
RWTH Aachen Universität Bw

The PROGRES

The PROGRES Developer Team

Version 9.x
Language Manual

Lehrstuhl für Informatik III
RWTH Aachen

Institut für Softwaretechnologie
Universität der Bundeswehr München

München





Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Context-free Syntax of EBNF . . . . . . . . . . . . . . . . . . . . . . . . . .  2

3 Context-Free Syntax of PROGRES . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Import of External C Types and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Node Classes, Node Types, and Edge Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Attribute Declarations and Redefinitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Intrinsic Attribute Declarations and Redefinitions  . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Derived Attribute Declarations and Redefinitions  . . . . . . . . . . . . . . . . . . . . . . . 8

3.6 Meta Attribute Declarations and Redefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.7 Local Node Constraint Declarations and Redefinitions  . . . . . . . . . . . . . . . . . . 10

3.8 Global Graph Constraint Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.9 Declarations of Queries and Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.10 Pre- and Post-Conditions and Ensure Statements  . . . . . . . . . . . . . . . . . . . . . . . 14

3.11 Statement Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.12 Conditional and Iterating Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.13 Bounded Iteration and Variable Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.14 Graph Modifying Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.15 Graph Query Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.16 Declarations of Tests and Productions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.17 Test and Production Qualifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.18 Left-hand Sides of Productions and Graph Patterns of Tests. . . . . . . . . . . . . . . 22

3.19 Right-hand sides of Productions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.20 Node Foldings and Attribute Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.21 Attribute and Return Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.22 Embedding Transformation Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.23 Path Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.24 Restriction Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.25 Path and Restriction Defining Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.26 Iterating and Conditional Path Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.27 Node Set Restriction Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.28 Simple Path Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.29 Edge Traversals, Attribute Accesses, and Path Calls  . . . . . . . . . . . . . . . . . . . . 34

3.30 User Defined Functions and Formal Parameter Lists  . . . . . . . . . . . . . . . . . . . . 35



3.31 Attribute Value and Node Set Computing Expressions  . . . . . . . . . . . . . . . . . . 36

3.32 Function Calls and Actual Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.33 Standard Types Boolean and Sets of Any Type  . . . . . . . . . . . . . . . . . . . . . . . . 38

3.34 Relational Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.35 Standard Types Integer and Integer Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.36 Standard Types String and String Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.37 Expression Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.38 Variable Declarations and Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.39 Type and Meta Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.40 Brackets and Conditional Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.41 Attribute, Node, and Node Type Selections  . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.42 Type and Cardinality Constraint Checking Expressions . . . . . . . . . . . . . . . . . . 46

3.43 Cardinality Qualifiers for Relation Types, Attribute Types, etc.  . . . . . . . . . . . 46

4 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



The PROGRES Language Manual
(Version 9.x)

Copyright 1999: Lehrstuhl für Informatik III, RWTH Aachen
Institut für Softwaretechnologie Universität der Bundeswehr München

1 Introduction

The PROGRES language definition (version 9.x) is a mixture of Extended Backus Naur
Form (EBNF) rules and natural language texts. EBNF rules are used to define the lan-
guage’s context-free syntax; the running text explains the semantics of each introduced
construct briefly. For a complete formal definition of an elder version of PROGRES the
reader is referred to [Sch91] and to [Sch97]. Further information about the language PRO-
GRES in various projects are published in [Wes91, AE94, SWZ95b, SWZ95a, SWZ96,
Zün96, Nag96, KS97, HKW98]

The definition of PROGRES’ syntax by means of EBNF rules is possible due to the fact
that any graphical language element has a textual “Ersatz”-representation and that the
translation from the textual representation to its graphical counterpart is rather trivial. A
discussion of other less well-known syntax definition formalisms, which are especially
tailored towards the definition of purely visual languages, may be found in [RS97].

The first part of this appendix is a definition of theEBNF definition languageitself. It
uses the same mixture of EBNF rules for context-free syntax definition purposes and
natural language comments for additional explanations.

Please note that this paper is ahypertext document. It is available in three different
formats:

(1) The Framemaker document processing system hypertext (view) format as part of the
PROGRES release:$PROGRESROOT/man/ProgresSyntax.fm.

The layout of this file is identical with the layout of the printed appendix version.
(2) Thepdfformat processed by Adobe’s acrobat reader as part of the PROGRES release:

$PROGRESROOT/man/ProgresSyntax.pdf.
The layout of this file is almost identical with the layout of the printed appendix
version and it has a tree-like index structure.

(3) The WWW formathtml for any available internet browser, accessible via the URL:
http://www-i3.informatik.rwth-aachen.de/research/progres/ProgresSyntax.html.

Any applied occurrence of a nonterminal on the following pages is a “clickable” link to
its definition, although these occurrences arenot underlined. Underlined keywords on the
other hand are just keywords and not links to different parts of the document.

Furthermore, there are two types of nonterminals on the right-hand side of EBNF rules,
which are treated differently: nonterminals starting with prefix “Decl” or “Appl”. They
denote identifier declarations or applied identifier occurrences. The default lexical syntax
of these identifiers is a sequence of alphanumerical characters. Any deviation from this
law is explained in the running text. For further details concerning this topic the reader is
referred to the language’s lexical syntax definition in (f)lex input format, which is part of
the programming environment source code.

Underlined words of this document are NOT hypertext links.



2

2 Context-free Syntax of the Syntax Definition Language EBNF
(1) EBNF ::=

{ EBNF_Rule } EBNF_Rule

A context-free syntax definition is a nonempty list of EBNF rules.

(2) EBNF_Rule  ::=
DeclNonterminalId “::=” EBNF_Expression

Each EBNF rule introduces one class of nonterminals. Its name (identifier) precedes the separator
“ ::= ”, its definition follows the separator.

(3) DeclNonterminalId  ::= ...

This is the declaration of a nonterminal identifier. It has to be a sequence of alphanumeric characters
(including “-” and “_” as separators).

(4) EBNF_Expression  ::=
  Sequence
| Choice
| SimpleExpression

An EBNF expression is either a complex expression or a basic expression.

(5) Sequence  ::=
{ SimpleExpression } SimpleExpression

A sequence is a nonempty list of EBNF subexpressions. These subexpressions are usually applied
occurrences of nonterminal identifiers. The right-hand side of theSequence rule itself is e.g. a se-
quence of two EBNF subexpressions, where the first one is aList subexpression and the second one
anApplNonterminalId .

(6) Choice  ::=
{ SimpleExpression “|” } SimpleExpression

A choice is an EBNF subexpression with a nonempty list of alternatives.

(7) SimpleExpression  ::=
  Keyword | TerminalId | ApplNonterminalId
| Optional | List

A simple expression is either a keyword or a (non-)terminal identifier or a more complex expression
enclosed by delimiters.

(8) Keyword  ::= ...

A keyword is either an underlined sequence of letters (plus the separator “_” which looks like an un-
derlined blank) or an arbitrary sequence of characters enclosed by ““ ” as the leading symbol and “” ”
as the trailing symbol. Examples of legal keywords are:begin or is a or “->” , but not* or
1245 .

(9) TerminalId  ::= ...

The definition of the lexical syntax of identifiers and constants is outside the scope of our EBNF
rules. They are either sequences of alphanumeric characters (including “_” as separator) with a letter
as the leading character or explained in more detail in the running text.

(10) ApplNonterminalId  ::= ...

This is an applied occurrence of a nonterminal identifier, defined elsewhere in the EBNF. Recursion
is allowed, but rarely used due to the existence of a special list construction operator.

(11) Optional  ::=
“[” EBNF_Expression “]”

An optional EBNF expression is an EBNF expression enclosed by square brackets. It has the usual
meaning, i.e. denotes an optional construct of the defined language.

(12) List  ::=
“{” EBNF_Expression “}”

A list is an EBNF subexpression enclosed by curly braces. It is used to define lists of 0 to n elements,
where each element belongs to the sublanguage defined by the given subexpression. The right-hand
side of theList rule is a sequence of three simple EBNF subexpressions (two keywords and one non-
terminal identifier).
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3 Context-Free Syntax of the Language PROGRES

The following pages describe the syntax and semantics of the language PROGRES (version
9.x) as precisely as possible. Nevertheless, there are still some differences between the
syntax presented here and the syntax of the released language implementation (version
9.2), which is documented in the file$PROGRESROOT/man/ProgresSyntax:

• Repair actions of local constraints (cf. rules on page 10) are valid for a list of constraint
declarations and not just for a single declaration.

• Pre- and postconditions of productions (cf. rules on page 14) are not mentioned in
this document although being supported.

• Sets may not yet be constructed using curly braces as in{1,2,3} . They have to be
defined using the union operator as in1 or 2 or 3 .

(1) Specification  ::=
spec DeclSpecId

[ OptImportList ]
[ OptDeclList ]

end “.”

A specification has a name and contains a list of external type and function imports as well as a list
of declarations of node types, edge types, productions, etc.

(2) OptDeclList  ::=
{ Declaration } Declaration

This is a nonempty list of declarations. Each declared item has its own unique identifier with global
visibility. The order of declarations in the declaration list is of no importance.

(3) Declaration  ::=
  Section
| NodeClassDecl (cf. rules on page 5)
| NodeTypeDecl (cf. rules on page 5)
| EdgeTypeDecl (cf. rules on page 5)
| ConstraintDecl (cf. rules on page 11)
| QueryDecl (cf. rules on page 13)
| TransactionDecl (cf. rules on page 13)
| TestDecl (cf. rules on page 20)
| ProductionDecl (cf. rules on page 20)
| PathDecl (cf. rules on page 28)
| RestrictionDecl (cf. rules on page 29)
| FunctionDecl (cf. rules on page 35)

This is the full list of all possible types of declarations.

(4) Section  ::=
section DeclSectionId

[ OptImportList ]
[ OptDeclList ]

end “;”

Sections are a very primitive means to structure a large specification. They do not build their own
name scopes, i.e. it does not matter at all whether a certain import or declaration is inside a certain
section or not. They will be replaced soon by proper modules (packages). One exception from this
rule concerns the treatment of defined global integrity constraints (cf. rules on page 11). They affect
the behavior of those graph transformations only, wich are part of the same section or its subsections.

DeclSpecId is the declaration of an alphanumeric identifier.

DeclSpecId is the declaration of an alphanumeric identifier.

DeclSectionId is the declaration of an alphanumeric identifier.

DeclSectionId is the declaration of an alphanumeric identifier.
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3.1 Import of External C Types and Functions
(5) OptImportList  ::=

{ ModuleImport }
  ModuleImport

A specification imports attribute types and functions from a host programming language, which is
usually C. The import is restricted to non-pointer types of fixed size or varying size (with known up-
per boundary). For further details see documentation of PROGRES release (file$PROGRES-
ROOT/import/README ).

(6) ModuleImport  ::=
from DeclModuleId import

{ Import }
  Import end “;”

Import a number of resources from the host programming language module (file)DeclModuleId .
These resources are linked at run-time to the importing specification. The order of list elements is of
no importance.

(7) Import  ::=
  TypeImportList
| FunctionImportList

An import is either a list of attribute types or a list of functions over these attribute types.

(8) TypeImportList  ::=
types

{ DeclAttTypeId “,” }
  DeclAttTypeId “;”

This is the list of imported attribute type identifiers, which have to be defined in the designated host
programming language module. The order of list elements is of no importance.

