I seized the
opportunity to take a German course with both hands. Erasmus/Socrates, in which frame this
thesis was carried out, presented this opportunity. I am very grateful that I could refine my German
knowledge and that I was offered the chance to do so.

This diploma thesis is written to finalize my education. It is written for involved teachers, students,
and other interested readers. It is assumed that the reader has a mediocre knowledge of Computer
Science. I expect that he or she knows what a graph is and also has some knowledge of what a
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program looks like. Readers, who plan to use the program, are supposed to have good knowledge
of UML and experience on behalf of the methods of Gras/GXL.

At the RWTH Aachen University, diverse projects are fulfilled as dissertation. One of them is
the realization of Gras/GXL. Gras/GXL is the frame of this thesis project. It is accomplished at
the Software Engineering chair (Department of Computer Science III) of University Professor Dr-
Ing. Nagl. Gras/GXL is developed by Boris Böhlen, which is a member of this chair and my
external supervisor in this thesis project. The Software Engineering chair does research on the
topics Concepts, Languages, Methods, and Tools for Software Engineering. There are, among others,
projects in the field of home automation, graph rewriting systems, and process management.

I really enjoyed working on this project. I also have the opinion that I learned a lot during these
months in Germany. Therefore, I would like to thank all the people that enabled my education and
this thesis. Especially, I would like to express my gratitude to:

• Prof. Dr.-Ing. Manfred Nagl for the interesting assignment, the possibility to write my
thesis at the Department of Computer Science III (Software Engineering) at the RWTH Aachen
University and the informative discussion during the thesis presentation,

• Prof. Dr. Jan van Leeuwen for giving the possibility to write my thesis in Germany,

• Dipl.-Inform. Boris Böhlen for his appreciated, intensive and valuable mentoring, the
numerous constructive and informative discussions, and his contribution to my learning of
the German language,

• Dr. Hans Bodlaender for his highly appreciated mentoring and the informative discussions,

• the members of the Department of Computer Science III of the RWTH Aachen University for
their support, the creation of a pleasant and comfortable atmosphere, and their patience for me
learning the German language,

• the members of the Computer Science Institute of the University of Utrecht for giving me the
knowledge that was necessary to be able to fulfil this thesis work,

• my boyfriend Patrick Luja for supporting me during my complete education, for bearing my
tempers in difficult periods and participating in the cheerful moments,

• the members of my family for supporting me undoubtedly during my education,

• my parents, Gaby and Freddy Maes-Willems, for giving me the possibility to get the education
I desired and supporting me unconditionally.

With this statement, I acknowledge that I fulfilled the work autonomously, I did not use any other
than the declared resources and I made the citations recognizable. I will be gladly to give extra
information and clarification on behalf of this project to anyone interested.

Els Maes

Aachen, 18 May 2005

iii



Abstract

Different application domains work with a number of complex documents. For simplifying working
with these documents, they are stored as graphs and these graphs are stored in databases in a
structured way. A database for this purpose is Gras/GXL, a graph oriented database management
system.

A graph model defines the structure of the graphs that are stored in Gras/GXL. The corresponding
graph schema defines the properties of the graphs like types, attributes, and inheritance
relationships. The graph model and graph schema are explicitly general in order to be compatible
with a large amount of graph models. The graphs for the specialized application domains need a
specialized graph model that defines the specific structure and properties of these graphs. In this
specialized graph model, data that is not relevant is left out (for instance entities that cannot be used,
like relations), and other data that is not available in the Gras/GXL graph model is added (like a
special kind of type). To store the graphs used by the specialized application domain, a mapping
between the Gras/GXL graph model and the specialized graph model should be created. Gras/GXL
provides a number of methods for manipulating and querying the graphs; for example, methods
for creating entities like nodes and edges. When creating an entity for the specialized application
domain, a method of the Gras/GXL graph model is used. As this entity is not compatible with
the application domain, it has to be converted. To implement an automatic conversion between the
Gras/GXL and the specialized graph model, a mapping is created.

The mapping can be created by hand, but as this is a quite tedious and mechanical task, this mapping
should be generated by a program, SUMAGRAM. SUMAGRAM is created in this thesis project.
SUMAGRAM is a SUpporter for the MApping of GRAph Models. The specialized graph model
is modelled using a UML class diagram, which is used as input for SUMAGRAM. The output of
SUMAGRAM is the mapping, which is represented by a number of Java files.

SUMAGRAM has to meet several requirements. It first has to be independent of the specialized
graph models. It may only contain knowledge of the Gras/GXL graph model. To implement the
usability of SUMAGRAM, a methodology for short descriptions has to be invented. These short
descriptions, which are called tags, define for every method a possibility to write a method in a few
lines, in a structured way. This is not an exhaustive methodology as not every piece of code can be
generated with the use of tags. Therefore, SUMAGRAM enables a combination of tags and literal
code.
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Chapter 1

Introduction

Many different tools exist for various application domains. Some of these tools work on complex
documents. These documents are then internally represented as graphs. This enables the tools to
cope with the documents. One of many different documents that can be visualized as a graph is this
thesis, which is shown in Figure 1.1. By drawing a graph of a document, it becomes easier to work
with it: the structure is clarified and thereby, navigating the document becomes easier.

In Figure 1.1, the imaged graph represents a part of this thesis document. For every chapter, section,
subsection, and so on, a representing instance in the graph exists. The structure of the document is
displayed through directed edges (in the figure depicted by arrows). It might seem logic that Chapter
2 follows Chapter 1, but there are also a lot of other references: for instance a reference in Section 1.2
addresses to Chapter 2. This relation is illustrated by an edge between these two instances.

In one tool, often a lot of documents are involved, which makes it difficult to grasp the right
document of the whole set. To simplify the availability of the documents, it is efficient to store them
in a database. In this database, they are apparently stored as graphs. Databases have as an advantage
that data can be stored in a stable and structured way, which enables the user to efficiently make use
of the data. Another advantage is that a huge amount of data can be stored, in such a way that it
is not difficult to recover your data. As there are many documents for the different tools, this is a
required and helpful aspect. A database also enables the use of the data by several users at the same
time. This data is reliable and consistent because it is updated neatly and structural.

The idea to store documents in databases is not new. In projects such as IPSEN [Nag96]
and PROGRES [Sch94], this feature was also requested. The IPSEN (Integrated, Incremental,
Interactive Project Support ENvironment) project concerns with integrated and structure-oriented
software engineering environments. PROGRES (see Section 3.3.1) is a language and a development
environment used for PROgramming with Graph REwriting Systems. These environments use
GRAS [KSW95] as a database. GRAS (GRAph Storage) is a graph oriented database system (see
Section 2.1), which was developed as part of the IPSEN project. Because GRAS is outdated, a new
database management system is developed: Gras/GXL. This system uses the ideas of GRAS, but
places everything in a contemporary design.

In the graph database Gras/GXL, graphs are stored. These graphs should meet the structure of the
Gras/GXL graph model, which is a very general model. This model applies to different application
domains and is hence quite elaborate. Because it is complex, it is preferable that it is simplified

1
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Figure 1.1: Example of a Graph of this Thesis

for each specialized application domain. Therefore, these domains have each a specialized graph
model, which is related to the Gras/GXL graph model. This specialized graph model also defines
the structure of the graphs related to the respective application domain. To be able to store these
specialized graphs, a mapping of their graph model to the Gras/GXL graph model is required.

For this mapping, the code of the specialized graph model is created using the Gras/GXL graph
model. The output of methods of the Gras/GXL graph model is converted, such that it is compatible
with the specialized graphs. This conversion is called a mapping. This mapping was usually
done manually. But, as this is a quite tedious and mechanical task, this mapping should rather
be generated. Therefore, this project is called into being. In this project, as a working example, the
graph model of PROGRES serves as an input. The mapping as previously described is the output.

The program that is developed is not likely to create a perfect mapping. It is rather a supporter. This
led to the program name SUMAGRAM (SUpporter for the Mapping of GRAph Models).

2



1.1 Assignment

The thesis project concentrates on the creation of a mapping between two graph models. Both
a core graph model of the Gras/GXL database management system and a specialized graph
model of application domains like PROGRES exist. The graph models are specified using UML
diagrams (Unified Modeling Language, [Obj01]). For each class of the specialized graph model, a
corresponding class in the core graph model should exist. A mapping should be generated for the
specialized graph model. This mapping, which is realized in Java, is the output of the program.

The motivation for this project is the fact that it is really difficult, mechanical, tedious, and error-
prone to do the mapping from a universal to a specialized graph model. First, there should be a
design of the specialized graph model. Next, code has to be generated, which is strongly dependent
on the Gras/GXL graph model. Subsequently, all this code has to be tested.

To create the methods of the mapping manually is not really a problem, but it is remarkable, that
when writing the methods for the different specialized graph models, it is every time more or less
the same activity. By using the methods of the Gras/GXL graph model, methods of the specialized
graph model are implemented. This is not a difficult task, but it is too difficult to perform only a
copy-paste action, i.e. copy the code of the Gras/GXL graph model and paste it into the code of the
specialized graph model. Automating the task completely or supporting the developer in this task is
desirable.

The problem in this project is linked to the Model Driven Architecture (MDA). In the model driven
architecture, a platform independent model is transformed to a platform specific model using some
extra information. In this project, there is also a platform independent model, namely the Gras/GXL
graph model. This model has to be transformed to a platform specific model, the specialized graph
model. As, through this reasoning, MDA seemed useful, different tools were considered. But,
because every single tool was not sufficient in the desired matters, a new tool is developed.

1.2 Structure of the Thesis

Gras/GXL is the database management system that underlies this project. Gras/GXL follows the
concept of GRAS, which is a graph oriented database system. Gras/GXL has a rather complex
structure, which is clarified in the second chapter. In the next part, the problem definition and
assignment formulation are stated. In addition, the input that is used for creating the final program
is mentioned. The input is the PROGRES graph model, which is one of the specialized graph models
that are used as an example for working out this project. A view on the related work is given next.
Upon the concept of Model Driven Architecture is thrown a light in Chapter 4. The different tools
that were considered are evaluated. Chapter 5 declares the solution concept. What was the view on
how to solve the problem? Which parts are considered in this view? These questions are answered.
The following chapter concerns about the realisation of this project. All the steps are shown in
detail. The files that are actually used are exemplified. Also, the encountered problems during the
implementation are indicated. In Chapter 7, the example used in the project is exposed, as well as a
new example to verify the project results. The different discomforts that were noticed are listed. The
last chapter gives a conclusion on all the preceding chapters.

3



Chapter 2

Gras/GXL, The Graph Database System

This thesis project is embedded in Gras/GXL, which is a graph-oriented database management
system. A database management system (DBMS) is needed to simplify the storing of data in the
database and the use of data out of the database. A DBMS consists of a number of programs to
manage the database. The DBMS has to be able to execute operations on the data that are requested
by a user.

The Gras/GXL system provides features for modifications of graphs. Its predecessor GRAS, defines
the concepts of Gras/GXL. GRAS has been adapted over the years because of changing requirements
and has therefore different versions, going from GRAS over RGRAS to GRAS3.

In the first stage, also some features of GXL (Graph eXchange Language, [HWS00]) were used as a
base for Gras/GXL. This clarifies the name of the database system. However, through the multiple
transformations during the development of Gras/GXL, the link with GXL has faded. Therefore, GXL
will not be digressed upon here. The GXL graph model will, on the other hand, be used as an example
in this project and GXL will thus be interpreted in Section 7.2.1.

In the first section the predecessor of Gras/GXL, GRAS, is mentioned. Then Gras/GXL is explained
in detail. In Section 2.2 the structure of the database system is clarified. Next, a light is thrown
upon the Gras/GXL graph model and the Gras/GXL graph schema. The model and schema define
the structure of the graphs that can be stored in the database. For specialized application domains,
specialized graph models and schemata are defined. These are described in the last section.

2.1 GRAph Storage

GRAS (GRAph Storage, [KSW95]) is a graph oriented database system, which has evolved over
several years and multiple versions, of which RGRAS is the most recent one. The development of
GRAS started in 1984. It is developed because data integration was an important issue for integrated,
interactive and incrementally working tools and environments. This data is saved in the form of a
graph. All the information in the environments should be handled as a consistent whole and modeled
and realized in a uniform way. Therefore, a database system was used. This database system is
GRAS.
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GRAS has been developed within the IPSEN project. The Integrated, Incremental, Interactive Project
Support ENvironment (IPSEN, [Nag96]) is developed with the purpose to create an environment that
supports as many phases as possible in the software development process. It should also integrate
the tools for the different phases. Because GRAS has been used for the implementation of various
integrated, structure-oriented environments, its development steadily continued and many versions
originated this way.

As the data managed by GRAS is usually very complex, the database system has to be based on a
suitable data model, which should provide an easy representation of complex object structures. With
the model, objects can be represented as nodes and relations between the objects as edges. Therefore,
the decision has been made to use attributed graphs as data model.

One of the aspects of the kernel of GRAS is its ability to efficiently manage medium-sized, complex
data of which the size and structure vary dynamically. By this feature, it lends itself to manage,
among others, structure-oriented editors, analyzers, and execution tools. On top of the kernel, a
number of layers are implemented. These layers serve event handling, change management, etcetera.

PROGRES (see Section 3.3.1) is built using IPSEN. In [KSW95], the relation between GRAS and
PROGRES is stated. GRAS supplies the elementary operations on graphs, as there are for instance the
creation and deletion of nodes and edges. These operations are checked against the graph schema,
which is part of the data definition of PROGRES. Complex graph transformations of PROGRES are
mapped onto elementary operations of GRAS. This means that GRAS serves as kernel of a database
development environment for PROGRES.

GRAS was first implemented using the programming language Pascal, later Modula-2 was used. In
GRAS, only untyped graphs could be stored. The database has to be used by different programs.
In the next version, GRAS2, typed graphs could be used. RGRAS (Remotely accessible GRAS) is a
successor of GRAS. It has as an extra feature, namely remote accessibility. From here onwards, GRAS
refers to the set of all GRAS versions, including RGRAS.

The applications that use GRAS require several functionalities, which originate from the software
development environments like IPSEN. More specifically, the manipulation of graphs has to be
supported by GRAS. On GRAS, like on other databases, several transactions can be executed. The
first requirement is that these transactions are based on the ACID properties [GR92], which are
Atomicity, Consistency, Isolation, and Durability. Atomicity is the ability to make sure that either
all of the tasks are performed or none of them. Consistency is the claim that a database is consistent
when the transaction begins and when it ends. At these moments, no rule may be broken. Isolation
means that every operation can be accomplished isolated from all other operations. Other operations
cannot see intermediate states from an operation. Durability is the fact that when a transaction has
been fulfilled and it was successful, that it will persist and cannot be undone. A second claim to GRAS
is that an undo/redo feature has to be available. Because this feature was required for IPSEN, it was
decided to integrate it in the database system. In GRAS, the undo/redo functionality is implemented
by means of a checkpoint. Between two checkpoints, the adjustments can be undone or redone. As
a third feature, also versioning is desired. GRAS provides operations, which can generate a new
dependent graph of an existent graph. This new graph is saved in a forward or reverse delta manner.
Fourth claim is active behaviour. The application has to be aware in which parts adjustments are
made. GRAS contains an event trigger mechanism that informs the application on changes in the
database. Another wish concerning the functionalities is the incremental evaluation of attributes.
The values of attributes can be dynamically derived of the values of the other attributes. In GRAS,
the possibility exists to define a rule for the attributes. As soon as an attribute, which has other
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attributes that are derived of it, is changed, the derived attributes should get a status, which makes
clear that the value is not up to date. The value will be recalculated as soon as the value is going to
be used. The last feature that is claimed is the division of applications. Multiple applications will use
the graphs and therefore a distribution of the applications is needed. Applications are divided into
groups, which all have a copy of the graph to work on.

As GRAS is not accurate anymore and has some disadvantages, a new database management system
is developed. This system is called Gras/GXL. As the requirements upon GRAS are still relevant,
they are also applied to Gras/GXL.

2.2 Structure of Gras/GXL

The Gras/GXL system is created at RWTH Aachen University in Germany because the possibilities
of existent database management systems, like the different versions of GRAS, were not satisfactory.
The predecessors of Gras/GXL can only manage small graphs and do not possess any extensions.

GXL Graph
Model

Fujaba Graph
Model

PROGRES
Graph Model

Gras/GXL Kernel

Trans. Mgr Events Graph Schema

Graph Model

Commercial
DBMS

3rd Party
Transaction

Manager

3rd Party
Event

Service

Gras/GXL Extensions

Attribute
Evaluation

Undo/Redo
Graph

References

Storage
Modules

Service Wrappers

Rule Engine

Figure 2.1: Gras/GXL Structure

The Gras/GXL system structure is depicted in Figure 2.1. There are four different parts: the kernel,
the extensions, the third-party software, and the specialized graph models. The kernel consists of a
graph model, which is elucidated in the next section. The purpose of the graph model is to define
the structure of the graphs that are stored in the databases. The graph schema defines the constraints
on the graph model. These constraints are on the level of types and classes of the graph elements.
The schema is explained in Section 2.4. Beside the graph model and schema, there are events, rules,
and transactions. External managers control events and transactions. The graphs are stored in a
third-party database after passing through the kernel, during which the structure and properties of
the graphs are checked. These databases are arbitrary ones, like PostgreSQL [Mom00] or FastObjects
[Ver].
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Extensions are built on top of the kernel. These extensions are features that are not necessary or
desired for each application. Not all applications use versioning or an undo/redo feature. Therefore,
these properties are implemented in Gras/GXL by means of extensions. Possible extensions are
attribute evaluation and graph versioning.

Because the graph model is very general, there are specialized graph models, which define the
structure of the graphs that ought to be stored in the databases. These specialized graph models
are for instance the PROGRES graph model or the GXL graph model.

2.3 Graph Model of Gras/GXL

The Gras/GXL graph model evolved from the GXL graph model. In Figure 2.2, the Gras/GXL graph
model is shown as a UML class diagram. In this diagram, the static structure of the graph model
is depicted. As the dynamical properties cannot be displayed in a picture, they will be formulated
through OCL (Object Constraint Language, [WK99]) constraints.

MetaAttributable
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GraphEntityClass
(from schema )

- name :String
- abstract :boolean

GraphEntity

*

type

AttributeValue

- value :Serializable
- valid :boolean*

Graph

- role :String

GraphPool

*

manages

*

contains

NodeEdgeRelation

- directed :boolean

RelationEnd

*

0..1

from

*

0..1

to

*

*

0..1

Attribute
(from schema )

- name :String
- type :Serializable

*

instance

Figure 2.2: Gras/GXL Graph Model

All the graphs that are stored in the database are managed by and stored in a graph pool, which
is represented by the class GraphPool in the diagram. In the graph pool, an arbitrary amount of
graphs can be stored. These graphs are all identified by their role, which should be unambiguous:

context GraphPool
inv: self .manages−>forall(g1,g2 | g1 <> g2 implies g1.role <> g2.role)

A graph pool is not indispensable in the graph model; there could also be administered only one
graph. The management of the graphs then has to be arranged by the graph model itself, which
though has to support several graphs. This has led to the origination of the graph pool.
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The graph pool is the manager of the graphs. A graph (Graph) is one of the possible graph
entities (GraphEntity). The graph entities incorporate also edges (Edge), nodes (Node), relations
(Relation), and relation ends (RelationEnd). A graph consists of an arbitrary number of graph
entities. A graph can comprise nodes, edges, relations, and again graphs. Relation ends are also
graph entities, but they cannot be directly part of graphs. Instead, a relation end belongs to exactly
one relation. This leads to the invariant:

context Graph
inv: self .contains−>select(ocllsTypeOf(RelationEnd))−>isEmpty()

The reason why relation ends are nevertheless graph entities, is that now, a relation can be defined
between relation ends. This can be useful for the definition of ordered edges in a specialized graph
model.