(9) FunctionImportList  ::=
functions

{ FunctionImportDecl “,” }
  FunctionImportDecl “;”

This is the list of imported functions (together with their parameter profiles), which have to be de-
fined in the designated host programming language module. The order of list elements is of no im-
portance.

(10) FunctionImportDecl  ::=
FuncOpName “:” FunctionType

An imported function is either a normal function with an arbitrary number of in-parameters or an infix
operator with two in-parameters or a prefix operator with one in-parameter.

(11) FunctionType  ::=
[ OptTypeList ] “->” Type

An imported function’s parameter profile is an optional list of in-parameter types followed by the
function’s always existing return-value.

(12) OptTypeList  ::=
“(” { Type “,” } Type “)”

The in-parameter type list is just a sequence of type definitions separated by “, ”. The order of type
definitions in this list reflects the function’s order of formal in-parameters.

DeclModuleId is the declaration of an alphanumeric identifier.

DeclAttTypeId is the declaration of an alphanumeric identifier.

DeclAttTypeId is the declaration of an alphanumeric identifier.

DeclAttTypeId is the declaration of an alphanumeric identifier.

DeclAttTypeId is the declaration of an alphanumeric identifier.
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3.2 Node Classes, Node Types, and Edge Types
(13) NodeClassDecl  ::=

node class DeclNodeClassId [ OptSuperClassIdList ] [ “;” ]
[ OptAttDeclList ]
[ OptRuleList ]

end “;”

A node class has a maybe empty list of direct superclasses, an optional list of attribute (and constraint)
declarations, and an optional list of attribute rule redefinitions. The extension of a node class is not a
set of nodes but a set of node types, which have this class as direct or indirect superclass. Node classes
are always abstract, i.e. they do not have any direct node instances. The often used term

 “n is a node of node classC”

is, therefore, a shorthand for

“n is an instance of a node type which belongs directly or indirectly to node classC”.

The graphical representation of a node class declaration is a box, which has the node class name as
inscription (plus its attribute declarations if desired).

(14) OptSuperClassIdList  ::=
is a { ApplNodeClassId “,” } ApplNodeClassId

The list of direct superclasses of a class. A class inherits all properties of its superclasses. The order
of list elements is not important. The empty list is used for node classes without any superclasses.
Any two classes may not have more than one smallest common superclass and more than one greatest
common subclass, i.e. the class hierarchy has to be a lattice, after a greatest and a smallest class are
added.

The graphical representation of theis a relationship is a dashed arrow from the subclass to the su-
perclass.

(15) NodeTypeDecl  ::=
node type DeclNodeTypeId : ApplNodeClassId [ “;” ]

[ OptAttDeclList ]
[ OptRuleList ]

end “;”

A node type belongs to one and only one class. It inherits all properties of its class. Any node instance
belongs to one and only one node type, which determines its behavior (concerning attribute evalua-
tion rules and constraints). Node types are always final, i.e. they are the leaves of the node class hi-
erarchy. For this reason their extensions are nonoverlapping sets of node instances.

The graphical representation of a node type declaration is a box with round corners, which has the
node type name as inscription (plus its attribute declarations if desired). This box should always be
the source of a (single) dashed arrow, which has the node type’s (super-)class as target.

(16) EdgeTypeDecl  ::=
edge type DeclEdgeTypeId “:” RelType;

An edge type is a binary, directed but nevertheless bidirectional relation between nodes of certain
classes or types. Edges may be traversed in both directions from source node to target node and from
target node to source node. Furthermore, referential integrity is guaranteed by the fact that any node
deletion operation has the the side-effect to delete all adjacent edges, too.

The graphical representation of an edge type declaration is a solid arrow from the source to the target
node type or class. It has the edge type name as its label.

(17) RelType  ::=
ApplTypeClassId [ Qualifier ] “->” ApplTypeClassId [ Qualifier ]

Defines source and target node types or classes as well as multiplicity of binary relationships between
nodes of these types or classes. The example

T [l_1:u_1] -> C [l_2:u_2]

defines for instance a directed relationship from nodes of typeT to nodes of a type of classC. Any
node of typeT is related to at leastl_2 and at mostu_2 nodes of classC. A node of classC is related
to at l_2 and at mostu_2 nodes of typeT. The default for omitted optional qualifiers is[0:n] (cf.
rules on page 46 for the definition of qualifiers).

DeclNodeClassId is the declaration of an alphanumeric identifier.

ApplNodeClassId is the applied occurrence of an alphanumeric identifier

ApplNodeClassId is the applied occurrence of an alphanumeric identifier

DeclNodeTypeId is the declaration of an alphanumeric identifier.

ApplNodeClassId is the applied occurrence of an alphanumeric identifier

ApplNodeClassId is the applied occurrence of an alphanumeric identifier

DeclEdgeTypeId is the declaration of an alphanumeric identifier.

ApplTypeClassId is the applied occurrence of an alphanumeric identifier

ApplTypeClassId is the applied occurrence of an alphanumeric identifier

ApplTypeClassId is the applied occurrence of an alphanumeric identifier
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3.3 Attribute Declarations and Redefinitions
(18) OptAttDeclList  ::=

{ AttDecl } AttDecl

List of attribute declarations and local constraints of node class or node type. The order of list ele-
ments is insignificant.

(19) AttDecl  ::=
  IAttDeclList
| DAttDeclList
| MAttDeclList
| ConstrDeclList

There are three categories of attributes plus local constraints. The attribute declaration syntax with
lists in lists allows one to use the same keyword “intrinsic ” or ... for a number of related attributes
of the same category.

(20) IAttDeclList  ::=
intrinsic { IAttDecl } IAttDecl

List of related intrinsic (normal) node attributes. The order of list elements is of no importance.

(21) DAttDeclList  ::=
derived { DAttDecl } DAttDecl

List of related derived node attribute declarations. The order of list elements is of no importance.

(22) MAttDeclList  ::=
meta { MAttDecl } MAttDecl

List of related meta node type attribute declarations. The order of list elements is of no importance.

(23) ConstrDeclList  ::=
constraint { ConstrAttDecl } ConstrAttDecl

List of related local constraint declarations. The order of list elements is of no importance.

(24) OptRuleList  ::=
{ Rule } Rule

List of attribute redefinitions or constraint redefinitions. Any subclass or type may redefine the (ini-
tial) value defining expressions of its inherited attributes and constraints. Multiple inheritance con-
flicts (a class inherits two different expressions for the same attribute or constraint) from two different
superclasses are recognized and must be resolved by redefinition.

(25) OptRule  ::=
IAttRuleList

| DAttRuleList
| MAttRuleList
| ConstrRuleList

For any category of attributes (including local constraints) there is one category of attribute redefini-
tion rule list. Intrinsic attributes are redefined using anIAttrRuleList , etc. Such a redefinition
changes the associated expression of an attribute, but not its type.

(26) IAttRuleList  ::=
redef intrinsic { IAttRule } IAttRule

List of related intrinsic node attribute redefinitions. The order of list elements is of no importance.

(27) DAttRuleList  ::=
redef derived { DAttRule } DAttRule

List of related derived node attribute redefinitions. The order of list elements is of no importance.

(28) MAttRuleList  ::=
redef meta { MAttRule } MAttRule

List of related meta node type attribute redefinitions. The order of list elements is of no importance.

(29) ConstrRuleList  ::=
redef constraint { ConstrAttRule } ConstrAttRule

List of related local constraint redefinitions. The order of list elements is of no importance.
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3.4 Intrinsic Attribute Declarations and Redefinitions
(30) IAttDecl  ::=

[ OptKeyOrIndex ] DeclIAttId [ “:” Type ]
                              [ “:=” Expression ] “;”

An intrinsic attribute has a name (identifier) plus a type plus an optional constant initial value. The
initial value computing expression may contain references to meta attributes of the same node (type),
but not to intrinsic or derived attributes of the same or different nodes in a graph.

Any intrinsic attribute read access, which is not preceded by a write access, leads to the evaluation of
the appropriate initial value defining expression. The default expression ishalt , which stops the ex-
ecution process immediately.

The type definition may be omitted if it can be inferred from the attribute’s initial value defining ex-
pression. The declaration

intrinsic Names := "Balu" or "Kaa"

is equivalent to
intrinsic Names : string [1:n] := "Balu" or "Kaa" .

An intrinsic attribute’s type may be any type which is a legal type for variables, parameters, etc. But
note that attribute declarations with node types or node classes as types are not interpreted as unidi-
rectional pointers to other nodes, but as a short-hand for a normal edge type declaration. Let us as-
sume that a node type or node classNODE possesses the following attribute declarations:

intrinsic key Contains: ELEMENT [1:n];
          References: ELEMENT [0:n];

They are translated as follows into edge type declarations
edge type Contains: NODE [0:1] -> ELEMENT [1:n];
edge type References: NODE [0:n] -> ELEMENT [0:n];

The cardinality constraint for the target node is derived from the attribute type’s cardinality con-
straint, the cardinality constraint for the source node is either the default[0:n] or [0:1] if the at-
tribute is declared as a key attribute (for each attribute value = target node exists at most one source
node). The normal usage of the keywordskey  andindex  is explained below.

(31) IAttRule  ::=
ApplIAttId “:=” Expression “;”

Redefinition of the initial value defining expression for a given intrinsic attribute in a node classCor
a node typeT. This attribute must be an inherited attribute of the node classCor the node typeT. The
new expression overrides the inherited expression and may be overridden again. Dynamic binding is
used to determine at run-time which expression has to be evaluated to compute the initial attribute
value of the regarded node (any node has a unique node type which determines its attribute evaluation
functions).

Initial intrinsic attribute value definitions may be omitted if all node creating productions assign im-
mediately appropriate values to the attributes of all new nodes.

Multiple inheritance conflicts have to be resolved manually by redefining the expression for the in-
herited attribute in the affected class. A multiple inheritance conflict occurs if one class inherits two
different evaluation rules from two uncomparable superclassesA andB (neitherA is a subclass ofB
nor B is a subclass ofA). The smallest example of a node class hierarchy with a multiple inheritance
conflict looks like follows:

node class S;
intrinsic a := 1;

end;
node class A is a S;

redef intrinsic a := 3;
end;
node class B is a S;

redef intrinsic a := 4;
end;
node class Conflict_Class is a A, B end;

DeclIAttId is the declaration of an alphanumeric identifier.

ApplIAttId is the applied occurrence of an alphanumeric identifier

ApplIAttId is the applied occurrence of an alphanumeric identifier
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3.5 Derived Attribute Declarations and Redefinitions
(32) DAttDecl  ::=

[ OptKeyOrIndex ] DeclIAttId [ “:” Type ]
[ “=” Expression ] “;”

A derived attribute has a name (identifier) plus a type plus a directed equation which contains refer-
ences to other attributes of the same node or different nodes. These references are defined as path
expressions which start at the regarded nodeself and traverse an unlimited number of edges in the
general case. The evaluation of a derived attribute results in a run-time error if it depends directly or
indirectly on its own value.

There is an important difference between the initial value definition of intrinsic attributes and the di-
rected equation of a derived attribute. The first one is evaluated once after the creation of a new node
attribute. The latter one will be reevaluated whenever one of the referenced attributes in the directed
equation changes its value.

TheAncestors attribute below is one example of a derived attribute. It has the union of the name
attribute values of all those nodes as value, which are reachable from the current nodeself by tra-
versingparent  edges only:

derived Ancestors = self.(-parent-> +).Name

The attribute type definition may be omitted if it can be inferred from the attribute’s directed equa-
tion, as it is the case for the attributeAncestors . Its type isstring [0:n] and notstring [1:n]
due to the fact that a graph may contain nodes without any outgoingparent  edges.

A derived attribute’s type may be any type which is a legal type for variables, parameters, etc. But
note that attribute declarations with node types or node classes as types are not interpreted as unidi-
rectional pointers to other nodes, but as a short-hand for a normal path declaration. Let us assume that
a node type or node classPERSON contains the following attribute declaration:

derived ancestors: PERSON [0:n] = self.-parent-> +;

It is translated as follows into a path declaration:
static path ancestors: PERSON [0:n] -> PERSON [0:n] =

-parent-> +
end;

The cardinality constraint for the target node is derived from the attribute type’s cardinality con-
straint, the cardinality constraint for the source node is either the default[0:n] or [0:1] if the at-
tribute is declared as a key attribute.

Defining a derived binary relationship not as a path but as a derived attribute has two important con-
sequences: (1) Subclasses or types of the classPERSONmay redefine the original definition of the
derived relationship (the expression of the declaration). (2) The derived relationship is materialized
and thereby equivalent to a so-calledstatic path declaration (its evaluation leads to the creation of
an appropriate edge which may then be traversed in both directions without any needs to reevaluate
the path again).

(33) DAttRule  ::=
ApplDAttId “=” Expression “;”

Redefinition of the directed equation for a given derived attribute in a node classC or a node typeT.
This attribute must be an inherited attribute of the node classCor the node typeT. The new expression
overrides the inherited expression and may be overridden again. Dynamic binding is used to deter-
mine at run-time which expression determines the derived attribute’s value for the regarded node
(any node has a unique node type which determines its attribute evaluation functions).

Abstract node classes need not possess evaluation functions for their derived attributes, but any con-
crete node type must possess an evaluation function for any (inherited) derived attribute. The default
value for undefined evaluation functions ishalt  , which stops the execution process immediately.

Multiple inheritance conflicts are handled in the same way as in the case of intrinsic attributes.

DeclIAttId is the declaration of an alphanumeric identifier.

ApplDAttId is the applied occurrence of an alphanumeric identifier

ApplDAttId is the applied occurrence of an alphanumeric identifier
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3.6 Meta Attribute Declarations and Redefinitions
(34) MAttDecl  ::=

DeclMAttId [ “:” Type ]
[ “:=” Expression ] “;”

A meta attribute has a name (identifier) plus a type plus a constant value. The value computing ex-
pression may contain references to meta attributes of the same node (type), but not to intrinsic or de-
rived attributes of the same or different nodes in a graph. A meta attribute is not a node attribute, but
a node type attribute. Its value may not be changed at run-time.

Meta attributes are useful for simulating genericity and for allowing a specification to inspect parts
of its own graph type definition. The node class declaration

node class CONTAINER;
meta ElementType : type in ELEMENT;
intrinsic contains: ELEMENT [0:n];
constraint self.contains. type = self. type.ElementType;

end;

introduces aCONTAINERclass, which contains a set of nodes of typeElementType , which must be
derived from node classELEMENT. A specificCONTAINER type may be defined as follows:

node type FoodBin : CONTAINER;
redef meta ElementType := Food;

end;
node type Food : ELEMENT end;

Please note that the current PROGRES version checks the constraint that aFoodBin containsFood
nodes only at run-time and not at compile-time.

(35) MAttRule  ::=
ApplMAttId “:=” Expression “;”

Redefinition of the constant value for a given meta attribute in a node classC or a node typeT. This
attribute must be an inherited attribute of the node classC or the node typeT. The new expression
overrides the inherited expression and may be overridden again. Dynamic binding is used to deter-
mine at run-time which expression determines the meta attribute’s value for the regarded node type.

Abstract node classes need not possess evaluation functions for their derived attributes, but any con-
crete node type must possess an evaluation function for any (inherited) derived attribute. The default
value for undefined evaluation functions ishalt  , which stops the execution process immediately.

Multiple inheritance conflicts are handled in the same way as in the case of intrinsic attributes.

(36) OptKeyOrIndex  ::= Key | Index

These keywords usually enforce the creation of an attribute index that supports efficient associative
access to all nodes with a given attribute value. They may be used together with intrinsic or derived
attributes, which have a standard type or an imported type definition with default cardinality con-
straint [1:1] and a maximum byte length less equal than 250 (as e.g. the standard typestring ).
Until now the PROGRES compiler uses attribute indexes for attribute conditions of the following
form :

condition Node.IndexAttr = Expression;

(37) Key ::= key

Defines an intrinsic or derived attribute which has a unique value (such that two different nodes never
have the same attribute value). Furthermore, the keyword enforces the creation of an attribute index.
Please note that the keywordkey has a rather different meaning if applied to an attribute, which has
a node type or node class as its type definition (cf.IAttDecl  rule above).

(38) Index  ::= index

Enforces the creation of an attribute index. It has no impact onto the semantics of a given specifica-
tion, but may increase the efficiency of certain graph transformations considerably.

DeclMAttId is the declaration of an alphanumeric identifier.

DeclMAttId is the declaration of an alphanumeric identifier.

ApplMAttId is the applied occurrence of an alphanumeric identifier

ApplMAttId is the applied occurrence of an alphanumeric identifier
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3.7 Local Node Constraint Declarations and Redefinitions
(39) ConstrAttDecl  ::=

DeclConstrAttId [ “=” Expression ]
                [ OptAttRepairAction ] “;”

A local constraint declaration introduces an integrity constraint, which is an arbitrary first-order pred-
icate logic formula and which is checked at run-time. The constraint definingboolean expression
uses path expressions to navigate from the regarded nodeself to related nodes in its neighborhood.
Constraints are, therefore, a kind of derivedboolean attributes, which have to betrue at the end of
so-calledsafe transactions or productions (cf. rules on page 13 and rules on page 20). The violation
of a constraint causes immediate termination of a running execution process or the activation of a so-
called repair action (the default repair action ishalt ).

The constraint declaration (without any repair action)
constraint ACyclicAggregation = not ( self in self.-contains-> +);

requires, for instance, that a node may not contain itself, i.e. thatcontains edges do not form cycles
in a graph. The introduced constraint identifierACyclicAggregation allows one to refine the in-
herited constraint for certain subclasses or node types.

(40) ConstrAttRule  ::=
ApplConstrAttId “=” Expression
                  [ OptAttRepairAction ] “;”

Redefinition of an inherited constraint for a certain subclass or type of nodes. The refining express-
sion should be a logical consequence of the overridden expression, but this property is not checked
(neither at compile-time nor at run-time). The redefinition may also redefine the inherited con-
straint’s repair action as needed.

(41) OptAttRepairAction  ::=
else

StatExpr
end

This is the repair action of a local constraint declaration or redefinition. Any constraint with such a
repair action is termed “active constraint” in contrast to a “passive constraint”, which hashalt as its
default repair action. The detection of a violated constraint triggers the execution of its associated re-
pair action. The execution of this action should not fail and repair the violated constraint. It may cause
violation of other constraints and thereby trigger the execution of their repair actions. Execution stops
if the default repair actionhalt is called or the called user-defined action is not able to remove the
detected inconsistency.

The example below triggers the deletion of acontains edge between a (unique) parent node and its
child nodeself  if  the parent node is a direct or indirect child of its own child node.

constraint ACyclicAggregation =
not ( self in self.-contains-> +);

else
use Parent := self.<-contains- do

DeleteContainsRelation(Parent, self)
end

end;

Multiple inheritance conflicts are handled in the same way as in the case of intrinsic attributes.

(42) OptRepairAction  ::=
else

StatExpr

This is the repair action of a global graph constraints (see next rule). The only difference between the
repair action of a local constraint and the repair action of a global constraint is the position of the key-
word end .

DeclConstrAttId is the declaration of an alphanumeric identifier.

ApplConstrAttId is the applied occurrence of an alphanumeric identifier

ApplConstrAttId is the applied occurrence of an alphanumeric identifier
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3.8 Global Graph Constraint Declarations
(43) ConstraintDecl  ::=

constraint ConstraintBody end “;”

A global constraint requires or forbids the existence of certain graph patterns. As a general rule, a
global constraint should be used for those static integrity constraints, which regard the attributes or
context of more than one node instance. On the contrary, a local node class or type constraint (cf.
rules on page 10) should be used, whenever the regarded integrity constraint restricts the attribute val-
ues and the context of a single node instance. It is often a matter of taste whether a regarded integrity
constraint deals with two (or more) node instances, which have the same importance, or whether it
concerns mainly one node instance, which has the other inspected node instance as context (please
note that the constraint checker for global constraints is a rather inefficient brute force algorithm,
whereas the constraint checker for local constraints is a variant of the incremental derived attribute
evaluation algorithm).

A global constraint is checked as the last action of allsafe transactions and productions (cf. rules on
page 13 and rules on page 20), which are part of the same section or its subsections. A global con-
straint, which is part of the topmost declaration list of a specification is, for instance, valid for all
safe  productions and transactions of the specification.

Global constraints (as well as local constraints) usually are interpreted as static integrity constraints,
which are respected by all (safe ) graph transformations of a given specification. In this case, con-
straint checking is used for debugging purposes only and may be deactivated without changing the
behavior of a correct specification. This interpretation of constraints is no longer valid if repair ac-
tions are defined, which are called whenever their constraints are violated. A repair action is a graph
transformation, which is always successful and eliminates the detected inconsistency. A violated con-
straint without repair action as well as a violated constraint with failing repair action terminates exe-
cution immediately.

(44) ConstraintBody  ::=
GraphConstraint | StatExpr

A global constraint may be defined using a graphical notation or a textual notation. The graphical no-
tation has about the same form as the graphical notation of productions, the textual notation is the
same as the one used for the definition of complex graph queries. Textually defined global constraints
with repair actions usually have about the following form:

constraint
for all P1 := instance of PERSON do

for all P2 := P1.-child-> do
ensure

(P1.Age > P2.Age)
else

SomeOptionalRepairAction(P1, P2)
end

end
end

end;

A global constraint without a repair action may be derived from the example above by replacing the
ensure  statement with the repair action by the simple condition(P1.Age > P2.Age) .

(45) GraphConstraint  ::=
[ OptConstrLeftSide ]
  ConstrRightSide
[ OptRepairAction ]

A graphical constraint definition consists of one or two subgraph patterns, where the first one (the so-
called left-hand side) may be omitted, and where the second one (the so-called right-hand side) con-
tains the first one. It has an optional repair action. This repair action is called, whenever a match for
the first subgraph pattern is found, which cannot be extended to a match of the second graph pattern.
A graphical constraint with an empty left-hand side is a special case of the explanation above. Its
empty left-hand side matches all graphs. As a consequence, its right-hand side has to match all graphs
of the regarded class of graphs, too.