Next to n-ary relations, also edges are part of the Gras/GXL graph model. An edge could also be
represented by a binary relation. The support of edges in the graph model is however a simplification
when it comes to specialized graph models. Otherwise, there had to be defined a binary relation for
every edge, and also the relation class. Relations and edges can be defined as ordered or unordered.
A relation is only unordered when none of the relation ends is ordered. In all other cases, it is ordered.
Consequently, for every relation applies:

context Relation
inv: self . relatesTo−>exists(re|re.type.direction <> none)

implies self .directed = true
inv: self . relatesTo−>forAll(re|re.type.direction = none)

implies self .directed = false

On the level of the graph entity class (GraphEntity) the properties of all elements of a graph are
determined. In Gras/GXL, every graph entity may be attributed. This is the responsibility of the
attribute value class (AttributeValue). Gras/GXL supports every serializable Java class as an
attribute value. So not only strings and numbers are supported, but also various collections. The
support of serializable classes has the effect that graph entities can be stored in an attribute, also as
part of a collection. For every attribute can be identified if the value is valid or not. This enables the
implementation of simple extensions, like calculated attributes.

For specialized graph models, the meta-attributable class (MetaAttributable) is available. With
this class, extensions of Gras/GXL can save extra information. In this class, every serializable Java
class is allowed as an attribute value.

Every graph entity is attributed. The Gras/GXL graph model requires that every graph entity
has an unambiguous type, which is a subclass of the graph entity class. The graph entity class
(GraphEntityClass) is specified in the graph schema (see Section 2.4). Although the Gras/GXL
graph model does not support untyped graphs, a specialized graph model can be specified that does
support untyped graphs.

In Gras/GXL, graphs are only a special kind of graph entity. This implies that there can be relations
and edges for connecting or overlapping graphs. In addition, no restrictions exist in Gras/GXL on
the level of the source and target of a graph. This means that they do not have to be comprised in the
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same graph pool. Even though this is currently not supported by Gras/GXL, it can be implemented
through an extension.

Ordered edges and relations are not supported in Gras/GXL. This might be a problem, but most of
the time, the ordering of edges or relations can be defined using edges or meta-attributes. By using
these attributes, it is nevertheless possible to define ordered edges or relations in a specialized graph
model. This feature can also be implemented with an extension.

2.4 Graph Schema of Gras/GXL

Linked to the Gras/GXL graph model, also a graph schema exists. The graph schema is depicted
in Figure 2.3. The graph model defines the fundamental structure, in contrary to the graph schema,
which defines the different kinds of graph elements and their restrictions.

GraphEntityClass

- name :String
- abstract :boolean

NodeClass GraphClassEdgeClass

- directed :boolean
- srcCard :Cardinality
- trgCard :Cardinality

RelationClass

RelationEndClass

- direction :Direction
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*
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target

*

source

Schema

*
elements

MetaAttributableGraphPool

Attribute

- name :String
- type :Serializable

*

attribs

sub- *super-
*

is_a

Figure 2.3: Gras/GXL Graph Schema

Identically as for the graph model, the graph schema is also applicable for a wide range of
applications and is therefore quite extended. The specialized graph models have also a graph schema
that is related to the Gras/GXL graph schema. To the specialized graph schema, no restrictions may
be defined. Therefore, the core graph schema provides properties that are common for the different
schemata. These properties are for instance cardinality or the definition of attributes.

Every graph pool contains exactly one graph schema that specifies all the kinds of graph entities.
If there would be a graph schema for every graph, this would be inconvenient, because relations
between graph entities can be stored in different graphs. If this was the case, there should be a
feature for the import and export of kinds.
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The properties of all kinds of graph entities are defined in the graph entity class
(GraphEntityClass). For the different kinds of graph entities, separate classes are defined. For
instance for nodes, the node class is defined. Every graph entity class has a unique name:

context Schema
inv: self .elements−>forAll(c1,c2|c1 <> c2 implies c1.name <> c2.name)

In Gras/GXL, also abstract graph entity classes can be used. In contrary to concrete graph classes,
there cannot be created instances of these abstract classes in a graph. Therefore, the following rule
applies:

context Graph
inv: self .contains−>forAll(ge|ge.type.abstract = false)

The Gras/GXL graph schema supports the inheritance of graph entity classes. Therefore, every graph
entity class administers an arbitrary amount of sub- and superclasses. As superclasses are supported,
also multiple inheritance is realizable. For the inheritance relationship, two restrictions have to be
considered. Cyclic inheritance is not allowed and an abstract graph entity class can only be inherited
of another abstract graph entity class:

context GraphEntityClass
def: allParents :Set(GraphEntityClass) =

self.super−>union(self.super−>collect(p|p.allParents()))
inv: not self . allParents ()−>includes(self)
inv: self . isAbstract implies ( self .super−>isEmpty() or

self.allParents()−>forAll(c|c.isAbstract = true))

For every graph entity class, an arbitrary number of attributes can be defined. Every attribute is
identified by a name that has to be unique for each graph entity class. In addition, the attributes
inherited from superclasses have to conform to this rule. Every attribute also has a type that defines
which values are valid. Gras/GXL requires that this type implements the Serializable interface
of Java. Otherwise, these attributes cannot be stored in a database. For the attributes, the following
restrictions are defined:

context GraphEntityClass
def: inheritedAttributes :Bag(Attribute) =

self . attribs−>union(self.allParents()−>collect(g|g.attribs) )
inv: self . inheritedAttributes ()−>forall(a1,a2|a1 <> a2 implies a1.name <> a2.name)

Beside these properties of the graph entity classes, every class also defines some specific properties.
The different graph entity classes are NodeClass, EdgeClass, GraphClass, RelationClass,
and RelationEndClass.

The simplest graph entity classes are those for nodes and graphs. These have no other properties than
those generally defined for the graph entity classes. It might have been possible, for graph classes,
to define instances of which graph entity classes may be created. However, this restriction would
make the realization of specialized graph models harder. This restriction can also be defined within
a specialized graph model.
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On the level of edge classes, it can be defined, which classes are allowed for sources and targets.
The inheritance is also respected: subclasses of an allowed class are also allowed. If this behaviour
is not appreciated, this can be changed within the program that supports the graph model. Also,
the number of incoming and outgoing edges of an edge class can be restricted. This can be done
using the cardinality attribute. The cardinality of both the source node and the target node can
be specified. The Gras/GXL graph schema supports both ordered and unordered edges. This feature
is realized using the attribute directed. Because Gras/GXL cannot define any restrictions for the
specialized graph models, these features can be redefined by the inheritance.

Relations can be connected to any number of graph entities. These graph entities are at that moment
linked to relation ends. Therefore, both the relation class and the relation end class have to be
defined. For relation end classes, it is defined which graph entity classes are allowed as target, which
cardinality the relation ends ought to have, and whether the relation ends are ordered or not. For
every relation end class, a name is specified. The relation end classes are linked to the relation classes.
This implies the possible relation ends for each relation.

2.5 Specialized Graph Models

Based on the Gras/GXL graph model, specialized graph models [Böh04] are specified. These models
are defined in the top layer of Gras/GXL. One of these specialized graph models is the PROGRES
graph model, which was used as the starting example for this project. In Section 3.3.2, the details on
the PROGRES graph model are specified. Other examples of specialized graph models are the GXL
graph model (see Section 7.2) and the Fujaba graph model [FNTZ00].

The Gras/GXL graph model is quite complex and contains very much information that is not useful
for all applications. Therefore, these applications provide their own specialized graph model, which
discards the redundant information of the general graph model. Another reason for the developers to
supply their own graph models is that the Gras/GXL graph model does not consider the extensions
that are provided by the Gras/GXL structure. In these extensions, concepts like versioning are
included. If an application uses this feature, it would also be useful when this would be embedded
in the graph model. As this is impossible for the Gras/GXL graph model, the applications should
provide their own specialized graph model in which the extensions are included.

In the specialized graph models, the information that is not needed by the application is ignored
and the features and properties that are not included in the Gras/GXL graph model are added. This
means that the specialized graph models only define the classes they actually need.
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Chapter 3

Problem Definition

In this thesis project, an application should be developed that supports the realization of the mapping
between a specialized graph model and the Gras/GXL graph model. The input of the application is
the UML class diagram of the specialized graph model. The expected output is a set of Java classes,
which realize the mapping. The program can use several techniques and can make use of the data
and methods of the Gras/GXL graph model.

In the first section of this chapter, the problem is described in detail. Section 3.2 brightens the concept
of the assignment. The last section of this chapter gives a view on PROGRES and its graph model,
which is used as an example in this project. A few methods of the PROGRES graph model are defined
to give some more insight into the problem.

3.1 The Problem

Many applications use complex documents to work on. These documents can be saved as graphs, to
simplify working with and on them. The graphs can be stored with Gras/GXL, the graph oriented
database system described in the previous chapter. Gras/GXL possesses a general graph model
that is quite rich in comparison with other graph models. It provides a lot of general information,
which might appear in a wide range of graph models. The disadvantage of its commonness is that
for specialized application domains, the Gras/GXL graph model does not provide the appropriate
information. On one side, there is redundant information and on the other side, the information is
too limited. In the general graph model, a number of classes are not useful for the specialized graph
model. In addition, classes that appear in the specialized graph model do not appear, or appear with
fewer properties in the core graph model. Therefore, these applications require a specialized graph
model, which contains only the information useful for the specialized application domain.

Graphs of specialized application domains are built out of specific graph entities. For instance, the
PROGRES graph model consists of the type ProgresEdge instead of the type Edge that is part of
the Gras/GXL graph model. These types differ from each other, in the way that entities of type
ProgresEdge cannot be attributed, and entities of type Edge can be. Gras/GXL offers elementary
operations on graphs: the creation and deletion of nodes, the retrieval of all edges that are related to
a certain node, etcetera. These operations return (collections of) Gras/GXL graph elements. As these
graph elements are specific for Gras/GXL, and because of the difference between types of the general
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graph model and types of the specialized graph models, the specialized graph model cannot work
with these general entities. To enable the specialized graph model to work with these entities, it is
necessary that these entities are converted to entities of the type provided by the specialized graph
model. Such a conversion is called a mapping.

In former times, this mapping was done manually. This task is quite mechanical and straightforward.
The methods of Gras/GXL are used, and their output is converted. For example, to retrieve all
the nodes of a PROGRES graph, first the method of Gras/GXL, which collects all the nodes of a
certain graph, is called. The output of this method is a collection of nodes of Gras/GXL. Because
PROGRES is not able to work with these nodes, they have to be converted to nodes of PROGRES.
Thus, in the described procedure, first a method of Gras/GXL is called, and then the output is
converted to entities of PROGRES. See Section 3.3.3 for a more extensive description of this problem.
Unfortunately, it is too difficult to just perform a copy-paste action, because the conversion step also
belongs to the procedure and has to be added to every procedure. This conversion step might also be
different for different methods. Another disadvantage of creating the mapping manually, is that it is
tedious and time-consuming. To create all methods of the specialized graph model by hand, means
a lot of work. Every single procedure has to be created by hand, and the conversion step has to be
added for every procedure. The last problem that is noticed, is that errors easily appear. When doing
such an ample job, it often cannot be helped that errors are made.

Because it is such a mechanical task, it was appropriate to generate the code of the mapping. By
automating this task, many disadvantages would be annihilated. Assuming that the graph model is
already extant, the user will not have to write completely in depth detailed code, but will be able to
describe the program using a short description (see Chapter 6). The basic methods, like converting an
entity from Gras/GXL to a specialized graph model, will be definable using such a short description.
From the specialized graph models, unit tests can be deduced. With these unit tests, the correctness of
the code can be checked. By using unit tests, errors can be found prematurely. Beside the error aspect,
it will be also more time efficient to use the program instead of generating the mapping manually.

3.2 The Assignment

The target of the assignment is to create an application that can output the mapping between
Gras/GXL and a specialized graph model. It is desirable that the whole process is automated. The
program should output every method that is part of a graph model. It is though also considered that
it will be impossible to generate every piece of code. Methods that will only be used sporadic and
are quite specific will not be generable. For such methods, some other solution has to be found. The
delivered input of the program is the UML diagram of the specialized graph model.

Restrictions on the graph model should be specified using OCL (Object Constraint Language). A
restriction is, for example, that for the creation of an edge, the source and target nodes should be
of a certain specified type. It is desired that these OCL constraints are interpreted and used in the
program, and thus have their effect on the output. The advantage is that if the constraints can be
included in the graph model and are hence translated by the program, it is not necessary to interpret
and check them manually.

The output of the program should be a number of Java files. Because the Gras/GXL methods are
defined in Java, it is obvious to create the output also in Java. For each class in the UML diagram of
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the specialized graph model, a file should be created. Because of an object-oriented viewpoint, every
class is interpreted as an object and gets hence a file including all the methods that are specified for
the respective class in the UML diagram.

In the UML diagram, only small amounts of code should be written, in the form of short descriptions.
It is also possible to write full code literally in the UML diagram, but this would not solve the
problem: the user still has to write the code manually, and that was just the problem to be solved.
There has though to be considered that this could not be sufficient. Therefore, it is desired that
additional code can be added manually. This code cannot be extracted from the graph models. It
is thus necessary that a feature is designed, in which pieces of code can be written that are literally
copied into the mapping.

This program has to be tested using the GXL graph model and the PROGRES graph model. As a
starting example, the PROGRES graph model is used.

3.3 The PROGRES Graph Model

The PROGRES graph model is the specialized graph model that will be used as an example in order
to create the program. As it is only an example, there has to be regarded that the SUMAGRAM will
not be in any kind dependent on this specialized graph model.

3.3.1 PROGRES

PROGRES [Sch94] is a language used for PROgramming with Graph REwriting Systems. A graph
rewriting system [BR04] is a set of rules that transforms one instance of a given class of graphs into
another instance of the same class of graphs. Such a system is often used as a visual and executable
specification of abstract data types or as graph manipulating tool. PROGRES is built on the thought
that a class of problems exists, which can be modeled with the help of graphs and can be solved with
graph rewriting rules. It is a very high-level language, because it is able to specify a problem on a
higher abstraction level. With the graph rewriting rules, this problem can be solved. PROGRES is
as well a language as a development environment. The graph rewriting systems are the language’s
underlying formalism. The language PROGRES has a context-free syntax, type checking rules and
semantics. It is a multi-paradigm language for visually specifying graph schemata, graph queries,
and atomic graph rewriting steps.

3.3.2 The Graph Model

The PROGRES graph model is displayed in Figure 3.1. Usually a corresponding class in the
Gras/GXL graph model can be found. This is though not necessarily a one-to-one relationship.
For instance for the class NodeClass of Gras/GXL, there are two classes, ProgresNodeType and
ProgresNodeClass, in PROGRES.

The graph model defines exactly one graph pool (ProgresGraphPool). This graph pool manages
an arbitrary number of graphs. A graph is denoted as ProgresGraph. Every graph has, as in the
core graph model, a unique role. A graph consists of nodes (ProgresNode) where each node has a
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Figure 3.1: UML Class Diagram of PROGRES Graph Model

type (ProgresNodeType). Between two nodes, an edge (ProgresEdge) can be created. Every node
can be related to one or more edges. An edge exists between a source node and a target node. Edges
cannot exist independently; this means that they always have to be related to two nodes. Edges do
not have an identity, which means they cannot be returned in the scope of a method. For every edge,
an edge type (ProgresEdgeType) is defined. In PROGRES, no relations are defined, and edges only
exist between nodes. There can though be no edges between graphs or no relations between edges.

By the Gras/GXL graph model, it is defined that for every GraphEntity, a GraphEntityClass
has to exist. This condition is satisfied for the ProgresNode and ProgresEdge, but not for the
ProgresGraph. As the concept of a GraphClass is unknown for PROGRES, a method exists in the
ProgresSchema that extracts a standard dummy graph class. By this extra method, the condition
of existence of a graph class is fulfilled.

There is also one schema (ProgresSchema) defined in the graph model. For every specialized graph
model, the schema class is obligatory. In the Gras/GXL graph schema, it is stated that a schema
should always exist. In addition, a graph pool is an obligatory class in the specialized graph model.
Because of the one-to-one relation between the schema and the graph pool, it is required that when
a graph pool exists, a schema also has to be available and vice versa. If a graph pool does not exist,
there cannot exist graphs; this implies that a schema always has to exist.
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The schema of the PROGRES graph model takes care of the different classes and types of the entities.
The schema defines node types (ProgresNodeType) and node classes (ProgresNodeClass). For
PROGRES, the nodes have a two-tiered type: both a node class and a node type exist. The node
class is abstract and the node type is concrete. When defining a node type, first a node class has
to be defined. Every ProgresNodeType is inherited from a ProgresNodeClass. The node type and
node class are both subclasses of the type NodeClass of Gras/GXL. To support these two entities
and their behaviour, a ProgresNodeTypeClass is defined. This class is also responsible for other
classes that are related to both the node type and the node class.

On the level of the edges, a ProgresEdgeType is defined. This edge type is dependent on the
EdgeClass of Gras/GXL. The edge type defines the cardinality of the source and target node of an
edge. It also defines the node type and node class for the source and target nodes. This definition is
enabled through the ProgresNodeTypeClass.

The attribute class (ProgresAttribute) defines attributes like name and type. The attributes can
have three different kinds: meta, derived or intrinsic. The data type ProgresAttributeKind
defines these types.

In contrary to the Gras/GXL graph model, the PROGRES graph model contains no relations and no
relation ends. Also, the graph entity class is not present in the PROGRES graph model.

The PROGRES graph model will be used, as an example, as input for SUMAGRAM. The graph
model will be defined using UML. As output, a mapping from the PROGRES graph model to the
Gras/GXL graph model is expected. In the UML diagram, all the classes, attributes and associations
are defined. For every class in the diagram, a file has to be generated by the program. In this file,
which is a Java class file, the attributes have to be present and the associations in the class diagram
have to be interpreted.

3.3.3 Methods of the PROGRES Graph Model

The methods for the PROGRES graph model can be divided into a few different groups. First, there is
the creation of entities (nodes, edges, etcetera). Next, there is the declaration of schema entities (node
type, node class, edge type). Another group of methods is the retrieval of (collections of) entities
under certain conditions, for example the retrieval of all nodes of a graph with a specific node type
or the retrieval of the source node of an edge. The retrieval of (a collection of) schema entities is
another type of methods. A method that is imaginable in this group, is the retrieval of all node
classes from the schema. As an example, the method to retrieve all nodes of a graph is given next:

public Collection getAllNodesOfGraph() throws GrasGXLException {
Collection <? extends Node> collection = graph.getAllNodesOfGraph();
Collection output = new HashSet() ;
for (Node x : collection ) {

output .add(ProgresSchemaFactory.getProgresNode(x) ) ;
}
return output ;

}

The line Collection<? extends Node> collection = graph.getAllNodesOfGraph();

defines the retrieval of all the nodes of a graph, using a method of Gras/GXL. This method outputs
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the nodes as type of Node. But PROGRES requires a ProgresNode. Hence, every entity in the
collection of nodes has to be converted. As for every ProgresNode, exactly one corresponding
Node exists; it is possible to store all the ProgresNodes in a factory, where it can be looked up
afterwards.

public ProgresNode createNode(ProgresNodeType type) throws GrasGXLException,
EntityNotFoundException, SchemaCheckException {
NodeClass nodeclasstype = type .getBackingNodeClass() ;
Node node = graph.createNode( nodeclasstype ) ;
ProgresNode progresnode = new ProgresNode(node,type, this ) ;
ProgresSchemaFactory.addProgresNode(progresnode);
return progresnode;

}

For creating a node, a method of Gras/GXL is called. To be able to do this, the method
should grab an instance of Gras/GXL on which the method can be called. Therefore, the
method getBackingNodeClass exists. This method returns the NodeClass on which the
ProgresNodeType is based. After creating the node, it is converted and then stored in the factory.
Because when creating a ProgresGraph, all the related entities are also created, it can be assumed
that, when retrieving a collection of nodes, these nodes are all extant. It will hence not be necessary
to convert the nodes by creating a new instance of a ProgresNode. Therefore, the factory is called
into being. Such a factory stores all the created entities, classes, and types. This will make it easier
to retrieve a specific entity related to a certain general entity. A question that might rise on behalf
of the factory, is what its relation to and the difference of the database is, in which the graphs are
stored. The factory is only created as an intelligent solution in the matter of reducing the creation of
entities. When using a factory, the retrieval of existing entities is easier. The factory can also be seen
as a cache, where the data is stored temporarily.