12

(46) OptConstrLeftSide  ::=
for   ConstrLeftSideList
    [ OptAttConditionList ]

The left-hand side of a graphical constraint is a graph pattern definition accompanied by a list of at-
tribute conditions. It defines a set of subgraphs of the inspected graph, which have to be checked for
consistency. The left-hand side

for
begin (* defined using the textual notation *)

obl node ‘1: MAN; ‘1 -> ‘2: married;
obl node ‘2: WOMAN;

end

matches, for instance, all married pairs of nodes in the regarded graph and forwards them to the con-
straint’s right-hand side.

(47) ConstrRightSide  ::=
ensure  ConstrRightSideList
      [ OptAttConditionList ]

The right-hand side of a graphical constraint is a graph pattern definition accompanied by a list of
attribute conditions. It extends the graph pattern definition of the left-hand side by repeating (at least)
the node declarations of the left-hand side. It adds a number of constraints concerning the context and
the attribute values of the already determined left-hand side nodes. The right-hand side

ensure
begin (* defined using the textual notation *)

old obl node ‘1; ‘3 -> ‘1: child;
old obl node ‘2; ‘3 -> ‘2: child;
not node ‘3: PERSON;

end
condition abs(‘1.Age - ‘2.Age) < 80;

extends the above introduced left-hand side (please note that it is not necessary to repeat edges, paths,
and restrictions of the left-hand side). It requires that two married nodes do not have a common parent
node and that the difference of theirAge attributes is less than80.

(48) ConstrLeftSideList  ::=
begin

{ LeftSideClause }
  LeftSideClause

end

The graphical part of a global constraint’s left-hand side. It offers the same elements for the definition
of graph patterns as the left-hand sides of productions (cf. rules on page 22), with the exception of
optional and set node declarations (which are prohibited by the language’s static semantics).

(49) ConstrRightSideList  ::=
begin

{ ConstrRightSideClause }
  ConstrRightSideClause

end

The graphical part of a global constraint’s right-hand side. It offers the same elements for the defini-
tion of graph patterns as the left-hand sides of productions (cf. rules on page 24), with the exception
of optional and set node declarations (which are prohibited by the language’s static semantics). Fur-
thermore, we need  one additional element, which is explained below.

(50) ConstrRightSideClause  ::=
ConstrOldNodeDecl | LeftSideClause

The graphical part of a global constraint’s right-hand side defines a new graph pattern, which contains
implicitly or explicitly all nodes of the left-hand side pattern. Explicit references to left-hand side
nodes are defined using so-called old node declarations.

(51) ConstrOldNodeDecl  ::=
old obl node ApplOldNodeId “;”

An old node declaration on a global constraint’s right-hand side refers to a node declaration on its
left-hand side. Its identifer is an applied occurrence of the identifier of the left-hand side declaration,
and it is a kind of redeclaration for the scope of the right-hand side.
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3.9 Declarations of Queries and Transactions
(52) QueryDecl  ::=

query DeclQueryId [ OptFormParList ]
                  [ Qualifier ] “=”

StatExpr
end “;”

A query is a parametrized subprogram, which calls an arbitrary number of tests but not productions
to implement its desired behavior. The optional qualifier indicates whether the execution of the query
may fail or always returns successfully and whether it returns a deterministically or nondeterministi-
cally computed result. This information is used for consistency checking purposes and for reducing
the bookkeeping overhead for backtracking purposes. The default qualifier[0:n] defines a possibly
failing query with a nondeterministic behavior.

(53) TransactionDecl  ::=
[ OptSafe ] transaction DeclTransactionId
                            [ OptFormParList ]
                            [ Qualifier ] “=”

[ OptPreCondDecl ]
  StatExpr
[ OptPostCondDecl ]

end “;”

A transaction is a parametrized subprogram, which calls an arbitrary number of tests and productions
to implement the desired graph transformation. The optional qualifier indicates whether the execution
of the transaction may fail or always returns successfully and whether it returns a deterministically
or nondeterministically computed result. This information is used for consistency checking purposes
and for reducing the bookkeeping overhead for backtracking purposes. The default qualifier[0:n]
defines a possibly failing transaction with a nondeterministic behavior. The optional keywordsafe
marks those productions, which take a consistent graph as input and produce a consistent graph as
output with respect to all relevant integrity constraints. All productions without this prefix may pro-
duce intermediate graph states, which violate some integrity constraints.

(54) OptSafe  ::= safe

The optional key wordsafe of productions and transactions marks those graph transformations
which are expected to return a consistent graph (with respect to all defined integrity constraints) as
output. The last action of a safe graph transformation checks all local integrity constraints of node
classes (cf. rules on page 10) and all related global constraint declarations (cf. rules on page 11).

(55) StatExpr  ::=
  AndStatList
| ConcStatList
| OrStatList
| StatTerm

The body of a query or transaction is either a simple substatement (term) or a list of substatements.

(56) StatTerm  ::=
  EnsureStat
| ChooseStatList | LoopStatList
| ForAllStat | UseStat | BracketStat
| AssignStat | CallStat | CutStat
| DefStat | NotStat
| FailStat | HaltStat | SkipStat
| Factor

A simple substatement (term) has either one of the forms defined on the following pages or it is a
boolean expression (factor). Aboolean expression, which is evaluated totrue , is simply skipped,
a boolean  expression, which is evaluated tofalse , triggers backtracking. The subprogram

use i: integer := elem(1 or 2) do
Trafo(i)

& (i = 2)
end

assigns either the value1 or 2 to the variablei . The execution withi = 1 proceeds with some graph
transformationTrafo and fails in the condition(i = 2) . Backtracking cancels all graph modifica-
tions ofTrafo  and restarts the evaluation of the subprogram withi = 2 .

DeclQueryId is the declaration of an alphanumeric identifier.

DeclTransactionId is the declaration of an alphanumeric identifier.

DeclTransactionId is the declaration of an alphanumeric identifier.
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3.10 Pre- and Post-Conditions and Ensure Statements
(57) OptPreCondDecl  ::=

requires
StatExpr

end;

The precondition of a transaction is a query, which should never fail applied to the input graph of the
surrounding transaction. It is aboolean  expression in the simplest case such as

requires (Par1.Age > Par2.Age) end  .

A more complex example of a precondition checks whether it is possible to reduce the input graph
with some transactionReduceGraphTrafo into another graph, which fulfills a certain property (like
being the empty graph):

requires
def( ReduceGraphTrafo & CheckProperty )

end

Please note that such a precondition transforms the input graph for runtime checking purposes, but
resets the graph to its previous state before the surrounding transaction’s body is entered (cf. rules on
page 19). The execution of a complex precondition may take a long time. It is, therefore, possible to
deactivate checking of preconditions (together with postconditions and constraints).

A failing precondition stops the execution process immediately.

(58) OptPostCondDecl  ::=
ensures
 StatExpr
end;

The postcondition of a transaction is a query, which should never fail applied to the output graph of
the surrounding transaction. It is allowed to access the in- and out-parameters of its transaction, but
does not distinguish between a before- and a after-state of referenced nodes. The postcondition of the
following transaction

transaction IncAge(P PERSON; i: integer; out NewP: PERSON) =
requires (i > 0) end
begin

P.Age := (P.Age + i)
& NewP := P
end
ensures NewP.Age = (P.Age + i) end

end;

would always fail. The in-parameterP references at the end of the transaction the same node as the
out-parameterNewP. As a consequence,NewP.Age andP.Age yield the same result. It is the subject
of future research to allow the comparison of input graph states with output graph states in postcon-
ditions of transactions.

A failing postcondition stops the execution process immediately.

(59) EnsureStat  ::=
ensure

StatExpr
else

StatExpr
end

An ensure statement may be used within textually defined integrity constraints only (cf. rules on
page 10 and rules on page 11) to define a repair action. The explanation of global constraints already
presents one example of such a repair action. Please note that repair actions have to be deterministic
and total (never failing) graph transformations, which remove the triggering inconsistency. Repair
actions may be used to write specifications, which have the same flavor as rule-oriented active data-
base systems.

The usage ofensure statements in the body of a query or transaction and the pre- or postconditions
of a transaction is strictly prohibited.
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3.11 Statement Lists
(60) AndStatList  ::=

{ StatTerm and } StatTerm

Theand statement requires that all its substatements are executed, but makes no requirements con-
cerning the order of execution. It is, therefore equivalent to a combination of the nondeterministicor
statement and the deterministic concatenation& :

Stat 1 and Stat 2 = (Stat 1 & Stat 2) or (Stat 2 & Stat 1).

The semideterministic execution mode executes first the listed substatements in their given order
(from left to right). If this execution order fails or causes failure of a subsequent graph transformation
step then another permutation is selected and executed. The random execution mode starts with the
execution of a randomly selected permutation of the substatements. The default execution mode is
semideterministic, which simplifies debugging of specifications.

Finally note that theand statement may be read as aboolean operator if all its substatements are
not graph transformations but graph queries.

(61) ConcStatList  ::=
{ StatTerm & } StatTerm

The concatenation statement executes its substatements in the given order. It succeeds if all its sub-
statements succeed, it fails without any graph or variable modifications (and triggers backtracking)
if any of its substatements fails. This is even true if the last substatement fails and the preceding sub-
statements were arbitrarily complex graph transformations.

The& operator behaves like aboolean and with short-circuit (left to right) evaluation if all its sub-
statements are not graph transformations but graph queries.

(62) OrStatList  ::=
{ StatTerm or } StatTerm

Theor statement selects and executes one of its substatements. If the selected substatement fails or
causes failure of a subsequent graph transformation then backtracking reenters theor statement, can-
cels the effects of the executed substatement, and proceeds with another still remaining substatement.
Theor statements fails as a whole if all its substatements fail. The semideterministic execution mode
selects substatements in the given order (from left to right), the random mode starts with the execu-
tion of a randomly selected substatement. The default execution mode is semideterministic, which
simplifies debugging of specifications.

The subprogram
use i, j := 2 do

begin
        j := j * 2
      & (i = j)

end
or

begin
       j := j * 3

end
end

computes, therefore, always the value6 for j and the value2 for i , although its execution usually
starts with the first substatement and the assignment of the valuej * 2 = 4 to j (backtracking restores
the old value2 of j  before entering the second substatement).

Finally note that theor statement may be read as aboolean operator if all its substatements are not
graph transformations but graph queries.
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3.12 Conditional and Iterating Statements
(63) ChooseStatList  ::=

choose { CondStat else } CondStat end

The choose statement generalizes the if-then-else statement of other programming languages and
Dijkstra’s guarded commands. It inspects its substatements from left to right and executes the first
branch, which is unguarded and does not fail or which has a valid guard. The main difference between
a simplechoose  statement (with two unguarded branches) such as

choose i := elem(3 or 4) else i := 5 end
& (i = 5)

and a similaror  statement
begin i := elem(3 or 4) or i := 5 end

& (i = 5)

is as follows: Thechoose statement executes its first branch and assigns the value3 or 4 to i . The
following boolean condition fails and triggers backtracking. Backtracking reenters the first branch
and assigns the remaining value4 or 3 to i . Theboolean condition fails again and causes failure of
the whole subprogram, i.e. backtracking does not enter a branch of thechoose statement with a pre-
ceding (initially) successfully executed branch. Theor statement, on the contrary, allows backtrack-
ing to enter its second branch after all possible execution paths of its first branch failed.

The execution of achoose statement fails if all its guarded branches have invalid guards and if all
its unguarded branches fail or if the execution of a branch with a valid guard fails. The subprogram

choose
when true then fail

else
skip

end

is, therefore, an example of an always failingchoose  statement.