Now a short description of PROGRES has been given. This description should be adequate in order
to get a good insight into the problem. As this description is not exhaustive, in Section 7.1 the graph
model will be revisited to give a complete view on how SUMAGRAM works.
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Chapter 4

Related Work

As is the case for most applications, also for SUMAGRAM some related work already exists.
Exporting code out of a UML diagram is a concept that is supported by the Model Driven
Architecture (MDA). For MDA, already different tools exist. These tools might be useful when
solving the problem described in the previous chapter. Therefore, an evaluation of the tools is done.

In the first section, the concept of the MDA is described. What is the reason for developing such a
concept? Which building blocks are part of the MDA? In Section 4.2, the different considered tools
are given and the motivation for the decision on which tool to use. The next section describes UMT-
QVT, which is selected out of the set of tools as a useful tool. Finally, the relationship between the
MDA and SUMAGRAM is discussed.

4.1 Model Driven Architecture

The Model Driven Architecture (MDA, [KWB03]) was established by the Object Management Group
(OMG, [OMG]) in the year 2000. MDA is created in the line of software development, with the
target to solve some problems encountered during the software development process. The first
problem is that the realization part of the software development is a lot of work. Lots of code are
to be produced in a standard software development process. The second problem is, that with every
technological evolvement, the code and models should be remade, which is a time-consuming task.
Another difficulty exists in the fact that for systems, there are multiple variants of technology and
communication with which the systems need to be able to work. The last complication exists in the
requirements: when the requirements of the product change, the whole product should be reviewed.
To cope with these problems, the MDA has been developed.

What does "Model Driven Architecture" mean? MDA is applied on models. The definition of a
model is formulated by [KWB03] as: "A model is a description of (part of) a system written in a
well-defined language. A well-defined language is a language with well-defined form (syntax), and
meaning (semantics), which is suitable for automated interpretation by a computer." A model is
mostly defined using text and image, where the text can be written in a modeling or natural language.
With these models, more understanding is provided and the design and deployment are simplified.
By the architecture, the parts and connectors of a system and rules for interactions between systems
are specified.
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MDA supports the idea to use models for software development. The goals of the MDA are
interoperability, portability, and reusability. MDA is language-, vendor-, and middleware-neutral.
This means that MDA does not require a specific language, vendor nor middleware. It is entirely
independent.

MDA is composed of three necessary parts. First a Platform Independent Model (PIM) is needed.
This is a model that describes the essential features, without referring to a specific platform. The PIM
is usually built in UML. The second part is the Platform Specific Model (PSM). This is created out
of the PIM, and depends on a specific platform. The last part is the code. With the PSM the code is
generated. This concept is shown in Figure 4.1.

Figure 4.1: The Process of MDA

The first part is the PIM. The target of a PIM is to establish independency of any platform, such that
it can be used with several different platforms. It is also stable, because it is technology independent.
Out of the PIM, the PSM is created. The PSM combines the PIM and details on a specific platform. To
create a PSM out of a PIM a transformation is done by a program. This program might use additional
information. Figure 4.2 represents this transformation. The PSM on its turn is converted to a working
implementation on a (middleware) platform. Examples of middleware platforms are Web Services,
XML/SOAP, EJB, C#/.Net, and Corba.

PIM PSMTransformation

Extra information

Figure 4.2: Model Transformation from PIM to PSM

The products of the OMG are the building blocks of the MDA: Unified Modeling Language (UML),
MetaObjectFacility (MOF), and XML Metadata Interchange (XMI).
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4.1.1 Unified Modeling Language

Unified Modeling Language (UML, [Obj01]) is a language specified by the OMG.
It is used to specify, visualize, and construct software systems. When developing
software, one should think like developing a building. Without a building plan
designed by an architect, the building is likely to collapse in time. It is the
same for a software project: when there is no plan, it is likely that it will not

meet the requirements. A software plan, in technical terms it is called a model, should define a
structure such that scalability, robustness, security, and extendibility are guaranteed. The creation
of a model has multiple advantages. When modeling an application before the implementation, it
can be evaluated if the requirements can be met before starting with the implementation, which is
quite an expensive task. Modeling is also an assurance that the functionality is complete and correct.
Another advantage is that, after many years when the original designers have already disappeared,
maintenance programmers can still use the model to do adjustments and fix bugs. A structured
model is also a justified way to deal with the complexity of a large application. When building
a rabbit-hutch, a plan is not absolutely needed, but building a skyscraper without plan is pretty
hopeless.

UML is not only designed for modeling software systems, also business models or other systems can
be modeled using UML. When specifying a software system, different steps can be defined through
different diagrams, like class diagrams, use case diagrams, and sequence diagrams. With UML, it is
possible to model any type of application for running on any type of hardware and operating system
combined with any programming language.

Within the MDA, UML is used to specify the different models. It is nevertheless no strict requirement
that UML is used, another modeling language can also be used, although most MDA tools are based
on UML. Because a UML model might both be independent of a platform or specific for a platform,
it is suitable for use within the MDA.

In the case of SUMAGRAM, the models are specified by means of class diagrams. A class diagram is
a structural diagram, where every entity is represented by a class. For every class the attributes and
operations can be defined. This can be done quite detailed, by defining the initial value of attributes
and specifying the code belonging to the operations. For these classes, relations can be defined by
means of associations. These associations can have different types. The composition association
defines that a class can be composed of another class. For instance, a graph is composed of nodes;
this means that the graph is responsible for the nodes: for the creation and deletion of them. By
a composition, one could also speak of a whole and a part. The whole is the graph, and a node
is the part. The inheritance relation defines that a class is inherited from another class and hence
also inherits the methods and attributes. For instance, the ProgresNodeType is inherited from the
ProgresNodeTypeClass. In addition, relations that are neither an aggregation nor a composition,
are defined between classes. There are more types of associations, but the ones mentioned are the
most important ones in case of the SUMAGRAM. For all associations, cardinalities and names can
be defined. Such a cardinality defines for instance that a graph can exist of zero or more nodes.

Within UML, also constraints can be defined by using OCL (Object Constraint Language, [WK99]).
It is a language to formally define conditions. With OCL invariants, preconditions, postconditions,
etcetera can be defined. In Section 2.3 a number of OCL constraints were defined.

UML is built upon MOF, which is also defined by the OMG. MOF also plays an import role in MDA.
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4.1.2 Meta Object Facility

Meta Object Facility (MOF, [Obj04]) is a standard defined by the OMG. With MOF, the structure
of a metamodel can be determined. The UML metamodel is a model following the MOF standard.
MOF can be seen as an abstract language, for specifying object-oriented metamodels. In metamodels,
language and constructs to build models are defined. For instance, XML schema is a metamodel for
XML documents and UML is a metamodel for an application.

As MOF works with metadata, it is related to XMI, the XML Metadata Interchange. XMI is a parallel
mapping between MOF metamodels and XML DTDs (Document Type Definition, [BPSM98]), and
MOF metadata and XML documents.

4.1.3 XML Metadata Interchange

XML Metadata Interchange (XMI, [Obj02]) is a standard for interchanging information between tools,
applications, and repositories. XMI was first established in the late 90s. It is mainly used to exchange
information concerning UML diagrams, but it has many more features. An XMI file of a UML
diagram contains about all the enclosed information. Every class, association, attribute, etcetera in
the UML diagram is represented in the XMI file. Most of the UML tools nowadays have a feature to
export the UML diagram to XMI. As the information in the XMI file is represented in XML [BPSM98],
it can also be handled as such. All the actions and transformations that can be performed on an XML
file can also be performed on an XMI file.

XMI integrates three standards: XML, UML, and MOF. XMI allows the sharing of object models and
other metadata. What is actually specified on behalf of a UML class diagram, is described in Section
5.2.

4.2 Choice of Tool

The desired tool should create Java source code out of a UML diagram. At first, the UML diagram is
converted to an XMI file. In the second step, this XMI input should be converted to Java source code.
On [Mod], a number of MDA tools are defined. These tools use an XMI file as input and generate
some output. The tools are evaluated on behalf of their usability in combination with SUMAGRAM.
The evaluated tools are listed in the table below.

For the choice of the MDA tool, there were different options. A choice was made from free tools
that were available on the Internet. Those were partly evaluated on the base of their age, while the
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technique of MDA is quite young. Some of the tools were too young and underdeveloped to use or
the website was very limited and inaccurate so that those tools were not further considered.

Name Similarity to the problem Website
UMT-QVT Transformation and code http://umt-qvt.sourceforge.net/
Version 0.81 generation of UML/XMI models Open source
June 2004 Tool environment language = Java
MTL-engine http://modelware.inria.fr/
Version Beta 2 Freeware
Dec. 2003
ATL Language is ATL http://www.sciences.univ-nantes.fr
Version 0.2 Only a language, no software? /lina/atl/
Modfact Programming language = Java http://forge.objectweb.org/projects
Version 1.0.1 /modfact/
July 2004 Open source
GMT Code generation tool http://www.eclipse.org/gmt/

Not finished yet?
OpenMDX Supports J2SE, J2EE, and .NET http://www.openmdx.org/
Version 1.3.6 UML modeling tools supported Open source
August 2004
AndroMDA Takes UML http://www.andromda.org/
Version 2.1.2 Generates J2EE or other Open source
Dec. 2003 components
Middlegen Generates EJB, Hibernate, JDO http://boss.bekk.no/boss/middlegen/
Version 2.0 and JSP/Struts source code Freeware
January 2004
Omelet General framework for plugging in http://www.eclipse.org/omelet/
Version 0.0.2 and integrating models,
May 2004 metamodels and transformations

After the first selection, three tools remained: OpenMDX, AndroMDA, and UMT-QVT. These are
described in the next section.

4.2.1 Which Tool to Use: OpenMDX, AndroMDA, or UMT-QVT?

Three tools were selected out of the set. Among the three tools OpenMDX [Ope04], AndroMDA
[And], and UMT-QVT [UMT], further selection had to be done. In Figure 4.3, the tools are listed,
with their specific evaluation.

The first selection step for these three tools was to evaluate if these tools were useful for the purpose
of the work. Can the input be XMI and is the output Java? For all the tools, XMI or even UML
could be used as input. So this was no criterion to lift one tool out of the set. As output, all the tools
support J2EE/EJB, but what is requested is the possibility to output simple Java code. AndroMDA
could not meet this requirement. UMT-QVT was expected to be able to output Java on the base of the
information on the website. OpenMDX is said to support J2SE on which ground could be decided
that it was likely to output Java code. During the evaluation of all the tools together, the age (version)
was already considered. Here again it is used in the detailed evaluation.
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Figure 4.3: Evaluation Table

Now a more in-depth evaluation is carried out. Can the tool also be easily installed and used? This
question might seem superfluous, nevertheless, afterwards it was one of the most important criteria.
UMT-QVT was easy to install and quite intuitive to use. For AndroMDA, the installation was fulfilled
by means of Ant [Ant] or Maven [Mav]. This is not the easiest way, but with some experience, this
installation is no problem. Also the usability of AndroMDA is not bad, although there is no graphical
user interface, which makes it a little uncomfortable. For OpenMDX, also an Ant installation was
required. The problem with this installation was that the used XML build files were faulty and
needed to be adjusted. Also the use of OpenMDX was anything but intuitive. Before the program
could be used, some more source code had to be added. How to use the program exactly, is still not
clear, which impacted the evaluation of OpenMDX in a negative way. The last criterion is the ability
of the developers to deliver sufficient support. As for AndroMDA, no support was needed, thus this
cannot be valued. For OpenMDX, the support was valued negatively, as the developers were not
able to explain the exact use of the program. For UMT-QVT, the support was satisfiable. Support
was given quickly and also the quality was accurate.

On the base of this evaluation, it was decided to use UMT-QVT. This tool is considered in detail in
the next section.

4.3 UMT-QVT

UMT-QVT is a UML Model Transformation Tool developed by Sintef [Sin]. QVT stands for Query,
View, Transformation. This tool is developed in order to transform models and generate code out of
UML or XMI. UMT-QVT is implemented using Java. It is open source. A screenshot of UMT-QVT is
displayed in Figure 4.4.

UMT-QVT requires an XMI file as input, which can be transformed to types like J2EE and IDL.
In SUMAGRAM, the required output type is Java. UMT-QVT provides transformations to "Java-
interfaces" and "Java-based". The output of these transformations was although not satisfiable, which
implied that this tool could not be used.

UMT-QVT provided a transformation from the basic XMI file to an XMI-light file. This XMI-light file
gives a very good overview of the large XMI file. As this file seems quite useful, it is investigated
profoundly if it was appropriate to use it. The answer to this question is given in Section 5.3.
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Figure 4.4: UMT-QVT Screenshot

4.4 MDA and SUMAGRAM

The concept of MDA is to take a platform independent model (PIM), transform it into a platform
specific model (PSM) and then transform this PSM to code. For SUMAGRAM, there exists the
Gras/GXL graph model and a specialized graph model. With the specialized graph model as input,
code should be generated by SUMAGRAM.

Obviously, MDA uses two models and outputs code and so does Gras/GXL. Can there any
similarities be found? The Gras/GXL graph model is a platform independent model, while the
specialized graph model is a platform specific model. For both MDA and SUMAGRAM, the output
is code. Even though, this comparison is not quite correct. The specialized graph model is not
really created through a transformation of the Gras/GXL graph model: the relationship that exists
between the two models, is created by the user in order to store the graphs in the Gras/GXL database.
Nevertheless, the conversion from the specialized graph model to the code is similar to the concept
where the PSM is transformed to code.

Therefore, the code generation of MDA might be useful in the concept of SUMAGRAM. From
the specialized graph model, code should be generated following the concept of SUMAGRAM.
This should be possible with MDA, as MDA requires an XMI or UML input, and code output.
Unfortunately, as the tools are not applicable, using MDA is no option, and a new-defined solution
concept has to be specified for SUMAGRAM.
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Chapter 5

Solution Concept

As using an MDA tool was not an option (see Chapter 4), the whole conversion has to be done by
a self-implemented application. In this chapter, the concept 5.1 of that program will be explained.
As an input, a UML diagram is used. As most UML tools dispose of an export feature to XMI,
this is the next file in the chain. This XMI file is transformed into an XML file, using XSLT.
Then the implemented Java program is executed, using the XML file as input. The output of this
implementation is the mapping in Java code.

Export feature
UML Diagram XMI file

XSLT transformation
XML file

Java application Mapping of 
specific model 
to core model

UML tool Generate mapping

Achieve vendor independence

Figure 5.1: Overview of the Solution Concept

The concept of the solution will be explained by means of an example (Figure 5.2). In the first section,
the UML diagram of the example will be explained. Subsequently, the XMI file will be demonstrated.
In Section 5.3, the transformation from the XMI file to an XML file is described. Afterwards, it is
declared how this XML will be converted into the mapping, which consists of Java code. To conclude
this chapter, some further plans are revealed.

5.1 UML Class Diagram

In this project, UML class diagrams are used to create the graph models. The different classes of the
graph models are specified, as well as the relations between the entities. The PROGRES graph model
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is defined with the help of UML class diagrams. In Figure 5.2, a UML class diagram and an instance
graph are depicted. This diagram will be used to explain the solution concept and is therefore kept
simple. The diagram consists of a graph (Graph), a node (Node), and an edge (Edge). These entities
are all classes of the diagram. The displayed graph is composed of nodes and every node can be part
of one or more edges.

<< graph >>
Graph

-role:String

+createEdge(source:Node,target:Node):Edge
+createNode():Node

<< node >>
Node

<< edge >>
Edge

*source

*target

*
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Brussel
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Figure 5.2: Example: a UML Class Diagram and the Corresponding Graph

The Graph class has a role as its attribute. In addition, two methods are defined in this class:
createEdge and createNode. These methods can be specified in the UML file. In this example,
only for the createEdge method, some code is described.

A link between the specialized graph model and the Gras/GXL graph model has to be established.
This is done by means of the stereotype. Almost every class in the specialized graph model gets
a stereotype. This stereotype refers to the corresponding class of the Gras/GXL graph model. For
instance, the class ProgresGraph of the PROGRES graph model is related to the class Graph of
the Gras/GXL graph model. This relationship has to be defined in order to be able to grasp the
methods of Gras/GXL. For instance, when a new edge should be created, the method of Gras/GXL
for creating this new edge is needed. When the stereotype is defined, SUMAGRAM knows that it
can use the method in the Graph class of Gras/GXL. If no stereotype is defined, no method can be
used. This example might seem easy, because the names ProgresGraph and Graph are alike and the
relationship between the two might seem obvious. Nevertheless, this is no self-evidence. One could
also imagine that the names are not so alike. For instance, there might be a German who defines a
’Knoten’ class which is related to the Node class. If this happens, the relationship is less obvious.

To represent the UML class diagram adequately, a number of tools exist. Out of this range, two
tools were selected: Rational Rose [Ros] and Poseidon for UML [Pos]. These tools were evaluated
and compared. The most important feature that was required is the export feature to XMI, which is
indispensable in this project. Next, they are evaluated on the matter of usability and quality of the
delivered XMI file.

5.1.1 Poseidon for UML or Rational Rose

Poseidon for UML is developed by Gentleware since the year 2000. The version that is currently
available is version 3.0. Poseidon delivers the possibility to create all kinds of UML diagrams. It also
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possesses a feature for exporting the UML diagram in XMI format. Poseidon is easy to use and can
define many details of the UML diagram in an easy and user-friendly way. The delivered XMI file
contains all details of the UML class diagram. The XMI version that is exported is version 1.2.

Rational Rose is developed by Rational Software since the early nineties. With Rose, all kinds of UML
diagrams can be designed. By a UML/XMI add-in, the export of a UML diagram to an XMI file is
enabled. Rose is quite difficult to use. To realize a composition association, an aggregation relation
should be created with the "call by value" option selected. Poseidon on the contrary, has a simple
checkbox "composition" which can be enabled. In the XMI file, the details of the UML diagram are
represented. The exported file has the format of XMI version 1.0 or 1.1.

In both the XMI files, the same information is contained. This means that on that matter, no
diversification can be found. The user-friendliness on the other hand, is evaluated better for
Poseidon. Also, the fact that the exported XMI has a newer version is a reason to rate Poseidon
higher. Hence, Poseidon is used as the tool responsible for maintaining the UML class diagrams and
exporting them to XMI.

5.2 XML Metadata Interchange

Poseidon exports a UML diagram to an XMI file. In the delivered XMI file, every detail of the UML
diagram is contained. The XMI file is dependent on the used XMI exporter and the XMI version. The
XMI exporter is defined by the developer of the UML tool. This means that an XMI file exported by
Poseidon looks different compared to the one exported by Rational Rose, even though it concerns
exactly the same UML diagram. The XMI file consists of lots of information. Because an XMI file of a
small example like in Figure 5.2, already counts five pages, the most important parts are lifted out.

The XMI file starts with a definition of the used version. As XMI is a kind of XML, the used XML
version is defined. Also the XMI version, the namespace and the creation date of the file are defined
in the header of the XMI file.

<?xml version=’1.0’ encoding=’UTF−8’ ?>
<XMI xmi.version=’1.2’ xmlns:UML=’org.omg.xmi.namespace.UML’ timestamp=’Tue May 03 11:04:34 CEST 2005’>
</XMI>

For every class in the UML class diagram, a corresponding entity is created in the XMI file. The class
that will be used as an example is the Graph class. It looks as follows in the XMI file:

<UML:Class xmi.id=’Im23c9c469m102f337f5f0mm7e72’ name=’Graph’ visibility=’public’ isSpecification=’false’ isRoot=’false’
isLeaf=’false’ isAbstract=’false’ isActive=’ false ’>

<UML:ModelElement.stereotype>
<UML:Stereotype xmi.idref=’Im791a2191m1033723d2d7mm7d70’/>

</UML:ModelElement.stereotype>
<UML:Classifier.feature>

<UML:Attribute xmi.id=’I7d277254m102f90c4e68mm7db2’ name=’role’ visibility=’private’ isSpecification=’false’
ownerScope=’instance’ changeability=’changeable’>

<UML:StructuralFeature.type>
<UML:DataType xmi.idref=’I7d277254m102f90c4e68mm7da1’/>

</UML:StructuralFeature.type>
</UML:Attribute>
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<UML:Operation xmi.id=’I7d277254m102f90c4e68mm7da0’ name=’createEdge’ visibility=’public’ isSpecification=’false’
ownerScope=’instance’ isQuery=’false’ concurrency=’sequential’ isRoot=’false’ isLeaf=’false’ isAbstract=’false’>

<UML:BehavioralFeature.parameter>
<UML:Parameter xmi.id=’I7d277254m102f90c4e68mm7d9d’ name=’return’ isSpecification=’false’ kind=’return’>

<UML:Parameter.type>
<UML:Class xmi.idref=’Im23c9c469m102f337f5f0mm7e4c’/>

</UML:Parameter.type>
</UML:Parameter>
<UML:Parameter xmi.id=’Im58e4ebb0m103a1c66056mm7d4c’ name=’source’ isSpecification=’false’ kind=’in’>

<UML:Parameter.type>
<UML:Class xmi.idref=’Im23c9c469m102f337f5f0mm7e5f’/>

</UML:Parameter.type>
</UML:Parameter>
<UML:Parameter xmi.id=’Im58e4ebb0m103a1c66056mm7d1f’ name=’target’ isSpecification=’false’ kind=’in’>

<UML:Parameter.type>
<UML:Class xmi.idref=’Im23c9c469m102f337f5f0mm7e5f’/>

</UML:Parameter.type>
</UML:Parameter>

</UML:BehavioralFeature.parameter>
</UML:Operation>
<UML:Method xmi.id=’I7d277254m102f90c4e68mm7d9e’ isSpecification=’false’ isQuery=’false’>

<UML:Method.body>
<UML:ProcedureExpression xmi.id=’I7d277254m102f90c4e68mm7d9f’ language=’java’ body=’ return new

Edge(source,target);&#10;’/>
</UML:Method.body>
<UML:Method.specification>

<UML:Operation xmi.idref=’I7d277254m102f90c4e68mm7da0’/>
</UML:Method.specification>

</UML:Method>
<!−− ... −−>

</UML:Classifier.feature>
</UML:Class>

Every entity in the XMI file has a unique identifier and a name. They are respectively denoted by
xmi.id and name. In the UML class diagram, on behalf of the classes, a number of properties can
be defined, like abstract and root. These properties are also available in the XMI file, in the shape
of attributes like isAbstract and isRoot. The lines including the identifier, name and properties
form the header of the entity.

The stereotype that is defined in the UML class is represented by the tag UML:Stereotype. For this
entity, only the reference is given. The actual definition of the stereotype is defined elsewhere in the
file.

In the UML class diagram, per class, attributes and operations are defined. These are also existent
in the XMI file. Attributes and operations are interpreted within a UML:Classifier.feature
tag. An attribute is represented by the tag UML:Attribute. The attributes are defined by
an identifier and a name. For the example of the Graph class, the name is role. There are
a number of other properties defined that are not of major importance. The attribute role
has the Java type String. This type is elsewhere defined as the data type with the identifier
I7d277254m102f90c4e68mm7da1. In the attribute entity, this identifier is already mentioned.
These identifiers are used in the XMI file for referring. As can be seen, at the level of the stereotype,
only an identifier is mentioned, and the specification can be found elsewhere. This makes the XMI
file hard to read, and difficult to process the data because the specifications often have to be looked
up to obtain the required information.
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The next entity defined for a class, is the operation, which is defined by the tag UML:Operation. The
operation that is defined here, is the public operation createEdge. This operation has two input
parameters: the source and target node between which the edge should be created. These parameters
are both of type Node, which is defined by the tag UML:Parameter.type. The type is defined by a
reference to a class, which is the Node class in this case. The output parameter is in XMI denoted by
the parameter with kind return. The name is also by default return, but can be changed if desired.
The type of this parameter can be either an actual type or void. For this operation, the return type is
Edge. The contents of this operation is defined by the tag UML:Method. For the method is defined
to which operation it belongs. In addition, the actions that should be accomplished for this method
are defined, accompanied by the language, which is Java in this case.

Beside classes, also associations are defined in detail. The association upon which a light will be
thrown is the source relation between the class Node and Edge.

<UML:Association xmi.id=’Im23c9c469m102f337f5f0mm7dd8’ name=’source’ isSpecification=’false’ isRoot=’false’ isLeaf=’false’
isAbstract=’false’>

<UML:Association.connection>
<UML:AssociationEnd xmi.id=’Im23c9c469m102f337f5f0mm7dde’ visibility=’public’ isSpecification=’false’ isNavigable=’false’

ordering=’unordered’ aggregation=’none’ targetScope=’instance’ changeability=’changeable’>
<UML:AssociationEnd.multiplicity>

<UML:Multiplicity xmi.id=’Im23c9c469m102f337f5f0mm7ddc’>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id=’Im23c9c469m102f337f5f0mm7ddd’ lower=’1’ upper=’1’/>
</UML:Multiplicity.range>

</UML:Multiplicity>
</UML:AssociationEnd.multiplicity>
<UML:AssociationEnd.participant>

<UML:Class xmi.idref=’Im23c9c469m102f337f5f0mm7e5f’/>
</UML:AssociationEnd.participant>

</UML:AssociationEnd>
<UML:AssociationEnd xmi.id=’Im23c9c469m102f337f5f0mm7ddb’ visibility=’public’ isSpecification=’false’ isNavigable=’false’

ordering=’unordered’ aggregation=’none’ targetScope=’instance’ changeability=’changeable’>
<UML:AssociationEnd.multiplicity>

<UML:Multiplicity xmi.id=’Im23c9c469m102f337f5f0mm7dbb’>
<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id=’Im23c9c469m102f337f5f0mm7dba’ lower=’0’ upper=’−1’/>
</UML:Multiplicity.range>

</UML:Multiplicity>
</UML:AssociationEnd.multiplicity>
<UML:AssociationEnd.participant>

<UML:Class xmi.idref=’Im23c9c469m102f337f5f0mm7e4c’/>
</UML:AssociationEnd.participant>

</UML:AssociationEnd>
</UML:Association.connection>

</UML:Association>

The header of an association consists of an identifier and a name. An association is characterized
by two association ends, in this case one association end is Node and the other is Edge. For an
association end, among others, the visibility, the navigability, the ordering, and the aggregation are
defined. For the association end, also the multiplicity is given, specified by a lower and upper range.
Last but not least, also the referring class is defined, in this case respectively the Node and Edge class.

Also for the stereotype, the properties are listed. For the Graph class, the stereotype is graph. It is
specified by an identifier, a name and some other properties.
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<UML:Stereotype xmi.id=’Im791a2191m1033723d2d7mm7d70’ name=’graph’ visibility=’public’ isSpecification=’false’ isRoot=’false’
isLeaf=’false’ isAbstract=’false’>

<UML:Stereotype.baseClass>Class</UML:Stereotype.baseClass>
</UML:Stereotype>

So for every UML diagram, an XMI file can be obtained. This XMI file is unfortunately rather
complex. Therefore, it was considered to convert the XMI file to an XML file. This conversion also
has some other advantages, which will be clarified in the next section.

5.3 The Transformation from XMI to XML

UMT-QVT already provided the concept of an XMI-light file. The transformation that was
responsible for the creation of the XMI-light was observed. This transformation is done by means
of an XSLT file. EXtensible Stylesheet Language Transformations (XSLT, [Cla99]) is a language for
transforming XML documents to other documents. In the project, the XMI file is a derivative of an
XML file and hence XSLT can be used for the transformation.

The result of the transformation using the XSLT provided by UMT-QVT, delivered an XML file
(previously called XMI-light file). This XML file did not contain all the elements that were necessary
for SUMAGRAM. For instance, if an attribute is public or private was not written in the XML
file. The XSLT file was adjusted such that these details were copied too. The XML file resulting after
this transformation, could be used for SUMAGRAM.

The transformation from XMI to XML is not indispensable. It is possible to convert the XMI file right
away to Java code. Nevertheless, the use of this transformation has some essential advantages. The
rationale behind the transformation step is to achieve a tool and vendor independent file. Because
the XMI file is dependent on the tool, this would mean that SUMAGRAM could only be used in
combination with Poseidon. The difference between the output of Rational Rose and Poseidon is
shown in Figure 5.3.

<UML:Operation xmi.id=’S.125.0958.53.3’ name=’createEdge’ visibility=’public’
isSpecification =’ false ’ ownerScope=’instance’ isQuery=’false’ concurrency=’sequential’
isRoot=’false ’ isLeaf=’ false ’ isAbstract=’ false ’
specification =’return new Edge(source,target);’/>

(a) Rational Rose

<UML:Method.body>
<UML:ProcedureExpression xmi.id=’I7d277254m102f90c4e68mm7d9f’ language=’java’
body=’ return new Edge(source,target);&#10;’/>

</UML:Method.body>
(b) Poseidon

Figure 5.3: Comparison of the XMI Output of Rational Rose and Poseidon

Figure 5.3(a) shows the XMI part (outputted by Rational Rose) that represents the body of the
method. A specification attribute is added to the tag UML:Operation. For Poseidon (Figure
5.3(b)), the body is shown by means of a tag UML:Method.body. Because of this difference, the
transformation to an independent file is necessary. This is done by transforming the XMI file. When
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another tool than Poseidon is used, the XSLT conversion should be adapted. Then an XML file can
be obtained that is suitable to use by the program. Another advantage is that the XML file is more
readable than the XMI file, which also has a small influence on the run time of the program.

If another tool is used, the XSLT file can be adapted. This implies that the user knows the structure
and elements of the XML file. This structure is defined in a DTD file. A Document Type Definition
file specifies which elements are allowed and required in the XML file. The DTD file belonging to
the XML file of SUMAGRAM looks like shown below. A number of elements are represented: for an
association, it is defined which possible attributes should be present.

<?xml version="1.0" encoding="UTF−8"?>
<!ELEMENT association EMPTY>
<!ATTLIST association

name CDATA #REQUIRED
id CDATA #REQUIRED
targetClass CDATA #REQUIRED
cardinality CDATA #REQUIRED
otherCardinality CDATA #REQUIRED
collectionType CDATA #IMPLIED
aggregationType CDATA #REQUIRED
otherAggregationType CDATA #REQUIRED
navigation CDATA #REQUIRED
otherNavigation CDATA #REQUIRED
otherEnd CDATA #IMPLIED

>
<!ELEMENT attribute EMPTY>
<!ATTLIST attribute

name CDATA #REQUIRED
id CDATA #REQUIRED
type CDATA #REQUIRED
changeability CDATA #REQUIRED
cardinality CDATA #REQUIRED
class CDATA #IMPLIED
datatype CDATA #IMPLIED
initialValue CDATA #IMPLIED

>
<!ELEMENT class (attribute*, association*, operation*)>
<!ATTLIST class

name CDATA #REQUIRED
id CDATA #REQUIRED
stereotype CDATA #IMPLIED
superClass CDATA #IMPLIED
abstract CDATA #REQUIRED

>
<!ELEMENT method EMPTY>
<!ATTLIST method

name CDATA #REQUIRED
>
<!ELEMENT operation (returntype, parameter*, method)>
<!ATTLIST operation

name CDATA #REQUIRED
visibility CDATA #REQUIRED

>
<!ELEMENT package (package+ | class+)>
<!ATTLIST package

name CDATA #REQUIRED
id CDATA #REQUIRED

>
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<!ELEMENT parameter EMPTY>
<!ATTLIST parameter

name CDATA #REQUIRED
type CDATA #REQUIRED
direction CDATA #REQUIRED

>
<!ELEMENT returntype EMPTY>
<!ATTLIST returntype

name CDATA #REQUIRED
>
<!ELEMENT sourceroot (class | package | attribute)+>
<!ATTLIST sourceroot

changeability CDATA #REQUIRED
>

In the DTD all the elements that can occur in the XML file are listed. They are listed in alphabetical
order. First, the association is listed with all its possible attributes: name, id, targetClass,
etcetera. The attributes otherEnd and targetClass might seem identical, but they are not. The
targetClass defines the class on the other association end. The otherEnd specifies the identifier
of the association that defines the other association end. The element attribute defines the
attributes of a class. In addition, the properties are listed in the DTD file. A class can consist of
multiple attributes, associations and operations. In the attribute list of a class are the
name, id, etcetera defined. The next element is the method. The element operation is defined by
means of returntype, multiple parameters and method. Consequently, the elements package,
parameter, returntype and sourceroot are defined including the attributes.

The file that is obtained after the transformation from XMI to XML is displayed below. This file is
a lot smaller than the original XMI file. Only the necessary data is copied into the XML file and the
number of references is reduced to a minimum. The created XML file should be transformed to the
desired output: the mapping. This transformation is the last phase of the program.

<?xml version="1.0" encoding="UTF−8"?>
<sourceroot changeability="">

<class name="Graph" id="Im23c9c469m102f337f5f0mm7e72" stereotype="graph" abstract="false">
<attribute name="name" id="I7d277254m102f90c4e68mm7db2"

type="I7d277254m102f90c4e68mm7da1" changeability="changeable" cardinality=""
datatype="String"/>

<association name="" id="Im23c9c469m102f337f5f0mm7d52"
targetClass="Im23c9c469m102f337f5f0mm7e5f" cardinality="0..*" otherCardinality="1..1"
collectionType="set" aggregationType="composite" otherAggregationType="none"
navigation="true" otherNavigation="true" otherEnd="Im23c9c469m102f337f5f0mm7d55"/>

<operation name="createEdge" visibility="public">
<returntype name="Edge"/>
<method name=" return new Edge();&#xA;"/>

</operation>
<operation name="createNode" visibility="public">

<returntype name="Node"/>
<method name=""/>

</operation>
</class>
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<class name="Node" id="Im23c9c469m102f337f5f0mm7e5f" stereotype="node" abstract="false">
<association name="source" id="Im23c9c469m102f337f5f0mm7ddb"

targetClass="Im23c9c469m102f337f5f0mm7e4c" cardinality="0..*" otherCardinality="1..1"
collectionType="set" aggregationType="none" otherAggregationType="none"
navigation="false" otherNavigation="false"/>

<association name="target" id="Im23c9c469m102f337f5f0mm7d9a"
targetClass="Im23c9c469m102f337f5f0mm7e4c" cardinality="0..*" otherCardinality="1..1"
collectionType="set" aggregationType="none" otherAggregationType="none"
navigation="false" otherNavigation="false"/>

<association name="" id="Im23c9c469m102f337f5f0mm7d55"
targetClass="Im23c9c469m102f337f5f0mm7e72" cardinality="1..1" otherCardinality="0..*"
aggregationType="none" otherAggregationType="composite" navigation="true"
otherNavigation="true" otherEnd="Im23c9c469m102f337f5f0mm7d52"/>

</class>
<class name="Edge" id="Im23c9c469m102f337f5f0mm7e4c" stereotype="edge" abstract="false">

<association name="source" id="Im23c9c469m102f337f5f0mm7dde"
targetClass="Im23c9c469m102f337f5f0mm7e5f" cardinality="1..1" otherCardinality="0..*"
aggregationType="none" otherAggregationType="none" navigation="false"
otherNavigation="false"/>

<association name="target" id="Im23c9c469m102f337f5f0mm7d9d"
targetClass="Im23c9c469m102f337f5f0mm7e5f" cardinality="1..1" otherCardinality="0..*"
aggregationType="none" otherAggregationType="none" navigation="false"
otherNavigation="false"/>

</class>
<package name="java" id="I7d277254m102f90c4e68mm7db4">

<package name="lang" id="I7d277254m102f90c4e68mm7db5"/>
</package>

</sourceroot>

5.4 From XML to the Mapping

After interpreting the XML file and reading in the information in Java, the information has to be
interpreted further. As already mentioned in earlier chapters, it is desired to write the code into the
UML diagram in a short description form or tag. Through this short form, the user is supported by
creating a mapping. Without this short form, he has to write the entire code by hand, as is stated in
the problem definition.

The idea for this short description form expanded, because the code pieces in the mapping show
similarities. Some actions occur quite often. For instance, methods or procedures like the creation of
an entity, and the translation of an entity from Gras/GXL to the specialized application domain.
These actions appear in different methods, so it is useful to create a kind of macro, which can
create a standard piece of code. A macro is used to handle often occurring actions. This macro
has to be defined in a way, that the program knows which methods of Gras/GXL can be used.
But also such that the program is in no way dependent on the specialized application domain. For
instance for PROGRES, it would be easy to define in the program that a ProgresNodeType and a
ProgresNodeClass both exist. By writing everything into the program, it becomes quite easy for
the user and he will only have to write very little information himself. However, if these entities
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were literally mentioned in the program, it could not anymore be used for the GXL graph model.
Therefore, independency is very important to keep an eye on. This problem will be explained more
in-depth in Section 6.7.

5.5 Further Plans

It was also considered that there should be a possibility to use constraints. Therefore, it was
considered to include OCL constraints in the project. It would be efficient to include these constraints
in the UML diagram. In Poseidon, these constraints can be included in the UML diagram. They can
be added on various levels like classes, attributes, operations, and associations.

This solution concept now should be transformed to an actual application. The realisation of this
application is extensively described in the next chapter.
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Chapter 6

Realisation

The methodology of this thesis project can be divided into different parts. In Figure 6.1, the
development of SUMAGRAM is shown again. The first part is the creation of a UML diagram. In
this case, the UML diagram is created using the tool Poseidon. As an example, the PROGRES graph
model is used. In the next step, the UML diagram is exported as an XMI file. This can be done using
a feature of Poseidon. With this file, an XML file is created which contains the relevant data of the
original XMI file. The transformation between the original XMI file and the XML file is done using
an XSLT file. From the resulting XML file, the target is to create files containing the mapping. This
step is fulfilled using a Java application.

Export feature
UML Diagram XMI file

XSLT transformation
XML file

Java application Mapping of 
specific model 
to core model

UML tool Generate mapping

Achieve vendor independence

Figure 6.1: Overview of the Solution Concept

The first section of this chapter will explain the expected contents of the UML class diagram. Section
6.2 concentrates on the XSLT file that is included in SUMAGRAM and how it will be handled by the
program. The following subject is the parsing of the XML file. Also the creation of the SchemaFactory
class is explained. Section 6.5 handles the creation of the Java files systematically. How the tags
are interpreted, is elucidated in the next section. The last section reveals any problems that are
encountered during the implementation.
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Figure 6.2: Screenshot of Poseidon

6.1 Contents of the UML Class Diagram

The input of SUMAGRAM is the UML class diagram of a specialized graph model. An example of
a specialized graph model is the PROGRES graph model, which is described extensively in Section
3.3.2. The depiction of the graph model is done using Poseidon. However, any other UML case tool
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will do. In the UML diagram, all classes need to be created. The attributes for every class are added
to the classes. These attributes are defined with name and type. The associations define the relations
between the classes and must also be drawn. Last but not least, the operations should be listed per
class.

In the UML diagram, it is possible to literally write the code of the operations. As one of the
requirements for SUMAGRAM was that the user did not have to write full code, another method
had to be found. The idea to use tags originated (see Section 5.4 and Section 6.1.1). The purpose
was to create a short description of the code that had to be inserted on the indicated position. This
description had to be satisfactory for the program to know what code exactly had to be inserted. In
addition, the tags have to be easy to use and to the point. One major thing to keep in mind was that
the program has to be independent of the specialized graph model. It may only contain data of the
Gras/GXL graph model.

In Figure 6.2, a screenshot of Poseidon is displayed. It shows that for every class, the operations are
created. For every operation, the source code can be written down. In the picture, the operation
getIncomingEdgesOfType is selected. For this method the source code is defined. This is done
using tags. A tag always starts with the character ’@’.