(64) LoopStatList  ::=
loop { CondStat else } CondStat end

The loop statement is an iteratedchoose statement. It executes its first branch (form left to right),
which is unguarded and does not fail or which has a valid guard. It terminates successfully if all its
unguarded branches fail and all its guarded branches have an invalid guard. It fails as a whole (with-
out any graph modifications) if the execution of one of its guarded branches fails although the guard
of this branch is valid. The loop

loop
when i < 0 then fail
when i < n then DoSomething(i) & i := (i+1)

end

is an example of aloop statement, which fails and triggers backtracking for an initiali value smaller
than0 and which executesDoSomething until i = n . The loop terminates successfully ifDoSome-
thing  is always executable, it fails otherwise.

(65) CondStat  ::=
GuardStat | StatExpr

The branches of achoose statement or aloop statement is a guarded or an unguarded substatement.
An unguarded substatement such as

... else DoSomething else ...
should be partial (except for the last branch of achoose statement), i.e. static analysis should not be
able to guarantee its successful execution (a never failing branch blocks the execution of all remain-
ing branches and prohibits termination of its loop). Furthermore, it may be regarded as an abbrevia-
tion for (cf. rules on page 19)

... else when def(DoSomething) then DoSomething else ...

(66) GuardStat  ::=
when StatExpr then StatExpr

A guarded branch of achoose or loop statement has a a graph query (orboolean expression) as
its first component (guard). Static analysis guarantees that the execution of such a query has no side-
effects. The guarded branch is skipped if the query fails, its second component is executed otherwise.
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3.13 Bounded Iteration and Variable Declarations
(67) ForAllStat  ::=

for all LocalsList do
StatExpr

end

Thefor all statement is a loop which assigns one possible value after the other to its variables and
executes its body for each possible combination of variable bindings. Thefor all  statement

for all i := elem(1 or 2); j := elem(3 or 4) do ... end

executes, therefore, its body four times fori = 1  andj = 3 , i = 1  andj = 4  etc.

Thefor all statement should only be used (instead of theloop statement) if the order in which val-
ues are assigned to variables does not matter. The subprogram

for all i := elem(Set) do
k := k + i

end
& fail

fails without reinspecting the body of the loop, whereas
loop

i := elem(Set) (* terminates loop for empty Set *)
& Set := (Set but not i)
& k := k + i
end

& fail

backtracks over all possible permutations of the order in which elements are extracted from the given
input setSet .

(68) UseStat  ::=
use LocalsList do

StatExpr
end

A use statement allows to introduce local variables in the body of a transaction or a query, wherever
these variables are needed. It is a good programming style to make the scope of a local variable as
small as possible. The semantics of ause statement is about the same as the semantics of ause ex-
pression (cf. rules on page 41) with the following two exceptions: (1) a local variable inside an ex-
pression may not change its initial value, a local variable of a subprogram (statement list) may change
its value an arbitrary number of times. (2) The assignment of a set of values to a single element con-
taining variable is treated differently. Ause expression evaluates its body for the assignment of any
possible value in the set to its variable, ause statement selects one possible assignment and goes
ahead. Backtracking may be used to select another variable and to recompute all following state-
ments. The transaction

transaction T( out P: integer) =
use i: integer := elem(1 or 2 or 3); j: integer do

j := elem(1 or 2 or 3)
& (i = j)
& P := i * j
end

end

is a good example of a backtracking graph transformation. It retunrs the value 1or6 or 9 for its out-
parameterP. Its execution proceeds as follows:

(1) The initial value1 or 2 or 3 is assigned to the variable i.
(2) The value1 or 2 or 3 is assigned to the variable j .
(3) The condition(i = j)  triggers backtracking and variable reassignments until it is fulfilled.
(4) The out-parameterP receives the value1 or 4 or 9.

The following subprogram might be used to reject the nondeterministically computed result of trans-
actionT via backtracking until it returns the possible value9 or 4 (and not1):

use v: integer do
T( out v)

& (v > 2)
end
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3.14 Graph Modifying Statements
(69) BracketStat  ::=

begin StatExpr end

The keywordsbegin andend are the delimiters of a block of statements. They allow the definition
of a complexStatExpr , where a simpleStatTerm  is required.

(70) AssignStat  ::=
Destination “:=” Factor

An assign statement is usually used to define a (new) value of a local variable or an out-parameter.
But it may be (mis-)used to change the attribute value of a given node. Otherwise, one would be
forced to write a production, which matches the regarded node with its left-hand side, preserves this
node, and uses its attributetransfer part to assign the new value to the node’s attribute (cf. rules
on page 26).

(71) Destination  ::=
ApplVarOutParId | SelectDestination

The destination on the left-hand side of an assign statement either is a variable or an out-parameter
(but not an in-parameter) or a node attribute.

(72) SelectDestination  ::=
ApplVarInParId “.” ApplIntrinsicAttId

A node attribute is determined by a variable or in-parameter, which contains a reference to a node,
followed by the name of an attribute. This attribute has to beintrinsic and it should not be a point-
er to a node, i.e. an abbreviated edge type declaration (cf. rules on page 7) . Node attributes, which
do not contain simple values but point to other nodes, have to be manipulated like edges (on the left-
and right-hand sides of productions).

(73) CallStat  ::=
ApplActionId [ OptActParList ]

This is the call of a test or a query or a production or a transaction or aboolean function or an applied
occurrence of a local variable or in-parameter of typeboolean . A boolean expression, which is
evaluated totrue , is simply skipped, aboolean expression, which is evaluated tofalse , triggers
backtracking. A called test or query may succeed or fail, and it may modify the state of a number of
local variables or out-parameters. A called production or transaction may succeed or fail, and it may
modify the state of the processed graph as well as the values of a number of local variables or out-
parameters.

(74) CutStat  ::=
StatTerm “:” Qualifier

The cut statement allows to cast a potentially failing graph transformation into a total operation. Fur-
thermore, it may be used to prune the search tree of a nondeterministic graph transformation. The
statements

PartialTrafo : [1:n]    or     PartialTrafo : [1:1]

require that the regarded graph transformation does not fail; they stop the execution process instead
of starting backtracking if the graph transformation fails nevertheless. The statements

NondeterministicTrafo : [0:1]    or    NondeterminsticTrafo : [1:1]

are similar to the cut statement of Prolog. As soon as their execution is completed they are never re-
entered during backtracking. The internally maintained search tree is pruned such that backtracking
skips the regard graph transformation.

ApplVarOutParId is the applied occurrence of an alphanumeric identifier

ApplVarOutParId is the applied occurrence of an alphanumeric identifier

ApplVarInParId is the applied occurrence of an alphanumeric identifier

ApplVarInParId is the applied occurrence of an alphanumeric identifier

ApplIntrinsicAttId is the applied occurrence of an alphanumeric identifier

ApplActionId is the applied occurrence of an alphanumeric identifier

ApplActionId is the applied occurrence of an alphanumeric identifier
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3.15 Graph Query Statements
(75) DefStat  ::=

def “(” StatExpr “)”

Thedef statement tests whether its argument, an arbitrarily complex graph transformation, would be
executable. It executes its substatement and fails if the execution of the substatement fails. It succeeds
without modifying its input graph if the execution of its substatement succeeds (even if the substate-
ment transforms the input graph).

The argument of adef statement often is a single production, but it could also be a very complex
graph transformation followed by complex graph query as in:

def( ReduceGraphTrafo & CheckProperty ) .

Such adef statement is usually used as the guard of one branch of achoose statement (cf. rules on
page 16) or aloop statement. It allows the execution of a certain graph transformation if the input
graph could be reduced to another graph with certain properties, the execution of another graph trans-
formation otherwise.

(76) NotStat  ::=
not StatTerm

The not statement has a side-effect-free graph query as its argument. It inverses the effect of the
graph query, i.e. it fails if the graph query succeeds, it succeeds if the graph query fails. Subprograms
of the form

not Transaction(...)     or not Query( out v)

are not allowed, since they would either modify their input graph or the values of some variables.
Please note that it is possible to write

not def(AnyGraphTransformation)

i.e. to go ahead if a certain graph transformation fails and to backtrack if the regarded graph transfor-
mation would succeed.

(77) FailStat  ::= fail

The fail  statement is the always failing graph transformation.

(78) HaltStat  ::= halt

Thehalt statement stops the execution process immediately. It is often used as the last branch of a
choose  statement. The subprogram

choose DoSomething else halt end

is equivalent to
choose DoSomething end : [1:n].

(79) SkipStat  ::= skip

Theskip statement is the always successful graph transformation. It does not modify its input graph
and is equivalent to

not fail  .

It is often used as the last branch of achoose statement such that a may be failing graph transforma-
tion is executed if possible and skipped otherwise:

choose DoSomething else skip end .
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3.16 Declarations of Tests and Productions
(80) TestDecl  ::=

test DeclTestId
     [ OptFormParList ]
     [ OptPTQualifier ] “=”

TestBody
end “;”

A test is a short-hand for a production with the same left- and right-hand side. It either finds a match
for its left-hand side or fails. It may or may not return the identifiers or attribute values of matched
nodes via its out-parameters. Its in-parameters are used to fix certain nodes of the matched subgraph
or to require additional attribute conditions. The additional qualifier determines the number of ex-
pected and processed matches of the test’s left-hand side in a graph (with[0:n]  as default).

(81) TestBody  ::=
[ OptLeftSideList ]
[ OptFoldList ]
[ OptAttConditionList ]
[ OptReturnList ]

A test searches for a subgraph, which is in the usual case isomorphic to its left-hand side. The given
folding list allows some left-hand side nodes to share their matches. The attribute condition list intro-
duces requirements for matched nodes, and the test’s return list assigns appropriate values to all out-
parameters.

(82) ProductionDecl  ::=
[ OptSafe ] production DeclProductionId
                       [ OptFormParList ]
                       [ OptPTQualifier ] “=”

  ProductionBody
end “;”

Productions are the basic programming constructs. They match and modify subgraphs of a graph in
one indivisible rewrite step or fail as a whole without causing any graph modifications. A production
may return the identifiers or attribute values of matched nodes or new nodes via its out-parameters.
Its in-parameters are used to fix certain nodes of the matched subgraph or to require additional at-
tribute conditions. The additional qualifier determines the number of expected and processed matches
of the production’s left-hand side in a graph (with[0:n] as default). The optional keywordsafe
marks those productions, which take a consistent graph as input and produce a consistent graph as
output with respect to all relevant integrity constraints (cf. rules on page 13). All productions without
this prefix may produce intermediate graph states, which violate some integrity constraints.

(83) ProductionBody  ::=
  GraphPart
[ OptFoldList ]
[ OptAttConditionList ]
[ OptEmbeddingList ]
[ OptAttTransferList ]
[ OptReturnList ]

A production searches for a subgraph, which is in the usual case isomorphic to its left-hand side. The
given folding list allows some left-hand side nodes to share their matches. The attribute condition list
introduces requirements for matched nodes. The embedding list may be used to manipulate edge bun-
dles of undetermined size between the rewritten subgraph and its direct context nodes. The attribute
transfer list is needed to assign new values to preserved or created nodes. The production’s return list
finally assigns appropriate values to all out-parameters.

(84) GraphPart  ::=
[ OptLeftSideList ]

::=
[ OptRightSideList ]

A production’s left- and right-hand side. Any node, which is part of the left-hand side but not bound
to a node of the right-hand side, deletes its match in the given graph. The same is true for any edge,
which is part of the left-hand side but not repeated in the right-hand side. Any node, which is a new
node in the right-hand side, creates a copy of itself in the given graph. The same is true for any edge,
which is part of the right-hand side but not of the left-hand side.

DeclTestId is the declaration of an alphanumeric identifier.

DeclTestId is the declaration of an alphanumeric identifier.

DeclProductionId is the declaration of an alphanumeric identifier.

DeclProductionId is the declaration of an alphanumeric identifier.
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3.17 Test and Production Qualifiers
(85) OptPTQualifier  ::= Star | Plus | Qualifier

The qualifiers of tests and productions have two functions: (1)* and+ enforce parallel processing of
all left-hand side matches, whereas (2) all remaining qualifiers are an indicator for the number of ex-
pected matches.

[0:1]  indicates that there is at most one left-hand side match, we are interested in.
[1:1]  indicates that there is always one left-hand side match, we are interested in.
[1:n]  indicates that there is at least one left-hand side match, we are interested in.
[0:n]  is the default value; it has no semantic changing effects

The term “we are interested in” above means that a left-hand side may have more than one match in
a given graph, but only one of these possible matches will be processed, even if backtracking occurs.
The qualifiers[0:1] and[1:1] have, therefore, about the same semantics as the cut in Prolog. They
prune the regarded search space after the first successful match. The qualifiers[1:1] and [1:n]
have the (additional) effect to stop the program’s execution (instead of starting backtracking) if the
regarded test or production fails. The test

test AnyPerson( out P : Person ) [1:1] =
begin ‘1 : PERSON; end  (* defined using the textual notation *)
return P := ‘1;

end;

stops execution (with run-time error) if its input graph does not contain a singlePerson node. It re-
turns a randomly selectedPerson node otherwise. Backtracking is not allowed to reenter the test’s
body to determine another node match if needed, but returns to a previously made nondeterministic
decision of another test or production.

(86) Star  ::= “*”

The qualifier* causes the application of a test or production to all its matches in parallel. This in-
cludes the empty set of matches as a special case, i.e. a* marked test or production never fails. Out-
parameters of* marked tests or productions must be sets. They collect the set of all assignments of
all processed matches. The test

test AnyPerson( out P : Person [0:n] ) * =
begin ‘1 : Person; end  (* defined using the textual notation *)
return P := ‘1;

end;
returns e.g. the set of allPerson  nodes in a given graph.

The result of the parallel application of a production to all its matches is undetermined if these match-
es overlap and if the inspected nodes, edges, and attribute values of overlapping matches are not pre-
served (or modified in contradicting ways). This condition is neither checked at compile-time nor at
run-time due to the difficulty to determine the effects of a production onto derived attributes and re-
lationships. The parallel execution of a production is not equivalent to the repeated sequential execu-
tion of a production. The iterated sequential application of

production CreateChild =
begin  (* defined using the textual notation *)

‘1 : Person;
end

::=
begin

1’ = ‘1; 1’ -> 2’: child; 2’ : Person;
end
transfer 1’.NoOfChildren := ‘1.NoOfChildren + 1;

end;

is a nonterminating graph rewriting process, which creates an unbounded number ofPerson nodes
with an unbounded number ofchild nodes. The parallel application of the same production adds to
eachPerson  node in the graph exactly onechild Person  node.

(87) Plus  ::= “+”

The qualifier+ causes the parallel application of a test or production with at least one match. The
marked test or production fails if it finds no match in the graph.
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3.18 Left-hand Sides of Productions and Graph Patterns of Tests, etc.
(88) OptLeftSideList  ::=

begin
{ LeftSideClause }
  LeftSideClause

end

A left-hand side list defines the graph pattern of a production, test, path, or restriction we are looking
for. It usually is a nonempty list of pattern defining clauses. The order of list elements is of no impor-
tance.

(89) LeftSideClause  ::=
  OblNodeDecl | OptNodeDecl | OptSetDecl | OblSetDecl| NotNodeDecl
| EdgeDecl | NotEdgeDecl | PathCond | NotPathCond | RestrictCond

All constructs which may be used to define graph patterns, i.e. left-hand sides of productions etc.

(90) OblNodeDecl  ::=
obl node DeclNodeId NodeDescription “;”

An obligate node declaration has a solid rectangle as its graphical representation. It matches a single
node of the regarded graph, which fulfills all required conditions.The matched node is randomly se-
lected from the set of all possible candidates. Backtracking may be used later on to withdraw the
made selection and to match another node from the reduced candidate set. An empty candidate set
causes failure of the overall pattern matching process.

(91) OptNodeDecl  ::=
opt node DeclNodeId NodeDescription “;”

An optional node declaration has a dashed rectangle as its graphical representation. It matches a sin-
gle node of the regarded graph if possible, the undefined nodenil otherwise. The matched node is
randomly selected from the set of all possible candidates. An empty candidate set does not cause the
overall pattern matching process to fail. Backtracking may be used later on to withdraw the made se-
lection and to match another node from the reduced candidate set.

(92) OblSetDecl  ::=
obl set DeclNodeId NodeDescription “;”

An obligate set node declaration has a solid double rectangle (rectangle with shadow) as its graphical
representation. It matches the maximum set of possible candidates, which fulfill all required condi-
tions. An empty set of candidates triggers failure of the overall pattern matching process.

(93) OptSetDecl  ::=
opt set DeclNodeId NodeDescription “;”

An optional set node declaration has a dashed double rectangle (rectangle with shadow) as its graph-
ical representation. It matches the maximum set of possible candidates, which fulfill all required con-
ditions. This set may be empty without causing failure of the overall pattern matching process.

(94) NotNodeDecl  ::=
not node DeclNodeId NodeDescription “;”

A negative node declaration has a crossed-out solid rectangle as its representation. It is first treated
in the same manner as an obligate node by the pattern matching process. But its effects onto the pat-
tern matching process are then complemented. A negative node which matches a node of the regarded
graph leads to a failure of the pattern matching process, a negative node without a match is simply
ignored afterwards.

(95) NodeDescription  ::=
[ “:” Factor ] [ “=” Expression ]

This construct determines the required type(s) and/or identity of matched nodes. The optional factor
following “ : ” computes the set of types, whose instances are possible candidates for the matching
process. The optional expression following “=” determines a set of nodes or a single node as the re-
garded candidate set. Important special cases are:

‘n : Type  :  node instances of typeType  are regarded.
‘n : Class  :  node instances of any type which belongs to classClass  are regarded.
‘n : ‘m. type  : ‘n  matches a node of the same type as‘m .
‘n = InPar  :  the parameterInPar  determines the regarded match of‘n .
‘n = elem(InSet)  :   the parameterInSet  determines the regarded candidate set.
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(96) EdgeDecl  ::=
ApplNodeId “->” ApplNodeId “:” ApplEdgeTypeId “;”

An edge declaration has a solid arrow as its graphical representation, which starts at a given source
node and ends at a given target node. It requires the existence of an edge of the given type between
the determined source and target nodes.

(97) NotEdgeDecl  ::=
ApplNodeId “+>” ApplNodeId “:” ApplEdgeTypeId “;”

A negative edge declaration has a crossed-out solid arrow as its graphical representation, which starts
at a given source node and ends at a given target node. It requires the nonexistence of an edge of the
given type between the determined source and target nodes.

(98) PathCond  ::=
ApplNodeId “=>” ApplNodeId “:” OpExpr “;”

A path condition has a double arrow as its graphical representation, wich starts at a given source node
and ends at a given target node. It requires the existence of a certain path of edges between the deter-
mined source and target node or, more general, the existence of a given derived relationship between
them. The condition

‘1 => ‘2 : (-contains-> or <-contains-)+

requires, for instance, the existence of a path ofcontains edges from the match of‘1 to the match
of ‘2 .  The direction of regardedcontains  edges does not matter.

Please do not use (very) complex path expressions (OpExpr ) directly as path conditions. It is better
to introduce these path expressions separately in the form of path declarations (cf. rules on page 28)
and to replace the complex text expression of the path condition by the path declaration’s identifier.

(99) NotPathCond  ::=
ApplNodeId “#>” ApplNodeId “:” OpExpr “;”

A negative path condition has a crossed-out double arrow as its graphical representation, wich starts
at a given source node and ends at a given target node. It requires the nonexistence of a certain path
of edges between the determined source and target node or, more general, the nonexistence of a given
derived relationship between them.

(100) RestrictCond  ::=
“=>” ApplNodeId “:” OpExpr “;”

A restrict condition is a double arrow, which points to a target node but has no source node. It imposes
an additional restriction onto the candidate set (matches) of its target node. It allows one to move sim-
ple attribute conditions from the textual condition part of productions, tests, etc. into the graphical
representation of the defined pattern. Furthemore, restrict conditions may be used (in contrast to tex-
tual attribute conditions) to require certain properties of optional nodes, set nodes, and negative
nodes. Typical examples of this kind are

=> ‘n : not with (<-contains- or -contains->) ;

for node‘n  must not have an incoming or outgoingcontains  edge or
=> ‘n : valid ( self.Att = ‘m.Att ) ;

for node‘n (which isself in the restriction’s select expression) has the sameAtt attribute value as
node‘m .

Please do not use (very) complex restrict expressions (OpExpr ) directly in graph pattern definitions.
It is better to introduce these expressions separately in the form of restriction declarations (cf. rules
on page 29) and to replace the complex text expression of the restrict condition by the restriction dec-
laration’s identifier.

(101) DeclNodeId  ::= ...

This is the identifier of a node on a production’s left-hand side (or in the graph pattern of a test, path
declaration etc.). It has “‘ ” as the leading character. Usually, node identifiers have the form‘n with
n being a cardinal number.

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier
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3.19 Right-hand sides of Productions
(102) OptRightSideList  ::=

begin
  { RightSideClause }
    RightSideClause
end

A production’s right-hand side defines the graph pattern which replaces the match of its left-hand
side. It usually is a nonempty list, where the order of list elements is of no importance.

(103) RightSideClause  ::=
  OldOblNodeDecl | OldOptNodeDecl | OldOblSetDecl | OldOptSetDecl
| NewNodeDecl | NewEdgeDecl

A production’s right-hand side consists of old node declarations and new node as well as edge dec-
larations. Old node declarations are shared with the production’s left-hand side, whereas new node
and edge declarations belong to its right-hand side only. Any node declaration on a production’s left-
hand side is bound to at most one old node declaration on its right-hand side of the same kind. Match-
es of left-hand side node declarations with corresponding right-hand side declarations are preserved,
all remaining matches of left-hand side nodes are deleted. Any new node and edge declaration leads
to the creation of a new node or edge of the given type in the regarded graph.

(104) OldOblNodeDecl  ::= obl node DeclNewNodeId “=” ApplOldNodeId “;”

An old obligate node declaration is bound to an obligate node declaration of the production’s left-
hand side. It requires the existence of a node with certain properties and preserves this node.

(105) OldOptNodeDecl  ::= opt node DeclNewNodeId “=” ApplOldNodeId “;”

An old optional node declaration is bound to an optional node declaration of the production’s left-
hand side. It requires that the matched node has to be preserved.