6.1.1 Tags

With tags, a short description of the method should be given, such that the program is able to
interpret the given information. The first definition of the tags was a description of the method
(usually the name) and information concerning the involved entities of both the core model and the
specialized graph model. As an example the method createNode of the PROGRES graph model
will be used, which creates a new node in the graph. The tag would look like this:

createnode-node-progresnode

The tag consists of the description of the method that should be outputted, the second argument is
the entity of Gras/GXL that corresponds with this method. Finally, the output type is given. When
using the tags in this format, the program would not be independent of the specialized graph model,
and almost all the code had to be included in the program. This seemed not right. When all code
would be included in the program, this would have the consequence that if Gras/GXL methods
change, the output will not be consistent. It would be an improvement if the information of the core
model could be imported through the UML diagram. Consequently, this kind of tags is considered
to be unuseful and the tags had to be reformed.

The second idea for the tags was to make groups based on types of methods. Each group is a type
of method that occurs often. For example, the retrieval of an instance or the creation of an entity
represent both a group. If necessary, the method of the corresponding Gras/GXL class is given as
a parameter. Also, the expected output type and sometimes the input type are given. From this
description, later on, the extended code is created.
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Tag name Parameters
retrieve output type, method
translateEntity output type, input type
translateCollection output type, input type
unpack variable
create output type, method
declare output type, method
check method, reaction when false
write method

There are several types of tags. These types are described in the table above. A tag is prefixed with
the sign ’@’. This sign informs the program that there is a tag at hand. When there is no sign at the
beginning of the phrase, then the program will interpret the following text as literal code, and it will
copy this code literally into the mapping code. The program will evaluate the code of the operation
line by line, lines starting with an @-sign are tags and lines not starting with @ are interpreted as
literal code. This means that combinations of both tags and literal code are accepted by the program.

The tag retrieve has as parameters an output type and a method. The method is a method
of the Gras/GXL graph model that returns a certain output type. This output type can
be a collection of instances of entities or an instance of a specific entity. For example:
retrieve(NodeClass,getNodeClass) retrieves a NodeClass. This node class is needed for a
method that wants a ProgresNodeClass. After a retrieve tag, usually a translate tag is encountered.

The translate tag makes sure that the retrieved class is converted to a class of the specific
model. There are two kinds of translation tags, a translateEntity tag, which translates one
instance, and a translateCollection tag, which translates a collection of instances. The translation
tags have as first argument an output type and as second argument an input type. An
example of the translateEntity tag is translateEntity(ProgresEdgeType,EdgeClass). For
the translateCollection tag, the example looks like: translateCollection(ProgresNodeClass,
Collection<NodeClass>). Of course, the output of the translateCollection method should also
be a collection of ProgresNodeClass but the argument simply explains to the program that every
NodeClass in the set should be translated to a ProgresNodeClass. The returned instances are
looked up in the factory where the classes of the schema of the specialized graph model are stored.

The combination of a retrieve tag and a translateCollection tag looks as shown below. These tags
are defined in the method getAllSuperClasses of the class ProgresNodeClass. The first tag
defines that the superclasses of the current node class should be retrieved. The current node class is
in this case the NodeClass corresponding to the current ProgresNodeClass. The output of the
method defined by the first tag is a collection of NodeClasses. With the second tag, the content of
the collection will be translated. The elements in the collection are of type NodeClass and have to
be converted to ProgresNodeClasses.

@retrieve(Collection<NodeClass>,getAllSuperClasses())
@translateCollection(ProgresNodeClass,Collection<NodeClass>)

The unpack tag is often included in another tag. For almost every class of the specialized graph model,
a corresponding class of the Gras/GXL graph model exists. The unpack tag returns for a specialized
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class its corresponding Gras/GXL class. The parameter for the unpack tag is a variable, that is most
of the time a parameter of the method.

With the create tag, a new instance of an entity of the core graph model can be created. Examples
of entities are Edge, Node or Graph. The tag create(Node,createNode(@unpack(type)))
is an example for the create tag. The parameters are the output type and the method to retrieve
this output. Afterwards, this created entity also has to be converted to an instance of the
specialized graph model. This is done by the previously described translation tags. On the
same level as the create tag, the declare tag exists, which is responsible for the declaration of new
entity classes like NodeClass, EdgeClass or GraphClass. An example for a declare tag is
declare(NodeClass,declareNodeClass(name,false)). This tag has two parameters: an
output type and a method. These entity classes should also be translated. After creating an entity or
an entity class, it should be stored in the factory.

The create and the declare tag resemble a lot. The difference exists in the responsibilities. The create tag
is responsible for the creation of new entities belonging to the graph model (Edge, Node or Graph).
The declare tag on the other hand, is responsible for the declaration of new entity classes, which
appear in the graph schema (NodeClass, EdgeClass or GraphClass).

Another tag is the check tag. This tag asserts if new instances are in line with the schema
rules. For instance, when a new edge is created, it is checked that the source and target are
valid. The check tag receives as a parameter a method (which must return a boolean) and a
corresponding reaction. An example is check(isSourceValid(source, type),throw new
SchemaCheckException("The type is not valid for the source.")). The example
shows the parameters: the first one is a method that returns a boolean value, the second parameter
gives the reaction if the boolean value is false.

The last and most simple tag is the write tag. This tag writes a method that is defined in the parameter.
This method can return a value or instance, but this depends on the return type of the method. If
this return type is void nothing is returned, else the created value or instance of the written method
is returned. The tag write(getAttributeValue(@unpack(attribute))) is an example of a
write tag. The method in the write tag cannot be written as literal code into the UML diagram because
it has to be applied onto the instance belonging to the stereotype of the class.

The parameters of the tags can contain another indicator. The used prefix is the number sign (#). An
example is given next; this method is included in a write tag in order to remove a graph with a certain
name: @write(removeTopLevelGraph(#GraphPool.getTopLevelGraphByName(name))).
This indicates that an instance of a certain type is wanted. This instance is not straightaway available
because of two reasons. The first one is that the place where the instance is needed is not the usual
place. The second one is that the instance is not the instance corresponding with the stereotype. In
the given example, the instance is wanted in the parameter of the method. On this location, the
program does not expect that it has to write some self-defined output. The number sign explains to
the program that there is an instance of a type expected, on a given location. The type is defined
immediately after the sign, the location is the location where it is defined. SUMAGRAM replaces the
sign including the type by a variable corresponding to the defined type.
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6.1.2 Input

It is important that all the desired information of the specialized graph model is available in the UML
diagram. This is the most appropriate way to give input to the program. Input can also be given
through external files. The information in these files then has to be embedded into the XML file. In
the UML diagram, there has to be defined if it is possible to change the attributes. This can be done
by describing the changeability in the constraints window of the model element of the diagram. This
changeability affects the existence of several methods. In Poseidon, it is possible to add constraints
on the level of the model, which is the highest possible level. This constraint is written as if it is an
OCL constraint. The constraint is denoted as an invariant, with the name changeability. It can
have two values: frozen or changeable.

6.2 XSLT file

As is already described in Section 5.2, the XMI file contains all the information of the UML class
diagram. This XMI file is transformed into an XML file, using an XSLT file, which was originally
defined within the tool UMT-QVT (see Section 4.3). On detail level, this file was not satisfactory.
Some extra code had to be added. For instance, if an attribute was public or private was not
translated into the XML file. By the XSLT transformation, the important information of the XMI file
is selected and rewritten in a more readable and independent format. The resulting file is an XML
file. To obtain this XML file, the XSLT transformation is included in SUMAGRAM in the shape of the
piece of code defined below.

StreamSource sourceXMI = new StreamSource(PATH + "progres−model.xmi");
StreamSource sourceXSLT = new StreamSource(PATH + "xmitransform.xsl " ) ;
StreamResult result = new StreamResult(PATH + " result . xml") ;

try {
System. setProperty ( " javax .xml.transform . TransformerFactory " ,

"net . sf . saxon. TransformerFactoryImpl" ) ;
TransformerFactory transformerFactory = TransformerFactory .newInstance () ;
Transformer transformer = transformerFactory .newTransformer(sourceXSLT);
transformer . transform (sourceXMI, result ) ;
new ParseFile (PATH + " result . xml") ;
}

catch ( Exception e) {
e . printStackTrace () ;

}

The XMI file and XSLT file are both source files, and the XML file is a result file. By using a
TransformerFactory, the transformation is accomplished. After this transformation, the XML file
can be parsed. This action is introduced by the rule new ParseFile(PATH + "result.xml").
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6.3 Parsing the XML File

After obtaining the XML file, different paths could be treaded. The first idea was to use another XSLT
file to convert the XML to Java. Therefore, a function should exist with which multiple output files
can be created from one XML file. As the output of SUMAGRAM consists of a number of different
Java files (one for each class in the UML diagram), such a function was necessary. With XSLT version
2.0 [Kay05b], this was possible. XSLT provided the function xsl:result-document. Despite this
function was working well, it was not possible to create the output completely satisfying.

Because using only XSLT was quite difficult and complex, the decision to combine XSLT with
another tool was taken. As the mapping code is defined in Java, it seemed logical to use Java
for creating the output. Therefore, XSLT was combined with a Java application. This had also
the advantage that it is not hard to combine them. By defining a namespace referring to a Java
file (xmlns:cm="java:i3.grasgxl.ext.gmgen.xslt.CreateMethod") a method occurring
in this Java file can be called. All the information of the XML file had to be transported using
parameters for the method. This working method was in the beginning satisfying. Nevertheless, it
turned out to be difficult to obtain a certain attribute of the XML file. This encountered problem was
the base for the decision to leave out the XSLT entirely and using only Java for the last transformation.
With Java, this problem was nonexistent. Using Java, the XML file could easily be searched for a
certain attribute. Because it was a lot easier, this working method was used.

To parse the XMI file, JDOM [Har02] was used. JDOM is an XML API, which is able to read and
write XML files. It is a Java-based solution for accessing, manipulating and outputting XML data
from Java code. JDOM is one of many solutions for dealing with XML. It is perfectly capable of
interoperating with other tools like SAX (Simple API for XML, [Kay05a]) and DOM (Document
Object Model, [PLHW05]). JDOM resembles DOM, but is still different. JDOM is developed for Java,
in contrary to DOM, which is developed for multiple languages. Therefore, it is easier to integrate
in Java, especially for someone who is already familiar with Java. JDOM can handle a lot of actions
easier than DOM, which results in a simpler and more readable code.

JDOM is able to parse the XML file. With JDOM, elements and attributes can be selected. On the
highest level, the XMIProject is created. It manages the elements in the project. The project stores
all the classes. For every class in the UML class diagram, an XMIClass is produced. In these classes,
the information (like attributes) is represented. In addition, the associations are interpreted and
included in the classes as attributes. In the classes, the operations can be found. They are represented
by an XMIOperation. When the whole XML file is parsed and the data is present in the different
Java classes, the real work can start: the creation of the output files and the editing of the operations.

6.4 Creation of the SchemaFactory Class

Section 3.3.3 already described the factory briefly. The factory creates instances for every entity. The
ProgresSchemaFactory stores for every class the entities in a HashMap. The entities are stored
in the form of a key-value pair. For every instance of a class, a unique instance of its corresponding
Gras/GXL class exists.
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public class ProgresSchemaFactory{
static Map<GraphEntityClass,ProgresEdgeType> edgeclassFactory = new

HashMap<GraphEntityClass,ProgresEdgeType>();
static Map<GraphEntityClass,ProgresNodeType> progresNodeTypeFactory = new

HashMap<GraphEntityClass,ProgresNodeType>();
/* ... */

static Map<GraphEntity,ProgresEdge> edgeFactory = new
HashMap<GraphEntity,ProgresEdge>();

static Map<Attribute, ProgresAttribute > attributeFactory = new
HashMap<Attribute,ProgresAttribute >() ;

/* ... */

public static void addProgresEdgeType(ProgresEdgeType progresedgetype){
edgeclassFactory .put(progresedgetype . getEdgeClass () , progresedgetype) ;

}
public static ProgresEdgeType getProgresEdgeType(GraphEntityClass edgeclass ) {

return edgeclassFactory . get ( edgeclass ) ;
}
public static void addProgresNodeType(ProgresNodeType progresnodetype){

ProgresNodeTypeFactory.put(progresnodetype.getNodeClass() ,progresnodetype) ;
}
public static ProgresNodeType getProgresNodeType(GraphEntityClass nodeclass ) {

return ProgresNodeTypeFactory.get ( nodeclass ) ;
}

/* ... */
public static void addProgresEdge(ProgresEdge progresedge) {

edgeFactory .put(progresedge .getEdge() , progresedge) ;
}
public static ProgresEdge getProgresEdge(GraphEntity edge){

return edgeFactory . get (edge) ;
}
public static void addProgresAttribute ( ProgresAttribute progresattribute ) {

attributeFactory .put( progresattribute . getAttribute () , progresattribute ) ;
}
public static ProgresAttribute getProgresAttribute ( Attribute attribute ) {

return attributeFactory . get ( attribute ) ;
}

/* ... */
}

For every factory, two methods are defined: a get and an add method. The add method is used
after every creation or declaration of a new instance. Then the newly created instance is stored in the
factory using the add method. The get method is used to retrieve a certain instance, corresponding
to a Gras/GXL class. This class is used as parameter for the get method.
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6.5 Creating the Java Files

For every class in the UML class diagram, a Java file should be created. These Java files all have the
same name as the corresponding UML class. In the Java files, attributes and operations should be
contained. The attributes of the classes are created in three steps. First, the stereotype is interpreted,
then the associations are processed and as third, the attributes of the UML classes are added. With
the attributes, the constructor can be composed. Afterwards, the operations should be written in the
Java files. This is done with the help of the tags.

6.5.1 Stereotype

The stereotype of a class is defined in the UML class diagram. For instance, the stereotype of the
ProgresGraph is graph. The stereotype corresponds to a class of the Gras/GXL graph model.
Often this class has the same name as the stereotype with the first character uppercased. As this
cannot be seen as a valid and exact rule, a lookup table has been established. The lookup table can
also be used to define variable names and find the superclasses of the Gras/GXL classes.

<?xml version=" 1.0 " encoding="UTF−8"?>
<lookuptable>
< stereotype name="relationend" javatype="RelationEnd" variable =" relationend "

superclass =" graphentity "/>
< stereotype name="relation " javatype=" Relation " variable =" relation "

superclass =" graphentity "/>
< stereotype name="node" javatype="Node" variable ="node" superclass =" graphentity "/>
< stereotype name="edge" javatype="Edge" variable ="edge" superclass =" graphentity "/>
< stereotype name="graph" javatype="Graph" variable ="graph" superclass =" graphentity "/>
<!−− ... −−>
< stereotype name="edgeclass" javatype="EdgeClass" variable =" edgeclass "

superclass =" graphentityclass "/>
< stereotype name="nodeclass" javatype="NodeClass" variable ="nodeclass "

superclass =" graphentityclass "/>
< stereotype name="graphclass" javatype="GraphClass" variable =" graphclass "

superclass =" graphentityclass "/>
< stereotype name="schema" javatype="Schema" variable ="schema"/>
< stereotype name="graphpool" javatype="GraphPool" variable ="graphpool"/>
< stereotype name="graphpoolfactory" javatype="GraphPoolFactory"

variable =" graphpoolfactory "/>
<!−− ... −−>
< stereotype name=" attributevalue " javatype=" AttributeValue " variable =" attributevalue "

superclass =" metaattributable "/>
</lookuptable>

By using this lookup table, the corresponding Gras/GXL class can be found for a class of the
specialized graph model. This class is needed to define an attribute for the class of a specialized
graph model. This attribute is needed to call methods of Gras/GXL. When using these methods,
which are passed by the tags, a reference is needed to a Gras/GXL class. The attribute defined by the
stereotype is such a reference.
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6.5.2 Associations

Attributes of a class can also be defined by interpreting the associations. The association variable
is an element in the XML file that is a child of the class element. In the example code that is shown
below, is the class ProgresNode defined, with the associations.

< class name="ProgresNode" id="Im12631b8m10243df4695mm7e08" stereotype="node"
abstract=" false ">
< association name="source" id="Im12631b8m10243df4695mm7dfe"

targetClass="Im12631b8m10243df4695mm7e06" cardinality="0..* "
otherCardinality =" 1..1 " collectionType =" set " aggregationType="none"

otherAggregationType="none" navigation ="true " otherNavigation="true "
otherEnd="Im12631b8m10243df4695mm7df8"/><!−−ProgresEdge−−>

< association name="target" id="Im12631b8m10243df4695mm7dec"
targetClass="Im12631b8m10243df4695mm7e06" cardinality="0..*"
otherCardinality =" 1..1 " collectionType =" set " aggregationType="none"

otherAggregationType="none" navigation ="true " otherNavigation="true "
otherEnd="Im12631b8m10243df4695mm7de6"/><!−−ProgresEdge−−>

< association name="" id="Im12631b8m10243df4695mm7d92"
targetClass="Im12631b8m10243df4695mm7d26" cardinality="1..1"
otherCardinality =" 0..* " aggregationType="none" otherAggregationType="none"
navigation =" false " otherNavigation=" false "/><!−−ProgresNodeType−−>

< association name="" id="Im12631b8m10243df4695mm7b4c"
targetClass="Im12631b8m10243df4695mm7b52" cardinality="1..1"
otherCardinality =" 0..* " aggregationType="none" otherAggregationType="composite"
navigation ="true " otherNavigation="true "
otherEnd="Im12631b8m10243df4695mm7b46"/><!−−ProgresGraph−−>

<!−− ... −−>
</class>

There are four associations defined. In comments, the target classes of the associations are named.
The first association is the source association between ProgresNode and ProgresEdge. The
association has a unique identifier. The target class is also defined by its identifier. The target class
in this case is the ProgresEdge class. In addition, a number of properties of the association are
defined. By the prefix "other", the values of the other association end are defined. If this information
was not available, the data had to be looked up in the definition of the target class. For the source
association, the cardinality is 0..*, this means that the ProgresNode can be the source of zero or
more ProgresEdges, the other way around, the source of the ProgresEdge can be exactly one
ProgresNode.

Which association will be part of an attribute? The if-statement defines for which associations
attributes can be outlined. The associations that will be responsible for the creation of an attribute
in a class are depicted in Figure 6.3. The if-statement exists of three parts, for every part there is a
picture in the figure. The first part (Figure 6.3(a)) defines that if the cardinality is 0..* (this is
if there is a * depicted on the side of the current class), then the current class should get an attribute
that is an instance of the class on the other association end. In the XML code, this would mean that
the first association defines, that the ProgresNode class receives an attribute of the ProgresEdge
class. The next part (Figure 6.3(b)) of the if-statement says that the association end should be the
receiving end of a composition (otherAggregationType="composite"). The last association in
the XML part, defines that there is also an attribute of the ProgresGraph. Figure 6.3(c) requires
that no navigation is possible and the cardinality of the association is one-on-one. If the association
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properties equal cardinality="1..1" otherCardinality="1..1" navigation="false"
otherNavigation="false", then the current class gets an attribute of the target class of this
association.

if (
( association . getAttributeValue ( " otherCardinality " ) . equals ( " 0..* " ) ) // Figure 6.3( a)
|| ( association . getAttributeValue ( "otherAggregationType" ) . equals ( "composite" ) )
// Figure 6.3( b)
|| ( association . getAttributeValue ( " navigation " ) . equals ( " false " )

&& association . getAttributeValue ( " otherNavigation " ) . equals ( " false " )
&& association . getAttributeValue ( " cardinality " ) . equals ( " 1..1 " )
&& association . getAttributeValue ( " otherCardinality " ) . equals ( " 1..1 " ) ) )

// Figure 6.3( c )
) {

// the current class gets an attribute
// of the target class

}

A1 A2
*

(a) Cardinality

B2B1

(b) Composition

C2C1

(c) One-on-one relation

Figure 6.3: Associations

6.5.3 Attributes of the UML Classes

More attributes of the Java class are defined by the attributes of the corresponding class in the UML
class diagram. These attributes are copied with name and type into the Java class. On the attributes
in the Java class, methods are defined. In particular, the get and set methods are defined. The get
methods are defined standard, the set methods are only defined if the changeability property has
the value changeable.
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6.5.4 Inheritance

If there is an inheritance relationship in the UML class diagram, this has consequences on the output
files. In Figure 6.4, an inheritance relationship is depicted. This relationship defines, that the subclass
(D2) can use the methods of its superclass (D1).

D1 D2

Figure 6.4: Inheritance Relationship

When a class is a subclass of another class, this means often that it is a class of the same kind but
more specific. For instance, the class "mountain bike" is a subclass of the class "bicycle". The subclass
is more specific then its superclass. Applied to this project, it means that the subclass also needs the
specification of the superclass. This is done by calling the constructor of the superclass in the subclass.
By means of a ’super-statement’, this constructor is called: super(p1,p2) where p1 and p2 are the
parameters of the constructor of the superclass. If the superclass has more than two parameters, the
super method will have an equal number of parameters. The parameters of the superclass have to be
available on the level of the subclass. Therefore, it has to be checked if these parameters are contained
in the subclass, else they have to be added. For example, the ProgresNodeClass is a subclass of the
ProgresNodeTypeClass. In the next code piece, it is defined how the super-statement is applied.

ProgresNodeClass(NodeClass nodeclass , ProgresSchema progresschema, String name) {
super( nodeclass ,name);
this .progresschema = progresschema;
}

The constructor of the ProgresNodeTypeClass looks as follows:

ProgresNodeTypeClass(NodeClass nodeclass , String name) {
this . nodeclass = nodeclass ;
this . name = name;
}

It can be perceived that the ProgresNodeClass calls the constructor of
the ProgresNodeTypeClass by means of the super-statement, and with the parameters that are
necessary in the constructor.

For the subclass, it also has to be defined that it is a subclass of another class. This can be done by
specifying in the Java class that the class ’extends’ another class. This is done by adding to the class
name the keyword extends followed by the name of the superclass.

6.5.5 Adding the Constructor to the Java Files

Of course, after defining the attributes, first the constructor of the Java file has to be created. The
name of the constructor must be the same name as the corresponding class (and the file). For every
attribute, a private field is created and the public get and set methods are written in the Java file.
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The definition of the attributes is quite straightforward. Nevertheless, now the real methods, which
are defined in the UML diagram through tags, have to be interpreted and written in the Java files.

6.5.6 Operations

In the UML class diagram, every operation is defined. The name of the method is given,
including the return type, the parameters and the exceptions that can rise for this operation.
These data are stored in the XMIOperation class. By means of this class, for every
operation its specific properties can be loaded. Before it is significant to interpret the tags,
the operation has to be announced by a header. This header contains if the method is
public or private, what the return type is, the method name, and the parameters between
parentheses. Also, the exceptions that can be thrown are given. These exceptions are
already included in the UML class diagram. For example, for the operation createNode the
method looks like: public ProgresNode createNode(ProgresNodeType type) throws
GrasGXLException, EntityNotFoundException, SchemaCheckException. In the next
section, it is declared how the tags are interpreted.

6.6 Interpreting the Tags

The tags that are defined in Section 6.1.1 need to be interpreted. Every tag has some specific
properties and the parameters not always denote the same information, which is shown in the table
in Section 6.1.1. Sometimes the first parameter is a method, in other cases it is an output type, etcetera.
The parameters of the tags are, per tag, denoted in a map as a key-value pair. This makes it more
efficient to recover a parameter in the course of the program. The tags themselves are defined using
an enumeration. With an enum, Java provides the facility to create enumerated types with fields and
methods. For every tag, some methods should be added, that are defined in the evaluator. Hence,
the enum type would be a comfortable solution, because it enables to assign every evaluator to a tag.
By adding the tags to an enumeration, the names of the tags are fixed. The tag names thus have to be
written exactly as is specified in the enumeration. This means that the tag names are all lowercased.

6.6.1 The AbstractEvaluateTag Class

An AbstractEvaluateTag class is defined, to support the different evaluators of the
tags. For every tag, a separate evaluator that extends the abstract class is realized. The
AbstractEvaluateTag class has two methods: the evaluate method and the isResponsible
method. The specific evaluators redefine these methods. The isResponsible method returns
true if the evaluator is responsible for the tag. The evaluate method has three parameters: the
operation for which it is defined, the parameter map, and the previous tag. The operation defines
all the information concerning the operation: return type, parameters, etcetera. It is useful to know
which parameters the method possesses, in order to create the method. By the parameter map, the
parameters defined in the tag are available for the evaluator. Moreover, the previous tag is needed
when a translation has to be done, in order to know if the instance that should be transformed is new
or already extant. If it is new, then the previous tag will be a declare or create tag. Also, a new instance
of an entity of the specialized graph model has to be created, using the former instance. Then the
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conversed instance has to be stored in the factory. If the instance is not new, then it can be retrieved
of the factory.

6.6.2 The unpack Tag

EvaluateUnpackTag is the class in SUMAGRAM for interpreting the unpack tag. The unpack tag
is defined in order to return the corresponding Gras/GXL class for a parameter. The unpack tags are
often included in another tag, where an instance of the superclass is needed. The tag is extracted
from the other tag. The unpacked class is assigned to a variable. On the place of the tag, this variable
is included. In the next table, two examples are given. For each example, the top line defines the
method name, the return type and its parameters. The second line gives the input (the tag with
parameters) and the output.

Input Output
public Collection getAllEdgesOfGraph(ProgresEdgeType type)

@retrieve(Collection<Edge>, EdgeClass edgeclasstype =
getAllEdgesOfGraph(@unpack(type),false)) type.getBackingEdgeClass();

Collection<? extends Edge> collection =
graph.getAllEdgesOfGraph(edgeclasstype,false);

public ProgresNode createNode(ProgresNodeType type)
@create(Node, NodeClass nodeclasstype =
createNode(@unpack(type))) type.getBackingNodeClass();

Node node =
graph.createNode(nodeclasstype);

The first example is a method where all the edges of a graph have to be found, with a certain type.
This type is an instance of ProgresEdgeType. The method getAllEdgesOfGraph requires as
input an EdgeClass and a boolean (false) that indicates if also the subclasses should be included
in the output. The second example defines the creation of a node. The method createNode of
Gras/GXL expects a NodeClass, as there is no NodeClass available on the level of this method,
it has to be retrieved. The method provides a ProgresNodeType, which has as a superclass the
NodeClass.

Every class provides a getBacking-method, which returns the instance of its corresponding
Gras/GXL class. First, the parameter belonging to the variable in the unpack tag has to be found, such
that the type is clear. Next, the class, belonging to the type, has to be looked up. With the definition of
this class, also the corresponding Gras/GXL class can be selected. The instance of that class is stored
in a variable. The type is the Gras/GXL class and the variable is the Gras/GXL class lowercased and
concatenated to the parameter name. This concatenation is done in order to avoid duplicate variable
names. When only using the class name lowercased, the risk exists that his name already appears in
the class. By creating such a concatenation, this risk is declined. Sometimes this concatenation might
deliver a weird name (for instance graphgraph), but this is not as big a problem as having duplicate
names. To the created variable, the instance is assigned. This instance is retrieved by applying the
getBacking-method to the stereotype class.
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6.6.3 The retrieve Tag

The class EvaluateRetrieveTag is responsible for the actions surrounding the retrieve tag. The
idea of a retrieve tag is to gather an entity or a collection, by using a method of Gras/GXL. A few
examples are listed in the next table. The input is a tag as explained previously, the output is the code
as expected in the Java file.

Input Output
public Collection getAllEdgesOfGraph(ProgresEdgeType type)

@retrieve(Collection<Edge>, Collection<? extends Edge> collection =
getAllEdgesOfGraph(@unpack(type),false)) graph.getAllEdgesOfGraph(edgeclasstype,false);

public ProgresGraph getGraph(String name)
@retrieve(Graph, Graph graph =
getTopLevelGraphByName(name)) graphpool.getTopLevelGraphByName(name);

The first example is a method to retrieve all the edges of a graph that have a certain edge
type. The first parameter of the tag defines the type of the output. The output in this case is a
Collection. The variable name is the lowercased output type. As in Gras/GXL, the methods
use the type Collection<? extends Edge>, the type as denoted in the parameter is rewritten.
Collection<? extends Edge>means that every element in the collection should be an element
of which the type extends an Edge. Version 5.0 of Java recommends that for a Collection it is
specified what the content is. The definition of the content is defined within the angle brackets.
The content definition Collection<? extends Edge> is more unrestrained than using only
Edge between the brackets, in the sense that every element that is a kind of Edge can be stored
in the collection. In order not to bother the user with this extra work, the program will rewrite the
Collection<Edge> to a Collection<? extends Edge>. The easiest would probably be not
defining the type, but then there can be added elements to the collection of a wrong type, which can
deliver problems when using the contents of the collection.

The specified method is a method of the Graph class of Gras/GXL. Therefore, an instance of this
class is needed to call this method. This instance is the attribute graph, which can be grasped by
means of the stereotype. The parameters of the method are given within the second parameter
of the tag. As first parameter of the method, an instance of type EdgeClass is expected. No
instance of type EdgeClass is available, only an instance of type ProgresEdgeType is vacant.
This ProgresEdgeType has the EdgeClass as corresponding Gras/GXL class. The instance of the
corresponding class that is included in the ProgresEdgeType class, can be used as parameter for
the method. To retrieve this instance, the unpack tag is used.

In the second example, a method to retrieve a graph with a specified name is described. The method
that is provided for this purpose is the method getTopLevelGraphByName. As output, an instance
of type Graph is expected. This method is provided by the class GraphPool and uses a String
name as parameter, which is the name of the graph that should be collected, in the format of a
String.

By interpreting this tag, first there has to be defined if the output type concerns a Collection, a
Map or an instance of an entity of Gras/GXL. This check is done using a pattern matcher. There
has to be kept in mind, that a Collection is the superclass of types like List and Vector. A
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Collection is interpreted as some text, followed by an opening angle bracket (<) then again some
text and closed by a closing angle bracket (>). A Map has two strings separated by a comma between
the angle brackets. The patterns also take into account that there may be spaces included. If the
output type does not correspond to one of these two patterns, then it must be an entity of Gras/GXL.

For each selection, a different road is treaded. In the case of a Collection, the different parts of the
output are concatenated. What is needed in the output is an output type, followed by a variable, then
an equal sign, followed by the instance on which the Gras/GXL method can be run followed by a
point and the method like defined in the parameter of the tag, with the suitable method parameters,
and of course once in a while some spaces are added. The output type is defined as the part before
the opening angle bracket in the pattern, which will usually be Collection, followed by the angle
brackets and the contents, which is rewritten using "? extends". Subsequent a space and the
variable are added. The variable is the lowercased type, left of the angle brackets. After the equal
sign, the instance of the corresponding Gras/GXL class is inserted. This is looked up in the lookup
table. Thereafter, the method is written.

In case the output type is a Map, the output is almost the same, except for the code between the angle
brackets, which will be a key-value-pair. For the last possibility, when the output is an instance of a
Gras/GXL entity, the output type is literally the first parameter of the tag. The rest of the code is the
same as for the Collection and the Map.

6.6.4 The translateEntity Tag

The target of the translateEntity tag is to translate an instance of an entity of Gras/GXL to an instance
of an entity of a specialized graph model. The responsible class in the code of SUMAGRAM, is the
EvaluateTranslateEntityTag class. For the translateEntity tag, two cases can be distinguished.
The first one is the translation of an instance in the case that the previous tag was a declare or create
tag. The second one includes all other cases. The difference lies in the use of the factory. When
creating or declaring an instance, it has to be added to the factory, in the other cases, the instance can
be loaded of the factory. The two cases are both exemplified in the next table.

Input Output
public ProgresNode createNode(ProgresNodeType type)

@translateEntity(ProgresNode,Node) ProgresNode progresnode =
new ProgresNode(node,type,this);
ProgresSchemaFactory.addProgresNode(progresnode);
return progresnode;

public ProgresGraph getGraph(String name)
@translateEntity(ProgresGraph,Graph) return ProgresSchemaFactory.getProgresGraph(graph);

The first example is included in the method createNode. The node is created by means of a create
tag. This means that after the translation of the created Gras/GXL node, it has to be stored in the
factory. The second example represents the translation of a Gras/GXL graph, after the retrieval for
which a Gras/GXL method is used. The first parameter of a translateEntity tag is the output type, the
second parameter states the input type. The input type should always be equal to the output type of
the tag that precedes the translateEntity tag.
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By the program, this tag is interpreted by first checking the situation. When there was a creation or
declaration, the first thing to do is to create a new instance of the output type. This is done by writing
down the type and the name of the corresponding variable, which is the type lowercased. This is
followed by an equal sign. Then the keyword new and again the output type are inserted. Between
parentheses, the parameters needed by the constructor of the output type are defined. This is done
in the following way. First, the class of the output type is searched in the set of all classes. Here, the
parameters are defined in the right order. Then there has to be evaluated which variable corresponds
with the defined parameter. If the type of the parameter corresponds to the input type on the tag
level, then the variable, corresponding to the input type, is used. In the second case, it is checked
if the parameter type equals the current class. Then the keyword this will be included. In the last
case, the parameters that belong to the operation are evaluated. It is checked if there is a parameter
that corresponds with name and type. If this cannot be found, there is checked if there is a parameter
with the right type. If no corresponding parameter is found, the initial value of the class parameter
is used. It is the responsibility of the user, that there can be found a parameter. How the user can
accomplish this, will be explained in the Section 6.7. After creating this instance, it should be added
to the factory. Next, it will be returned.

When the previous tag was no creation or declaration, the instance is simply looked up in the
factory and returned. The parameter of the get method of the factory, is the instance that is created
previously, and that should be translated.

6.6.5 The translateCollection Tag

The EvaluateTranslateCollectionTag class is responsible for interpreting the
translateCollection tag. This tag converts every instance in a set to instances of another class.
The first parameter of the tag denotes the output type of a single instance, the second parameter
denotes the type of the set.

Input Output
public Collection getAllNodesOfGraph()

@translateCollection(ProgresNode, Collection output = new HashSet();
Collection<Node>) for (Node x : collection){

output.add(ProgresSchemaFactory.getProgresNode(x));
}
return output;

public Map getAllValidAttributeValues()
@translateCollection(ProgresAttribute, Map output = new HashMap();
Map<Attribute,Serializable>) for (Attribute x : map.keySet()){

output.put(
ProgresSchemaFactory.getProgresAttribute(x),
map.get(x));
}
return output;

In the table above, two examples of the translateCollection tag and the outputted code are given.
The first tag is a tag included in the method getAllNodesOfGraph. After retrieving a collection
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of nodes using a method of Gras/GXL, every Node in this collection has to be converted to a
ProgresNode. This is done by looping through the set of nodes, and, for every Node, retrieve
the corresponding ProgresNode out of the factory.

Again, a difference has to be made between the actions when a Map is encountered and the actions
when there is a Collection. This is again done by a pattern. When the output type is a Map, a
new instance of a HashMap will be created. If the output type is a Collection, an instance of a
HashSet will be created. Both Java classes have a different behaviour and other methods. To add
new elements to a HashMap, the method put exists, which consists of two arguments, a key and
a value. For a HashSet, the method for adding elements is called add. This difference has to be
regarded.

When implementing the method in the case of the Map, first the instance of the HashMap has to be
created. Then a loop through all the key-value pairs of the map of which the elements should be
converted, is implemented. This loop is done by means of the keySet method of the HashMap.
This method returns a set of all keys that appear in the HashMap. These keys are all of a type of
Gras/GXL. These keys all have to be converted, the corresponding value for every key remains
unchanged. Within the loop, the newly created HashMap is filled. First, the keys are converted to
entities of the specialized graph model. This is done by finding the converted entities in the factory.
Then the value that was part of the original key is attached to the new key. This key-value pair is put
into the HashMap. The created map is returned to the program.

The implementation of the Collection is less complicated. The first step is to create the instance
of the HashSet. In this case, also a loop is created to the existing collection, of which the elements
have to be converted. For every element in the collection, the corresponding element is searched in
the factory and added to the new HashSet. The filled set is then returned to the program.

6.6.6 The create Tag

By means of the EvaluateCreateTag class, the desired output of the create tag is created. With the
create tag, the establishing of new entities can be done.

Input Output
public ProgresNode createNode(ProgresNodeType type)

@create(Node, Node node =
createNode(@unpack(type))) graph.createNode(nodeclasstype);

public ProgresGraph createGraph(String name)
@create(Graph, Graph graph =
createTopLevelGraph(name, graphpool.createTopLevelGraph(
#ProgresSchema.getStandardGraphClass())) name,progresschema.getStandardGraphClass());

In the table above, two examples are given for the create tag. The first example is the creation of a
Node; the second example is the creation of a Graph. The idea is that afterwards, these entities are
transformed to respectively a ProgresNode and a ProgresGraph.

The output is composed by first defining the output type, which is one of the parameters of the tag.
The variable is again the lowercased output type. To this variable, the output value of the method,
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defined in the second parameter of the creation tag, is assigned. This method had to be applied to
the instance corresponding with the stereotype. The variable name of the instance is retrieved from
the lookup table.

6.6.7 The declare Tag

For the declare tag, the responsibility rests on the EvaluateDeclareTag class. This tag provides the
possibility to declare new schema entities, like NodeClass, EdgeClass, and GraphClass.

Input Output
public ProgresNodeType declareNodeType(String name, ProgresNodeClass typeOf)
@declare(NodeClass, NodeClass nodeclass =
declareNodeClass(name,false)) schema.declareNodeClass(name,false);

public ProgresEdgeType declareEdgeType(String name, ProgresNodeTypeClass source,
Cardinality sourceCardinality, ProgresNodeTypeClass target, Cardinality targetCardinality)

@declare(EdgeClass, EdgeClass edgeclass =
declareDirectedEdgeClass(name, false, schema.declareDirectedEdgeClass(name, false,
(GraphEntityClass) source, sourceCardinality, (GraphEntityClass) source, sourceCardinality,
(GraphEntityClass) target, targetCardinality)) (GraphEntityClass) target, targetCardinality);

In the first example, a new NodeClass is defined. The method for this declaration needs two
parameters, the first parameter is a name and the second one is a boolean value. This boolean value
defines whether the class is an abstract class or not. The boolean value is in this case false, because
this tag is part of the declaration of a new ProgresNodeType, which is a concrete class. The second
example creates a new EdgeClass, which is created for the purpose of a new ProgresEdgeType.
The first parameter of the method is the name of the new ProgresEdgeType, then a boolean is
defined that indicates whether it concerns an abstract class or not. The next parameters define
for the source and target node the classes and cardinalities. As in Gras/GXL, an Edge is defined
between two GraphEntityClasses and for the PROGRES graph model, these classes do not exist,
a conversion has to be done by using a typecast.

The output type is the first part of the output, then the variable is defined as the lowercased output
type. After the variable, an equal sign follows to which the method succeeds. This method is applied
to the instance belonging to the stereotype. The method itself with its parameters is literally copied.

6.6.8 The check Tag

The check tag is handled by the EvaluateCheckTag class. As this tag only appears seldom, only
one example is given. This tag appears within the createEdge method.
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Input Output
public ProgresEdge createEdge(ProgresNode source,ProgresNode target,ProgresEdgeType type)
@check(isSourceValid(source, type), if(!(progresgraphpool.getProgresSchema()
throw new SchemaCheckException("The type .isSourceValid(source, type))){
is not valid for the source.")) throw new SchemaCheckException(

"The type is not valid for the source.");

With the check tag, there can be asserted that no inconsistencies on behalf of the schema exist when
creating a new entity. For instance, when creating a new Edge, it can be checked that the nodes
are valid. This means that the node has to be of the ProgresNodeType that is specified for the
ProgresEdgeType. With the check tag, a method is called that returns a boolean value. This boolean
value reports if the Node is valid with regard to the Edge.

The check method is composed by creating an if-statement, which is defined by the first parameter
of the tag. This method is defined in the ProgresSchema class. Therefore, an instance of this class
has to be found. This method is defined in the ProgresGraph class. This class can operate on
an instance of the ProgresGraphPool class, which is related to the ProgresSchema class. These
classes can be found by looping through the set of classes and finding the classes with respectively
the stereotypes graphpool and schema. The defined reaction should be given when the boolean
value returned by the method is false. This implies the negation in the if-statement. Within the
if-statement, the reaction as defined in the second parameter of the tag is returned.