(106) OldOblSetDecl  ::=
obl set DeclNewNodeId “=” ApplOldNodeId “;”

An old obligate set declaration is bound to an obligate set declaration of the production’s left-hand
side. It requires the existence of a nonempty set of nodes with certain properties and preserves all
nodes in this set.

(107) OldOblNodeDecl  ::=
opt set DeclNewNodeId “=” ApplOldNodeId “;”

An old optional set declaration is bound to an optional set declaration of the production’s left-hand
side. It requires that the matched possibly empty set of nodes is preserved.

(108) NewNodeDecl  ::= DeclNewNodeId “:” Factor “;”

A new node declaration requires the creation of a node of a given typeT. This typeT is determined
by evaluating the expression following “: ”. The result of this expression has to be a single well-de-
fined node type.

(109) NewEdgeDecl  ::= ApplNewNodeId “->” ApplNewNodeId “:” ApplEdgeTypeId “;”

A new edge declaration requires the creation of a new edge between the given two new or preserved
nodes. Parallel edges of the same type are identified. Please note that matches of left-hand side edge
declarations are always deleted from a theoretical point of view. Corresponding new edge declara-
tions on the right-hand side are necessary to recreate (preserve) them.

(110) DeclNewNodeId  ::= ...

This is the identifier of a node on a production’s right-hand side. It has “’ ” as the trailing character.
Usually, new node identifiers have the formn’  with n being a cardinal number.

(111) ApplOldNodeId  ::= ...

This is the applied occurrence of a node identifier declared in a production’s left-hand side. It has a
“ ‘ ” as the leading character. Usually, old node identifiers have the form‘n with n being a cardinal
number. It is common sense to use the same numbern in related node declarations of left- and right-
hand sides. This leads to old node (set) declarations like

... n’ = ‘n ;

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier
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3.20 Node Foldings and Attribute Conditions
(112) OptFoldList  ::=

folding { NodeIdList } NodeIdList

Folding clauses may be used to deactivate the default requirement that two different nodes of a test’s
or production’s left-hand side match two different graph nodes. A folding clause of the form

folding {‘1,‘2}; {‘3,‘4};

allows for instance that‘1 and‘2 or ‘3 and‘4 are mapped onto the same node. It still disallows that
‘1  and‘3  or ‘2  and‘3  etc. are mapped onto the same node.

Please note that the current language version disallows the occurrence of one left-hand side node in
two folding sets, i.e. folding instructions like

folding {‘1,‘2}; {‘1,‘3};

are not (yet) supported.

(113) NodeIdList  ::=
“{” { ApplNodeId “,” } ApplNodeId “}” “;”

A folding set defines a list of left-hand side nodes which are allowed to match the same graph node.
The order of list elements has no significance. All left-hand side nodes of one folding set have to pos-
sess a common superclass; otherwise, sharing of nodes would be impossible. Furthermore, all refer-
enced left-hand side nodes have to be preserved nodes if the folding clause is part of a production and
not of a test. Otherwise, it would be possible to "fold" a perserved node‘1 (which has a counterpart
1’=‘1 on the production’s right-hand side) with a to be deleted node‘2 (without such a counterpart
on the right-hand side), thereby creating a conflict between node preservation and node deletion.

(114) OptAttConditionList  ::=
condition { AttCondition } AttCondition

A list of attribute conditions restricts the possible set of matches of referenced nodes. The order of
list elements has no significance. Furthermore, it makes no difference for the semantics of a specifi-
cation whether we write

condition AttCond 1 and AttCond 2 ;

or
condition AttCond 1 ; AttCond 2 ;

But the second variant listed above may lead to a more efficient search plan. The first variant forces
the pattern matcher to test both attribute conditions together, whereas the second variant gives the
pattern matcher the freedom to insert other pattern matching steps between the two listed attribute
conditions. Furthermore, the pattern matcher is able to recognize

condition ‘1.IndexAtt = expr 1 ; ‘2.IndexAtt = expr 2 ;

but not
condition  (‘1.IndexAtt = expr 1 ) and (‘2.IndexAtt = expr 2 );

as two index attribute conditions, which may be used to determine appropriate matches for‘1 and
‘2  rather efficiently by accessing the internally maintained attribute indexes.

(115) AttCondition  ::=
Expression “;”

An attribute condition restricts the possible set of matches of its referenced nodes. A referenced node
has to be an obligate node in the graph pattern of the surrounding test, production, etc. Attribute con-
ditions for optional nodes or node sets have to be defined as restrictions, which are attached to a single
node declaration of this kind (cf. rules on page 23). Please note that the name “attribute condition” is
a little bit misleading. The expression syntax (cf. rules on page 36) allows one to define conditions
concerning the types of referenced nodes or their context. It is e.g. possible to require that a node‘1
belongs to a classPERSONor that afather edge starting at node‘1 leads to another nodex and that
this nodex  is the source of amother  edge, which has another node‘2  as target:

‘1. type is instance of PERSON;
use x := ‘1.-father-> :: ‘2.<-mother- = x end;

These attribute conditions are good examples for the misuse of expressions. A graphical definition of
the needed constraints as part of a production’s left-hand side would be much more readable.
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3.21 Attribute and Return Assignments
(116) OptAttTransferList  ::=

transfer { AttTransfer } AttTransfer

The attribute tramsfer list allows one to assign (new) attribute values to intrinsic attributes of new
nodes or preserved nodes of a production. An attribute’s new value may not depend on the new values
of other node attributes. This is the reason why the order of attribute transfers is of no importance.

(117) AttTransfer  ::=
ApplNewNodeId “.” ApplIntrinsicAttId “:=” Expression “;”

An attribute transfer assigns a new value to an intrinsic attribute of a node, which was created or pre-
served by the surrounding production. The expression on the right-hand side of the assignment may
only contain references to nodes,which are preserved or deleted by the production. The expression is
evaluated after a match of the production’s left-hand side has been determined and before any graph
modifications are carried out. Assuming e.g. that two left-hand sides nodes‘1 and‘2 are preserved
as right-hand side nodes1’  and2’ , respectively, the following attribute transfers

transfer 1’.Att := ‘2.Att; 2’.Att := ‘1.Att;

simply exchange the attribute values of the two referenced nodes.

Please note that the current language version treats references to set nodes or optional nodes on the
left- and the right-hand side of attribute transfers differently. An attribute transfer of the form

transfer SetNode’.Att := ‘SetNode.Att;

computes first the union of allAtt attribute values of all matches of‘SetNode . This set of attribute
values is then assigned to theAtt attributes of allSetNode’ matches. Assume e.g. thatSet-
Node’=‘SetNode  matches two nodesn1 andn2 and that

n1.Att = {1,2}   and   n2.Att = {3,4}

before the application of the surrounding production. The execution of the previously defined at-
tribute transfer delivers the new attribute values

n1.Att = {1,2,3,4}   and   n2.Att = {1,2,3,4}.

(118) OptReturnList  ::=
return { ReturnTransfer } ReturnTransfer

A test or production has to possess exactly one return transfer for each of its out-parameters. These
return transfers (out-parameter assignments) are evaluated as the last step of the execution of their
surrounding test or production. The expression on the right-hand side of a return transfer may not
contain occurrences of out-parameters. As a consequence, the list of return transfers may be evaluat-
ed in any order.

(119) ReturnTransfer  ::=
ApplOutParId “:=” Expression “;”

The expression, which determines an out-parameters value, may either depend on the state of the
graph before the execution of any graph modifications or on the state of the graph after the execution
of any graph modifications. The following assignments are legal examples of return transfers:

OutType := ‘1.type;          OutValue := ‘1.Att + InPar;
OutValue := 1’.Att + InPar;  OutNodes := 1’ or 2’;

The expressions of the first two assignments above are evaluated before the execution of any graph
modifications, the remaining two assignments after the execution of any graph modifications.
The value-defining expression of a return transfer may not reference old and new graph states simul-
taneously, as e.g. in:

OutValue := ‘1.Att - 1’.Att;

Return transfers of tests or productions, which process all their matches in parallel, require a special
treatment. They are evaluated for each match and assign the union of all computed values to their out-
parameters. The test

test T( out ValueSet: integer [0:n]) * =
begin obl node ‘1 : ITEM; end (* defined using the textual notation *)
return ValueSet := ‘1.Att;

end;

assigns, for instance, the set of allAtt attribute values of allITEM nodes in the graph to its out-pa-
rameterValueSet .

ApplIntrinsicAttId is the applied occurrence of an alphanumeric identifier

ApplOutParId is the applied occurrence of an alphanumeric identifier

ApplOutParId is the applied occurrence of an alphanumeric identifier
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3.22 Embedding Transformation Clauses
(120) OptEmbeddingList  ::=

embedding { Embedding } Embedding

Textually defined embedding clauses are the appropriate means for manipulating sets of edges be-
tween matched nodes and their direct context nodes of unrestricted size if and only if the usage of set
nodes for this purpose leads to left- and right-hand sides of unreasonable size (cf. rules on page 22).

(121) Embedding  ::= Copy | Remove | Redirect

There are three different kinds of embedding clauses (rules) for copying, redirecting, and removing
context edge bundles, which have matches of left-hand side nodes as source (target) and context
nodes (nodes which are not matched by the production’s left-hand side) as target (source).

(122) Copy ::=
copy ModifiedEdgeTypeOpList from ApplNodeId to ApplNewNodeId “;”

This embedding clause allows to create context edges between a preserved node and another pre-
served node or a new node. The clause

copy -child-> as <-stepfather- from ‘1 to 2’;

creates e.g.stepfather edges from a set of nodesS as sources to the match of node2’ as target.S
is the set of all those nodes, which are the targets ofchild edges emanating from the match of node
‘1  (before the execution of any graph modifications).

(123) Remove ::=
remove EdgeTypeOpList from ApplNodeId “;”

This embedding clause allows to delete old context node edges. The clause
remove -child->, <-stepfather- from ‘1;

deletes for instance allchild edges, which have node‘1 as source, and allstepfather edges,
which have node‘1 as target. Please note that aremove embedding clause affects only old context
edges, which were already existent before the execution of any graph modifications. The combination
of the two embedding clauses

copy -child-> from ‘1 to 1’; remove -child-> from ‘1;

with 1’=‘1  deletes first allchild  edges emanating from node‘1  and recreates them afterwards.

(124) Redirect  ::=
redirect ModifiedEdgeTypeOpList from ApplNodeId to ApplNewNodeId “;”

The redirect embedding clause is just a short-hand for aremove and acopy clause with the same
arguments. The following instruction

redirect -child-> as <-stepfather- from ‘1 to 2’;

is e.g. an abbreviation for
remove -child-> from ‘1; copy -child-> as <-stepfather- from ‘1 to 2’;

(125) ModifiedEdgeTypeOpList  ::=
{ ModifiedEdgeTypeOp “,” } ModifiedEdgeTypeOp

Defines a list of context edges (types and directions), which are affected by the enclosing copy or
redirect clause. The list may contain instructions, which change the type or direction of context edges.

(126) ModifiedEdgeTypeOp  ::= EdgeTypeOp [ OptModifier ]

TheEdgeTypeOp part defines the type and direction of the old context edge, theOptModifier part
the direction and type of the new context edge. The default for a missingOptModifier is to preserve
the direction and the type of the regarded context edges.