6.6.9 Literal Code

The method that is called using the check tag, is a method that is defined on the level of the
Schema class of the specialized graph model. The method should actually be defined using an OCL
constraint, but in the scope of the project it is defined as literal code in the ProgresSchema class.
The isSourceValid method is defined as follows:

public boolean isSourceValid (ProgresNode source , ProgresEdgeType type) throws
GrasGXLException, EntityNotFoundException {

if (! source .getProgresNodeType() .getBackingNodeClass() . isSubClassOf (
type . getSource () .getBackingNodeClass() ) ) {

return false ;
}
if (!( type . getSourceCardinality () .getMinimum() < source .getAllOutgoingEdges() . size () +1

&& type. getSourceCardinality () .getMaximum() > source.getAllOutgoingEdges() . size () +1)
|| (type . getSourceCardinality () .getMinimum() == −1 &&
type. getSourceCardinality () .getMaximum() == −1)) {

return false ;
}
return true ;

}

If this method returns the value true, then the source is valid. This method is written literally in the
UML class diagram. However, it is actually interpreted as if it was also created by means of tags. On
the level of the createEdge method, it is not known that this method is not generated. This is an
example of how literal and generated code can be used simultaneously without any problems.
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6.6.10 The write Tag

The write tag is handled by the EvaluateWriteTag class. The first example given in the next table
defines a method of the ProgresGraphPool class, which states if there exists a graph with the
defined name. The second example is taken out of the ProgresNode class. It is used to define an
attribute value for a specific node. The write tag writes a method into a Java class, taking into account
what the return type is and that it has to be applied on a class of the Gras/GXL graph model.

Input Output
public boolean existsGraph(String name)

@write(existsTopLevelGraph(name)) return graphpool.existsTopLevelGraph(name)
public void putAttributeValue(ProgresAttribute attribute, Serializable value)

@write(putAttributeValue(@unpack(attribute), node.putAttributeValue(attributeattribute,
value)) value);)

The method belonging to the first example has a boolean value as return type. When the program
perceives this, it returns the value defined by the method. The second method has void as return
type, so nothing will be returned by the method.

The output is composed by first checking the return type, everything different from void causes
the program to write "return" before the real method is written. Then the variable belonging to the
stereotype is written followed by a point and the method as defined in the first parameter of the tag.
The method may contain an unpack tag, which will then be interpreted previously.

6.7 Problems with the Implementation

As with all application developments, also with the development of SUMAGRAM, some
problems have arisen. One of the greater issues encountered during the implementation of
SUMAGRAM was handling strings. As it is already a known problem in compiler construction,
the programmer can define the text structure arbitrarily. In SUMAGRAM, the created source
code is copied literally. The parameters of the tags have to be interpreted. They have
a quite simple structure, but it still has to be analyzed appropriately. The parameters are
actually strings. A string can consist of different characters, like letters, digits, spaces, and
also parentheses and commas. The style of every programmer might differ in the spacing
before and after parameters. Because these spaces might influence the output of SUMAGRAM,
the strings are all trimmed after loading them. With the method trim provided by Java, the
leading and trailing spaces of a string are removed. Another aspect on behalf of the strings
is reading the tags and its parameters correctly. The tag @retrieve(Collection<Edge>,
getEdges(ConnectionMode.DIRECTED_OUTGOING, @unpack(edgeType), false)) has to
be read correctly. The first question is: which parameters belong to the tag, and which to the method?
It is possible to use the commas as separators, but this might be faulty because the parameters of the
methods are also separated by commas. Therefore, it has to be checked how many brackets occur,
and by that, the parameters can be selected. The next method shows how the parameters can be
selected out of a tag. The params parameter of the method contains the parameters of the tag. The
operation parameter defines the operation to which the tag belongs.
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private String getVariable ( String params, XMIOperation operation) throws GMGenException {
int brackets = 0;
int typer = 0;

for ( int i =0; i<params.length () ; ++i) {
if (params.charAt( i ) == ’ , ’ && brackets == 0 && typer == 0) {

return params. substring (0, i ) ;
}

if (params.charAt( i ) == ’<’ )
++typer;

if (params.charAt( i ) == ’>’ ) {
if ( typer > 0)

−−typer;
else

throw new GMGenException("The number of brackets is incorrect for
operation " + operation .getName()) ;

}

if (params.charAt( i ) == ’ ( ’ )
++brackets ;

if (params.charAt( i ) == ’ ) ’ ) {
if ( brackets > 0)

−−brackets;
else

throw new GMGenException("The number of brackets is incorrect for
operation " + operation .getName()) ;

}
}
if ( brackets != 0 || typer != 0) {

throw new GMGenException("The number of brackets is incorrect for operation " +
operation .getName()) ;

}
return params;

}

Another big issue, was to keep SUMAGRAM independent of the PROGRES example. In the
program, it may not be defined that ProgresNodeTypes exist, simply because they do not exist
outside of PROGRES. This was something that needed some attention. This problem was also a
reason to redevelop the tags. In the lookup table, also a stereotype NodeType was defined. Just by
cause of inattention, every class was entered, leaving out the Progres prefix. When this mistake was
rectified, it was not clear how to write the variables exactly, because they used to be defined in the
lookup table.

Retrieving the parameters based on the associations delivered also some difficulties. The self-loop
association of the ProgresNodeClass brought about a parameter of the type ProgresNodeClass
in the class ProgresNodeClass. By means of the NodeClass of Gras/GXL, the related class can be
defined which can be of type ProgresNodeClass. The extra parameter is thus not necessary and
should not be added.

When there are two attributes in a class with the same type, it has to be watched that the names of
the get and set methods differ. For instance for the class ProgresEdge, two ProgresNodes exist.
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An idea is to define the methods as getProgresNode, but this would mean that there are two such
methods in one class (with the same parameter list), which is illegal. Therefore, it is checked if the
same type occurs more than once in the attribute list. If this is the case, the attributes are called by the
names instead of the types. This is not the usual procedure, because it is easier for the user to denote
that he wants a ProgresEdge than that he wants a progresedge, because the first notation is the
ordinary one. Only if there is defined a name of an attribute by the UML class diagram, this name is
used in the method name. For example, to retrieve the source node, the method getSource will be
used.

For the usability of the program, it is necessary that the names of the attributes are unambiguous. It is
therefore advised to always use the same name for entities that have the same purpose. For instance,
when a source node is desired, this node should at any time receive the same name. For example,
for the ProgresEdge, in the attributes two ProgresNodes are defined: the source and target.
Then it is important, for the createEdge method, to use the same names, otherwise it might be the
case that they are swopped and the node that was intended to be the source is actually the target and
vice versa. Because the program checks if there exists a parameter with the same name and type, this
naming conventions should be followed.

Another point is to be careful with the naming. It is not important what the method names are for the
specialized graph model, but it can easily occur that for instance the method getAllEdgesofGraph
is created in the specialized graph model, but the corresponding method of Gras/GXL is the method
getAllEdgesOfGraph (notice that it is written differently: "of" versus "Of"). When now the method
name is written in the UML class diagram, it can happen that the wrong name is used as the
Gras/GXL method, which will then throw an exception.

For the specialized graph model, it is not allowed to use names for the classes, which are equal to the
names of Gras/GXL. This is for instance not sensible for the translateEntity tag. This would namely
cause the next case: @translateEntity(Graph,Graph) which does not make a lot of sense and
this would confuse the program. Therefore, it is obligatory to give names that are not equal to the
Gras/GXL names.

In the PROGRES graph model, a method getAllNodeTypesOfNodeClass exist for the
ProgresNodeClass. This method first retreives a collection with all the subclasses of a node class,
and then it retrieves the node types for each node class in the set. This is a kind of recursive method.
As there is no suitable combination of tags to implement this method, there is decided to write this
method as literal code into the UML class diagram. Another possibility is to make a combination of
tags and literal code, which can also be done.

public Collection getAllNodeTypesOfNodeClass() throws SchemaCheckException, GrasGXLException {
Collection output = new HashSet() ;
Collection <? extends GraphEntityClass> collection = getAllSubClassesOfNodeClass () ;
output .addAll(getAllDirectNodeTypesOfNodeClass()) ;
for ( GraphEntityClass x : collection ) {

output .addAll ((( ProgresNodeClass)x) .getAllDirectNodeTypesOfNodeClass()) ;
}
return output ;

}
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Chapter 7

Examples of Specialized Graph Models

SUMAGRAM receives a specialized graph model as input. To develop SUMAGRAM, two examples
of specialized graph models have been used. The first example is the PROGRES graph model, which
has been used during the development. The GXL graph model is the second example. After the
completion of the development, it has been used to check if there were any inconsistencies.

MetaAttributable
(from schema )

GraphEntityClass
(from schema )

- name :String
- abstract :boolean

GraphEntity

*

type

AttributeValue

- value :Serializable
- valid :boolean*

Graph

- role :String

GraphPool

*

manages

*

contains

NodeEdgeRelation

- directed :boolean

RelationEnd

*

0..1

from

*

0..1

to

*

*

0..1

Attribute
(from schema )

- name :String
- type :Serializable

*

instance

Figure 7.1: Gras/GXL Graph Model

A link between the Gras/GXL graph model and the specialized graph model always has to be
established. It is not obligatory to denote a stereotype for every class of the specialized graph model,
but if there are no stereotypes at all, the methods of Gras/GXL cannot be mapped to the specialized
graph model. The Gras/GXL graph model and schema are again depicted in Figures 7.1 and 7.2, to
denote the link with the specialized graph models.

In the first section, the PROGRES graph model is described and how it has been used as an example.
Section 7.2 explains the example of the GXL graph model.
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GraphEntityClass

- name :String
- abstract :boolean

NodeClass GraphClassEdgeClass

- directed :boolean
- srcCard :Cardinality
- trgCard :Cardinality

RelationClass

RelationEndClass

- direction :Direction
- cardinality :Cardinality

*

*

target

*

source

Schema

*
elements

MetaAttributableGraphPool

Attribute

- name :String
- type :Serializable

*

attribs

sub- *super-
*

is_a

Figure 7.2: Gras/GXL Graph Schema

7.1 PROGRES Graph Model

The PROGRES graph model is the example, which is used to develop SUMAGRAM. The graph
model has already been explained in Section 3.3. The PROGRES graph model is visualized in Figure
7.4.

First, for every class in the PROGRES graph model, a corresponding class in the Gras/GXL graph
model has to be found. This class will then be used to denote the stereotype. This correspondence is
perceived by means of properties. The class ProgresEdge is a class that connects two nodes with
each other. The class Edge of Gras/GXL has the same characteristic. Therefore, it is logical to give
the ProgresEdge the stereotype edge. As can be seen in Figure 7.4, every class has a stereotype.
Denoting the stereotypes for the PROGRES graph model is straightforward, because every class can
be linked to a class of Gras/GXL by examining the names and characteristics.

<< schema >>
ProgresSchema

(from schema)

+getNodeClassByName(name:String):ProgresNodeClass
+getEdgeTypeByName(name:String):ProgresEdgeType
+getNodeTypeByName(name:String):ProgresNodeType
+declareEdgeType(name:String,source:ProgresNodeTypeClass,sourceCardinality:Cardinality,target:ProgresNodeTypeClass,targetCardinality:Cardinality):ProgresEdgeType
+declareNodeType(name:String,typeOf:ProgresNodeClass):ProgresNodeType
+declareNodeClass(name:String):ProgresNodeClass
+getAllNodeTypes():Collection
+getAllEdgeTypes():Collection
+getAllNodeClasses():Collection
+isSourceValid(source:ProgresNode,type:ProgresEdgeType):boolean
+isTargetValid(target:ProgresNode,type:ProgresEdgeType):boolean
+getStandardGraphClass():GraphClass

<< nodeclass >>
ProgresNodeClass

(from schema)

-name:String

+getAllSuperClassesOfNodeClass():Collection
+getAllDirectSuperClassesOfNodeClass():Collection
+getAllSubClassesOfNodeClass():Collection
+getAllDirectSubClassesOfNodeClass():Collection
+getAllDirectNodeTypesOfNodeClass():Collection
+getAllNodeTypesOfNodeClass():Collection
+addSuperClass(progresnodeclass:ProgresNodeClass):void
+isSubClassOf(progresnodeclass:ProgresNodeClass):boolean
+isSuperClassOf(progresnodeclass:ProgresNodeClass):boolean
+isTypeOfThisClass(nodetype:ProgresNodeType):boolean

<< nodeclass >>
ProgresNodeType

(from schema)

-name:String

<< edgeclass >>
ProgresEdgeType

(from schema)

-name:String
-sourceCardinality:Cardinality
-targetCardinality:Cardinality

<< node >>
ProgresNode

+getIncomingEdgesOfType(edgeType:ProgresEdgeType):Collection
+getOutgoingEdgesOfType(edgeType:ProgresEdgeType):Collection
+getAllIncomingEdges():Collection
+getAllOutgoingEdges():Collection
+getAllValidAttributeValues():Map
+putAttributeValue(attribute:ProgresAttribute,value:Serializable):void
+getAttributeValue(attribute:ProgresAttribute):Object
+setAttributeInvalid(attribute:ProgresAttribute):void
+isAttributeValid(attribute:ProgresAttribute):boolean

<< edge >>
ProgresEdge

*

source *

target

*

*

*

*

* << is_a >>

*

source

*

target

<< attribute >>
ProgresAttribute

(from schema)

-cardinality:Cardinality
-type:Class
-name:String

<< dataType enumeration >>
ProgresAttributeKind

(from schema)

+INTRINSIC:ProgresAttributeKind=new ProgresAttributeKind(2, "INTRINSIC")
+DERIVED:ProgresAttributeKind=new ProgresAttributeKind(1, "DERIVED")
+META:ProgresAttributeKind=new ProgresAttributeKind(0, "META")
-id:int
-name:String

<< nodeclass >>
ProgresNodeTypeClass

-name:String

(discriminator)

Figure 7.3: The ProgresNode Class

To exemplify the whole process, one class of the
PROGRES graph model will be lifted out: the
ProgresNode class. This class is interesting on behalf
of the relationship to the rest of the graph model. In
addition, it contains many methods, such that a good
overview can be gained of how the tags are interpreted
and written in the output file.

The ProgresNode class contains a number of different
operations, as can be perceived in Figure 7.3. The XMI
file belonging to the UML class diagram is converted to
an XML file. The part of that XML file that is about the

ProgresNode class, is displayed in Figures 7.5 and 7.6.
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<< schema >>
ProgresSchema

(from schema)

<< nodeclass >>
ProgresNodeClass

(from schema)

-name:String

<< nodeclass >>
ProgresNodeType

(from schema)

-name:String

<< edgeclass >>
ProgresEdgeType

(from schema)

-name:String
-sourceCardinality:Cardinality
-targetCardinality:Cardinality

<< node >>
ProgresNode

-type:ProgresNodeType

<< edge >>
ProgresEdge

-type:ProgresEdgeType

*source

*

target

*

*

* *

*

<< is_a >>

*

source

*

target

<< attribute >>
ProgresAttribute

(from schema)

-cardinality:Cardinality
-type:Class
-name:String

<< dataType enumeration >>
ProgresAttributeKind

(from schema)

+INTRINSIC:ProgresAttributeKind
+DERIVED:ProgresAttributeKind
+META:ProgresAttributeKind
-id:int
-name:String

ProgresNodeTypeClass

-name:String

<< graphpool >>
ProgresGraphPool

<< graph >>
ProgresGraph

-role:String *

*

Figure 7.4: PROGRES Graph Model

Figure 7.5 shows the associations. The ProgresNode class has a number of associations. Two
associations connect the ProgresNode class with the ProgresEdge class. These associations
both have a multiplicity of zero or more. This association can be read as: a ProgresNode
can be part of multiple ProgresEdges. This implies that the ProgresEdge class receives two
attributes: ProgresNode source and ProgresNode target. The ProgresNode receives no
attribute caused by these two associations. The next association links the ProgresNode class to the
ProgresNodeType class. Here, also a multiplicity of zero or more exists. This association results
in an attribute of type ProgresNodeType. The last association is the one with the ProgresGraph
class. This relationship is a composition. This results in an attribute of type ProgresGraph.

Figure 7.6 shows the operations of the ProgresNode class. Every operation is defined by specifying
a return type, a method body and the parameters. For every method, a tag is defined.

The Java file of the ProgresNode class is shown in Figure 7.7. The methods are not mentioned in the
file, because they are handled later on step by step. In the file, first the imports are written. Then,
after the class header, the fields are mentioned. The ProgresNodeType and ProgresGraph fields
are created due to the associations. The Node field is created as a consequence of the stereotype of the
ProgresNode class. This stereotype is node, which refers to the class Node of the Gras/GXL graph
model. Then the constructor is created using the fields. For every field, a get method is created. As

60



< class name="ProgresNode" id="Im12631b8m10243df4695mm7e08" stereotype="node" abstract=" false ">
< association name="source" id="Im12631b8m10243df4695mm7dfe"

targetClass="Im12631b8m10243df4695mm7e06" cardinality="0..* " otherCardinality =" 1..1 "
collectionType =" set " aggregationType="none" otherAggregationType="none"
navigation ="true " otherNavigation="true " otherEnd="Im12631b8m10243df4695mm7df8"/>

< association name="target" id="Im12631b8m10243df4695mm7dec"
targetClass="Im12631b8m10243df4695mm7e06" cardinality="0..*" otherCardinality =" 1..1 "
collectionType =" set " aggregationType="none" otherAggregationType="none"
navigation ="true " otherNavigation="true " otherEnd="Im12631b8m10243df4695mm7de6"/>

< association name="" id="Im12631b8m10243df4695mm7d92"
targetClass="Im12631b8m10243df4695mm7d26" cardinality="1..1" otherCardinality =" 0..* "
aggregationType="none" otherAggregationType="none" navigation =" false "
otherNavigation=" false "/>

< association name="" id="Im12631b8m10243df4695mm7b4c"
targetClass="Im12631b8m10243df4695mm7b52" cardinality="1..1" otherCardinality =" 0..* "
aggregationType="none" otherAggregationType="composite" navigation ="true "
otherNavigation="true " otherEnd="Im12631b8m10243df4695mm7b46"/>

<!−− ... −−>
</class>

Figure 7.5: The Associations of the ProgresNode Class in XML Format

the changeability of the PROGRES graph model is set to frozen, no set methods are created.
Also, the getBackingNode method that is used for the unpack tag is defined.

< class name="ProgresNode" id="Im12631b8m10243df4695mm7e08" stereotype="node" abstract=" false ">
<!−− ... −−>

<operation name="getIncomingEdgesOfType" visibility ="public ">
<returntype name="Collection"/>
<parameter name="edgeType" type="ProgresEdgeType" direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @retrieve ( Collection &lt ;Edge&gt;, getEdges(ConnectionMode.DIRECTED_INCOMING,

@unpack(edgeType), false),Node)&#xA; @translateCollection (ProgresEdge, Collection &lt ;Edge&gt;)&#xA;"/>
</operation>
<operation name="getOutgoingEdgesOfType" visibility ="public ">

<returntype name="Collection"/>
<parameter name="edgeType" type="ProgresEdgeType" direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @retrieve ( Collection &lt ;Edge&gt;,getEdges(ConnectionMode.DIRECTED_OUTGOING,

@unpack(edgeType), false),Node)&#xA; @translateCollection (ProgresEdge, Collection &lt ;Edge&gt;)&#xA;"/>
</operation>
<operation name="getAllIncomingEdges" visibility ="public ">

<returntype name="Collection"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @retrieve ( Collection &lt ;Edge&gt;,getEdges(ConnectionMode.DIRECTED_INCOMING))&#xA;

@translateCollection (ProgresEdge, Collection &lt ;Edge&gt;)&#xA;"/>
</operation>
<operation name="getAllOutgoingEdges" visibility ="public ">

<returntype name="Collection"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @retrieve ( Collection &lt ;Edge&gt;,getEdges(ConnectionMode.DIRECTED_OUTGOING))&#xA;

@translateCollection (ProgresEdge, Collection &lt ;Edge&gt;)&#xA;"/>
</operation>
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<operation name=" getAllValidAttributeValues " visibility ="public ">
<returntype name="Map"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @retrieve (Map&lt;Attribute , Serializable &gt ;, getAllValidAttributeValues )&#xA;

@translateCollection ( ProgresAttribute ,Map&lt;Attribute , Serializable &gt ;) &#xA;"/>
</operation>
<operation name="putAttributeValue" visibility ="public ">

<returntype name="void"/>
<parameter name=" attribute " type=" ProgresAttribute " direction ="in "/>
<parameter name="value" type=" Serializable " direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @write( putAttributeValue (@unpack( attribute ) , value) )&#xA;"/>

</operation>
<operation name="getAttributeValue " visibility ="public ">

<returntype name="Object"/>
<parameter name=" attribute " type=" ProgresAttribute " direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<exception id="Im12631b8m10243df4695mm7db2" type="Exception" name="InvalidValueException"/>
<method name=" @write( getAttributeValue (@unpack( attribute ) ) )&#xA;"/>

</operation>
<operation name=" setAttributeInvalid " visibility ="public ">

<returntype name="void"/>
<parameter name=" attribute " type=" ProgresAttribute " direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @write( setAttributeInvalid ( attribute . getBackingAttribute () ) )&#xA;"/>

</operation>
<operation name=" isAttributeValid " visibility ="public ">

<returntype name="boolean"/>
<parameter name=" attribute " type=" ProgresAttribute " direction ="in "/>
<exception id="Im12631b8m10243df4695mm7db6" type="Exception" name="EntityNotFoundException"/>
<exception id="Im12631b8m10243df4695mm7dae" type="Exception" name="GrasGXLException"/>
<method name=" @write( isAttributeValid ( attribute . getBackingAttribute () ) )&#xA;"/>

</operation>
</class>

Figure 7.6: The Operations of the ProgresNode Class in XML Format

The first method is getIncomingEdgesOfType. This method returns all the edges that come into
the current node, of the specified ProgresEdgeType. The code of this method is defined in the
UML class diagram using the following tags:

@retrieve(Collection<Edge>, getEdges(ConnectionMode.DIRECTED_INCOMING,
@unpack(edgeType), false))
@translateCollection(ProgresEdge, Collection<Edge>)

public Collection getIncomingEdgesOfType(ProgresEdgeType edgeType) throws
EntityNotFoundException, GrasGXLException {

EdgeClass edgeclassedgeType = edgeType.getBackingEdgeClass () ;
Collection <? extends Edge> collection =

node.getEdges(ConnectionMode.DIRECTED_INCOMING, edgeclassedgeType, false);
Collection output = new HashSet() ;
for (Edge x : collection ) {

output .add(ProgresSchemaFactory.getProgresEdge(x) ) ;
}
return output ;

}

62



import java . util .*;
import java . io .*;
import i3 . grasgxl . exception .*;
import i3 . grasgxl .gm.core .*;
import i3 . grasgxl .gm.core .schema .*;

public class ProgresNode{
private Node node;
private ProgresNodeType progresnodetype;
private ProgresGraph progresgraph ;

ProgresNode(Node node, ProgresNodeType progresnodetype, ProgresGraph progresgraph) {
this . node = node;
this .progresnodetype = progresnodetype;
this . progresgraph = progresgraph ;

}

public Node getNode() {
return node;

}
public ProgresNodeType getProgresNodeType() {

return progresnodetype;
}
public ProgresGraph getProgresGraph () {

return progresgraph ;
}
public Node getBackingNode() {

return node;
}

// methods of the ProgresNode class
}

Figure 7.7: The Java File of the ProgresNode Class

Three tags are used: the retrieve tag, the unpack tag and the translateCollection tag. The unpack tag is
lifted out by SUMAGRAM, because it will be handled before the retrieve tag. The definition of the
variable edgeclassedgeType is the result of the interpretation of the unpack tag. The retrieve tag is
interpreted next. The collection variable is created with the use of the retrieve tag. The next piece
of code, starting with the assignment of the variable output until the return statement, is a result
of the translateCollection tag.

The method getOutgoingEdgesOfType resembles the previous method strongly. The
only difference is the first parameter of the Gras/GXL method, which is changed from
ConnectionMode.DIRECTED_INCOMING into ConnectionMode.DIRECTED_OUTGOING.

The method getAllIncomingEdges is the following method that is defined. The target is to collect
all the incoming edges of the current node, independent of their type. This method looks like the
previous methods, with the difference that no unpack tag appears. The tags and the corresponding
method are shown next. As the getAllOutgoingEdges method is identically except for the
"outgoing" characteristic, it will not be described further.
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@retrieve(Collection<Edge>,getEdges(ConnectionMode.DIRECTED_INCOMING))
@translateCollection(ProgresEdge,Collection<Edge>)

public Collection getAllIncomingEdges() throws GrasGXLException {
Collection <? extends Edge> collection =

node.getEdges(ConnectionMode.DIRECTED_INCOMING);
Collection output = new HashSet() ;
for (Edge x : collection ) {

output .add(ProgresSchemaFactory.getProgresEdge(x) ) ;
}
return output ;

}

The method getAllValidAttributeValues should retrieve all the valid attribute values for the
current node. The structure of this method looks like the previous ones, because there is also first
a retrieve tag followed by a translateCollection tag. The difference for this method is the fact that the
output type is not a Collection but a Map.

@retrieve(Map<Attribute,Serializable>,getAllValidAttributeValues())
@translateCollection(ProgresAttribute,Map<Attribute,Serializable>)

public Map getAllValidAttributeValues () throws GrasGXLException {
Map<Attribute, Serializable > map = node. getAllValidAttributeValues () ;
Map output = new HashMap();
for ( Attribute x : map.keySet() ) {

output .put(ProgresSchemaFactory. getProgresAttribute (x) ,map.get(x) ) ;
}
return output ;

}

The next methods are all methods that contain a write tag, with an unpack tag included. Therefore,
only the first one is reviewed in detail. The first method is the putAttributeValue method. The
other ones are the getAttributeValue method, the setAttributeInvalid method, and the
isAttributeValid method.

The method putAttributeValue defines for a certain ProgresAttribute its value. This value
is dependent on an Attribute, which implies that this Attribute needs to be unpacked, before
denoting the value to it. The putAttributeValue method (that occurs in the code) is a method
of Gras/GXL. This method is applied to a Node of Gras/GXL. This node is retrieved as the
corresponding Gras/GXL class. The ProgresAttribute and the value that should be denoted
are given as parameters of the method.

@write(putAttributeValue(@unpack(attribute), value))
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public void putAttributeValue ( ProgresAttribute attribute , Serializable value) throws
EntityNotFoundException, GrasGXLException {

Attribute attributeattribute = attribute . getBackingAttribute () ;
node. putAttributeValue ( attributeattribute , value) ;

}

The PROGRES graph model resembles the Gras/GXL graph model, and therefore the mapping was
not very complicated. The PROGRES graph model was a good first example, and allowed the
implementation from SUMAGRAM from scratch. The advantage of the simplicity of the graph model
was that it delivered no big complications during the implementation, and SUMAGRAM could be
implemented neatly and structured. The only issue was the two-tiered node class. As there exist both
a ProgresNodeType and a ProgresNodeClass, this delivered some difficulties, but nevertheless
the PROGRES graph model was not complicated to map to the Gras/GXL graph model. However, to
ensure that SUMAGRAM was not dependent on the PROGRES graph model, another example has
to be used. This example had to be quite different from the PROGRES graph model. Thus we chose
the GXL graph model.

7.2 GXL Graph Model

GXL is the Graph Exchange Language. It is an XML based exchange format, which is used for sharing
data between tools. Typed, attributed and ordered directed graphs form the base for GXL. The major
target for GXL is to provide interoperability between tools which use graphs for the representation
of internal data.

7.2.1 Graph eXchange Language

The Graph eXchange Language (GXL, [HWS00]) originated in the year 1998. The target of GXL was
to enable the exchange of information between reengineering applications. Already some useful
tools existed, but the problem was they performed only parts of the desired features. They had for
instance a functional graph query language, but no visualisation of the internally used graphs.

One of the existent tools was Gupro [KWDE98]. It uses as a query language GReQL [Kam96]. The
major disadvantage was the fact that Gupro did not support graphical visualisation of the internally
used graphs. Another tool was Rigi [MK88]: it did support the visualisation aspect, but had no
functional language.

Graphs are often used to represent complex internal documents. This characteristic is also useful for
most of the reengineering tools, which requests the implementation of a general exchange language
for graphs. This feature is represented by GraX [EKW99]. While graphs are used in a lot of
application domains, the exchange format GraphXML [HM00] was created.

With GraX, only TGraphs [JE95] could be exchanged. TGraphs are ordered graphs of which the
nodes and edges could be attributed and typed. More complex graph elements like n-ary relations
were not directly created. Among others, this problem was the cause for GXL to be developed. To the
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<< graphclass >>
GXLGraphClass

-name:String

<< relationclass >>
GXLRelationClass

<< graphentityclass >>
GXLGraphElementClass

-isAbstract:boolean=false
-name:String << edgeclass >>

GXLEdgeClass

-isDirected:boolean=false

<< relationendclass >>
GXLRelationEndClass

-role:String

<< nodeclass >>
GXLNodeClass

* hasRelationEnd

*

*

isA

*

from

*

to

relatesTo

-isOrdered:boolean
-limits:int x int

*contains

* 0..1contains

GXLAttributedElementClass << attribute >>
GXLAttribute

-name:String
-kind:int
-klasse:String

*

Figure 7.8: GXL Graph Schema

developed graph model, the concepts for hierarchical graphs and hypergraphs were added, because
they are used in various graph models. GXL can as such be seen as the superset of these graph
models.

GXL supports the exchange of graphs as well as their graph schemata. GXL is a sublanguage of
XML [BPSM98]. The graph models of GXL have as a property that every element can be attributed
and also attributes themselves can be attributed. GXL has also some disadvantages, which will be
rectified in future versions. It does not support relations between graphs. These must be simulated
with surrogate graph elements. Another problem is the support of references of graphs and graph
elements.

7.2.2 The Graph Model

The basis of the GXL graph model is the GXLGraphPool, which corresponds to the GraphPool
class of Gras/GXL. This means that this graph pool is responsible for the creation and deletion
of the graphs and for storing the different graphs. To the graph pool, a one-to-one relation with
the GXLSchema exists. The schema class is responsible for the creation and use of the different
schema entities: GXLNodeClass, GXLEdgeClass, GXLGraphClass, and GXLRelationClass.
These classes are respectively related to the NodeClass, the EdgeClass, the GraphClass, and
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GXLAttributedElement

<< graph >>
GXLGraph

-type:String
-role:String
-edgemode:String

<< graphentity >>
GXLGraphElement

-type:GXLGraphElementClass0..1* contains

*contains

<< node >>
GXLNode

<< relation >>
GXLRelation

-isDirected:boolean

<< edge >>
GXLEdge

-isDirected:boolean
-fromOrder:int=-1
-toOrder:int=-1

<< relationend >>
GXLRelationEnd

-role:String
-direction:String
-startOrder:int=-1
-endOrder:int=-1

*

<< graphpool >>
GXLgraphPool

0..1

*
contains

*

from

*

to

*

relatesTo

<< attribute >>
GXLAttribute

-name:String
-kind:int
-klasse:String

*

contains

Figure 7.9: GXL Graph Model

the RelationClass. These classes have an abstract superclass: the GXLGraphElementClass.
The GXLRelationClass is composed of zero or more entities of GXLRelationEndClass. It is
therefore also responsible for the declaration of the GXLRelationEndClass.

The GXLAttributedElementClass is the superclass of the GXLGraphClass,
the GXLGraphElementClass, and the GXLRelationEndClass. The
GXLAttributedElementClass has no corresponding class in Gras/GXL and therefore, it
has no stereotype.

The GXLEdgeClass defines the definition of the relations between the different
GXLGraphElementClasses. There are a from and a to association, which define that an
edge can come from a graph element and go to a graph element. The GXLRelationEndClass is
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related to the GXLGraphElementClass in the way that every relation end is related to a graph
element.

The GXLGraphClass is composed of entities of the GXLGraphElementClass. But, the other way
around, the GXLGraphClass also is a type of a GXLGraphElementClass.

The GXLAttributedElementClass is composed of zero or more GXLAttributes, which is also
part of the GXLAttributedElement class. With the GXLAttributedElement class, the view is
turned to the GXL graph model. The GXLAttributedElement class is the superclass of GXLGraph,
GXLGraphElement, and GXLRelationEnd. The class GXLGraphElement is an abstract class that
is the superclass of GXLNode, GXLRelation, and GXLEdge. A GXLRelation can be composed of
multiple GXLRelationEnds.

The GXLRelationEnd is related to the GXLGraphElement class, because every relation end
is related to a graph element. A GXLEdge is an edge from a GXLGraphElement to a
GXLGraphElement, which is most of the time another one but might also be the same one.

The GXLGraphPool contains a number of graphs. These graphs of type GXLGraph are composed of
a number of GXLGraphElements. A GXLGraphElement can also be a GXLGraph, which implies
that a graph can consist of graphs.

The edges and relations of the GXL graph model have the properties that they can be directed or
undirected. This property is denoted by means of a boolean value. Edges and relations also can have
an ordering. This ordering is implemented independent of the Gras/GXL graph model, because this
feature is not supported by Gras/GXL.

The graphs of GXL can be untyped. As Gras/GXL only supports typed graphs, this property is
ignored, and it is pretended that all graphs do have a type.

7.2.3 The Implementation of the GXL Graph Model

The GXL graph model contains ordered edges. Although this feature is not available in Gras/GXL,
SUMAGRAM tolerates to write this code. This is done by the use of literal code. The methods that
are specified on behalf of the ordering of edges, should be inserted in the UML class diagram through
literal code. For the implementation of the GXL graph model, there is claimed that the methods for
the ordering are existent. For instance, for the class GXLEdge, a method setOrderOfEdge exists.
This method has two parameters: the fromOrder and the toOrder. The method is included as
follows in the UML diagram:

this.fromOrder = fromOrder;
this.toOrder = toOrder;
@write(arrangeOrdering(this,fromOrder,toOrder))

The result in the Java output files is shown below. The literal code is integrated into the generated
code.

public void setOrderOfEdge(int fromOrder, int toOrder) throws GrasGXLException {
this . fromOrder = fromOrder;
this . toOrder = toOrder ;
edge.arrangeOrdering( this , fromOrder,toOrder) ;

}
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On all locations, this combination of literal and generated code has to be written. For instance, also
for the method getAllIncomingEdges, the edges in the collection will be ordered by means of an
ordering method.

Another method that is considered is the declareGraphClass method of the GXLSchema class.
This class is a concrete class of the GXL graph schema. The method retrieves one parameter: the
name in String format. The tags are defined as follows:

@declare(GraphClass,declareGraphClass(name, true))
@translateEntity(GXLGraphClass,GraphClass)

The corresponding source code is depicted next.

public GXLGraphClass declareGraphClass(String name) throws GrasGXLException {
GraphClass graphclass = schema.declareGraphClass (name, true ) ;
GXLGraphClass gxlgraphclass = new GXLGraphClass(graphclass,null, this , name);
GXLSchemaFactory.addGXLGraphClass(gxlgraphclass);
return gxlgraphclass ;

}

The source code belonging to the declare tag is the assignment of the graphclass variable. The rest
of the source code is created due to the translateEntity tag.

As the mapping of the methods of the GXL graph model resembles the mapping of the PROGRES
graph model, no more examples will be given. The idea of the mapping is the same for most of the
methods.

During the specification of the GXL graph model, a few issues have arisen. First, there had to
be decided that for the GXLAttributedElementClass no stereotype could be defined. In the
beginning, there was thought that a stereotype always had to exist for every class of the specialized
graph model. This example showed though that having a stereotype is no requirement. Without any
stereotype, no mapping can be created, but a stereotype is not indispensable for every class.

In Poseidon, it seems that there is a small error on behalf of including exceptions. In the
case of SUMAGRAM, a number of different exceptions can be used: GrasGXLException,
SchemaCheckException, etcetera. It is though only possible to include new exceptions in
Poseidon. Because the exceptions occur more often, it is desired that they can be reused. It is
nevertheless not possible to add an already existing exception to an operation. This is a known
error in Poseidon, which will be rectified in one of the coming releases. For the PROGRES graph
model, every exception is added by hand in the XMI file. Nevertheless, for the GXL graph
model, the exceptions were all handled by the GrasGXLException, which is a superclass of all
exceptions. This property is implemented in SUMAGRAM: if no exceptions are included, default the
GrasGXLException will be used for every method.

The attributes like fromOrder and toOrder of GXLEdge are optional values. This means that
they are not by default assigned. Therefore, these attributes receive an optional value, which can be
interpreted by SUMAGRAM, in case that a value for these attributes is required. Concrete, this means
that on every location where an instance of this attribute is needed and no instance is available, the
optional value will be inserted. As this optional value is chosen in a way that it is harmless (it should
be the default value), the program will work correctly. An example is the fromOrder. The initial
value is -1. This means that if the value is not assigned during the construction of the GXLEdge, the
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value -1 will be used. SUMAGRAM knows that this value is the value to denote that no order is
defined, and thus this will not cause any problems.

Another issue that was encountered, is the naming of attributes. In the GXL graph model, there are
three relations related to the GXLGraph class, they all have the name contains. As the composition
relation is ignored, this would deliver for the GXLGraph class, two different attributes both with
the name contains. To avoid this, the naming of attributes has changed. To an attribute of an
association, the name of the target class is added. The GXLGraph class thus has two attributes with
respectively the variable names containsGXLGraphElement and containsGXLGraphPool.

After the testing of SUMAGRAM with the GXL graph model, a number of larger and smaller errors
have been rectified. Therefore, it can be said that SUMAGRAM now functions without errors. The
code that is generated compiles faultlessly. Of course, it still can be extended as is denoted in the next
chapter.
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Chapter 8

Conclusions

The requirement on behalf of SUMAGRAM was to develop an application that supports the user by
creating a mapping from a specialized graph model to the Gras/GXL graph model. This mapping
was formerly created by hand, but as this is a mechanical, tedious, and error-prone task, it is desired
that the mapping is generated by an application, SUMAGRAM. With SUMAGRAM, the user only
has to add a small amount of code from which the mapping is generated. Of course, writing literal
code also has to be possible.

The specialized graph model is designed by means of a UML class diagram, which will be
transformed into an XMI file. This XMI file is converted to an intermediate format, which is an
XML file. This XML file will be converted to the mapping, which is a Java application.

SUMAGRAM is able to let the user develop source code by means of tags. With these tags, the user
can give a short description of the content of a method. Each type of tag denotes a group of methods
that occurs frequently, like the retrieval of a graph entity or the declaration of a schema entity. These
tags should be inserted in the UML class diagram. By creating the source code using the tags, the
user can create a mapping in a straightforward and structured manner. The use of the tags is not
complicated, which means that the usability of SUMAGRAM can be valued positive.

The features of SUMAGRAM ensure that the information that is given by the user, is complete. Also
when the inputted data is not entirely consistent, the program is able to rectify some of the data.

8.1 Future

Some extensions can still be made on behalf of SUMAGRAM. The implementation of OCL
constraints was not accomplished. It is wishful that methods like the isSourceValid method
can be implemented by means of OCL constraints. In Poseidon, it is possible to include OCL
constraints. This feature should be explored in order to implement OCL constraints. Afterwards,
also the interpretation of the OCL constraints has to be implemented in SUMAGRAM.

Up to now, it is not possible to test whether the generated code conforms to the specialized graph
model. Therefore, it is desirable that unit tests [Lin02] can be generated out of the specialized graph
model in order to test the generated mapping code. But first, the OCL interpretation should be
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included into SUMAGRAM. With the UML class diagram and the OCL constraints, SUMAGRAM
should generate a framework for test cases, in order to check what is specified with SUMAGRAM.
If such a framework is available, the user can enter tests in it. With these test cases, for a specialized
graph model, the user can test if the output that is generated by SUMAGRAM is the output that was
desired.
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