(127) OptModifier  ::= as EdgeTypeOp

The modifier defines the direction and the type of a to be created context edge. It has the form
-e->   for an edge of typee, which has a given right-hand side node as source
<-e-  for an edge of typee, which has a given right-hand side node as target.

(128) EdgeTypeOpList  ::=
{ EdgeTypeOp “,” } EdgeTypeOp

Defines a list of  context edges, which are affected by the enclosingremove  clause. Terms such as
-e->  match all context edges of typee, which have a given left-hand side node as source
<-e-  match all context edges of typee, which have a given right-hand side node as target.
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3.23 Path Declarations
(129) PathDecl  ::=

[ OptStaticOrVirtual ] path DeclPathId
                          [ OptFormParList ] “:” RelType “=”

PathBody
end “;”

A path declaration is the functional abstraction of a path expression. It defines a derived binary rela-
tionship between nodes. Its declaration has the same elements as an edge type declaration plus a num-
ber of additional elements. A path declaration may, for instance, be used to introduce a (role) name
for the reverse traversal of the edges of a certain type:

path Husband: Woman [0:1] => Man [0:1] = <-Wife- end;

A path declaration may be parametrized with a number of in-parameters. These in-parameters are of-
ten node type parameters or attribute value parameters, which are needed to restrict a defined graph
traversal to nodes with certain properties. The path

path Descendent( Sex: type in PERSON ): PERSON [0:1] => Sex [0:n] =
-Child-> & instance of Sex

end;

returns e.g. all children of a given person, which have the typeSex. The path may be applied with
the actual parameterT = Womanor T = Man for Sex to a node of classPERSON; it retuns in this case
a set of nodes of typeT. Its reverse application starts at a node of typeT = Sex and returns at most
onePERSON node as its result.

The reverse application of a path is implemented very inefficiently and should be avoided whenever
possible by creating an explicit reverse path declaration, as e.g.

path Parent : PERSON [0:n] => PERSON [0:1] = <-Child- end;

There is one exception from the rule that paths may but not should be traversed in reverse direction.
It concerns so-calledstatic (materialized) paths. These parameterless paths are evaluated once be-
fore the first attempt to traverse them; the computed result is stored in the form of additional graph
edges. Any forward or backward graph traversal across materialized paths is then performed by tra-
versing these additional edges in the appropriate direction. A variant of the incremental attribute eval-
uation algorithm is responsible for recomputing maybe affected materialized paths after any possibly
relevant graph modification.

The graphical representation of a path declaration is a double arrow from its source to its target node
type or class with its name as a label.

(130) PathBody  ::=
GraphPath | OpExpr

A path may be defined using a textual expression-like notation (cf. rules on page 30) or a graphical
notation, which offers a subset of the left-hand side elements of productions.

(131) GraphPath  ::=
ApplNodeId “=>” ApplNodeId in

[ OptLeftSideList ]
[ OptFoldList ]
[ OptAttConditionList ]

The graphical notation for the definition of a path combines the left-hand side elements of produc-
tions for the definition of graph patterns with their folding clauses and attribute conditions. It selects
a source and a target node in the defined pattern as e.g. in

path ElderBrother: PERSON [0:n] => Man [0:n] =
‘Source => ‘Target in
begin  (* defined using the textual notation *)

obl node ‘Source: PERSON; ‘Parent -> ‘Source: Child;
obl node ‘Parent: PERSON; ‘Parent -> ‘Target: Child;
obl node ‘Target: Man;

end
condition ‘Source.Age < ‘Target.Age;

end;

Such a path computes all matches of its graph pattern, which have a given input node as‘Source
and returns all possible‘Target  node matches as the output set.

DeclPathId is the declaration of an alphanumeric identifier.

DeclPathId is the declaration of an alphanumeric identifier.
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3.24 Restriction Declarations
(132) RestrictionDecl  ::=

[ OptStaticOrVirtual ] restriction DeclRestrictionId
                                [ OptFormParList ] “:” ApplClassId “=”

RestrictionBody
end “;

A restriction declaration is the functional abstraction of a path expression, which selects a subset of
its input node set. A restriction defines, therefore, a derived node set. All nodes in this set are instanc-
es of a given class or type and share a common set of properties. The syntax for the definition of re-
strictions is a short-hand of the syntax for the definition of path expressions. It drops the distinction
between source and target nodes and their classes.

The following example of a restriction computes the set of all marriedPERSONnodes, i.e. the union
of the set of allWomannodes with an incomingWife edge and the set of allMannodes with an out-
goingWife  edge:

restriction Married: PERSON =
( instance of Woman is with <-Wife- )

or ( instance of Man is with -Wife-> )
end;

It is equivalent to a path declaration with the same body, but a syntactically different signature:
path Married: PERSON -> PERSON = ... end;

The restriction syntax should be used for all those path expressions which define a subrelation of the
identity relation,. i.e. select a subset of their input nodes.

A static restriction is a (parameterless) restriction, which is internally handled like a derived index
attribute. The runtime system maintains an index of all nodes, which fulfill the given restriction. This
index may be used to determine the set of all nodes which fulfill the corresponding restrict condition
on a production’s left-hand side rather efficiently. Please note that the overhead for maintaining the
corresponding node index may be considerably although a variant of the incremental attribute eval-
uation algorithm is used for this purpose.

The graphical representation of a restriction declaration is a double arrow which points to the corre-
sponding node class or type and has the restriction name as a label.

(133) RestrictionBody  ::=
GraphRestriction | OpExpr

A restriction may be defined using a textual expression-like syntax or a graphical notation, which of-
fers a subset of the left-hand side elements of productions.

(134) GraphRestriction  ::=
ApplNodeId in

[ OptLeftSideList ]
[ OptFoldList ]
[ OptAttConditionList ]

The graphical definition of restrictions is very similar to the graphical definition of paths. The only
difference concerns the identification of source and target nodes. Due to the fact that a restriction al-
ways returns a subset of its input nodes it is not necessary to distinguish between source and target in
the graph pattern. Please note that a restriction of the form

restriction R( ... ): Class = ‘node in ... end;

is a short-hand for a path declaration of the form
path R(...): Class => Class = ‘node => ‘node in ... end;

(135) OptStaticOrVirtual  ::=
static | virtual

These two key words are used to distinguish “normal” orvirtual path and restriction declarations
from materialized orstatic declarations. Often needed paths should be materialized if the underly-
ing subgraph is only changed from time to time and if the (re-)evaluation is considerably more ex-
pensive than traversing a single edge. Restrictions should not be materialized unless they are used as
restrict conditions for graph pattern nodes and if possible matches for these nodes cannot be deter-
mined efficiently.

DeclRestrictionId is the declaration of an alphanumeric identifier.

DeclRestrictionId is the declaration of an alphanumeric identifier.

ApplClassId is the applied occurrence of an alphanumeric identifier

ApplClassId is the applied occurrence of an alphanumeric identifier
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3.25 Path and Restriction Defining Expressions
(136) OpExpr  ::=

  AndOpList | ButNotOpList | ConcOpList | OrOpList
| EqualRestriction | ImpliesRestriction | IsRestriction
| OpClosureTerm

A normal path expression traverses a graph from a given set of start nodes and returns the reached set
of target nodes. Each node of the input set is processed separately:

pathEpxr({n 1, ... , n k})    =  ∪i=1,...,k  pathExpr(n i ).

Restrictions or restrict expressions are a syntactically well-defined subset of all path expressions,
which always return a subset of their input set. They do not traverse edges of the regarded graph, ex-
cept for checking certain context conditions of input nodes. A restrict expression is, therefore, a path
expression, which does not traverse edges or call path declarations, except inside the following four
categories of restrict expressions:EquivalentRestriction , ImpliesRestriction , IsRe-
striction , andContextRestriction .

(137) OpClosureTerm  ::=
OpTerm | ClosurePlusOp | ClosureStarOp

Simple path expressions, including the transitive (reflexive) closure of simple path expressions.

(138) OpTerm ::=
  BracketOp |  ChooseOpList | LoopOpList
| ContextRestriction | TypeRestriction | ValueRestriction
| NotOp | TypeCheckOp | CardCheckOp
| HaltOp | NilOp | SelfOp
| EdgeTypeOp | RelCall | PlusRelCall | MinusRelCall

Simple path expressions, which either have a fixed number of tokens or a well-defined begin and end
symbol, such as “( ” and “) ”.

(139) AndOpList  ::=
{ OpClosureTerm and } OpClosureTerm

The path expression
OpTerm1 and ... and OpTerm n

computes the intersection of the results ofOpTerm1 through OpTermn for each element of a given
input set separately and builds the union of the intersection results:

(OpTerm 1 and ... and OpTerm n)({n 1, ... , n k})  =
∪i=1,...,k  (OpTerm 1(n i ) ∩ ... ∩ OpTerm n(n i )).

(140) ButNotOpList  ::=
{ OpClosureTerm but not } OpClosureTerm

A path expression of this kind has the following semantics:
(OpTerm 1 but not ... but not OpTerm n)({n 1, ... , n k})  =

∪i=1,...,k  (OpTerm 1(n i )\  ... \  OpTerm n(n i )).

(141) ConcOpList  ::=
{ OpClosureTerm & } OpClosureTerm

The “&” symbol is the standard concatenation operator for binary relations. An expression of the form
OpTerm1 & ... & OpTerm n

applies firstOpTerm1 to a given set of input nodes, thenOpTerm2 to the computed intermediate re-
sult, and so on:

(OpTerm 1 & ... & OpTerm 2)(Set)   =  OpTerm n (...(OpTerm 1(Set)...) .

(142) OrOpList  ::=
{ OpClosureTerm or } OpClosureTerm

The path expression
OpTerm1 or ... or OpTerm n

computes the union of the results ofOpTerm1 through OpTermn :
(OpTerm 1 or ... or OpTerm n)(Set) = OpTerm 1(Set) ∪ ... ∪ OpTermn(Set).

(143) BracketOp  ::=
“(” OpExpr “)”

The syntactical construct for nesting complex path expressions inside simple path expressions.
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3.26 Iterating and Conditional Path Expressions
(144) ClosurePlusOp  ::=

OpTerm “+”

The+ operator computes the transitive closure of a simple path expression. It recognizes cycles in the
graph and avoids processing of nodes, which are already part of the result set:

(OpTerm+)(Set) = (OpTerm & OpTerm*)(Set) .

(145) ClosureStarOp  ::=
OpTerm “*”

The * operator computes the reflexive transitive closure of a simple path expression. It recognizes
cycles in the graph and avoids processing of nodes which are already part of the result set:

(OpTerm*)(Set) = (OpTerm & OpTerm*)(Set) ∪ Set .

(146) ChooseOpList  ::=
“[” { CondOp “|” } CondOp “]”

This rather unusual construct generalizes the if-then-else-construct of other programming languages
and Dijkstra’s guarded commands. Its return value is the value of the first succcessfully evaluated
subexpression (from left to right). A path expression evaluation is successful if it returns at least one
node applied to a regarded input node, i.e.:

[ OpExp 1 | OpExp 2 | ... ](n) = OpExp 1(n),           if OpExp(n) # nil
[ OpExp 1 | OpExp 2 | ... ](n) = [ OpExp 2 | ... ](n), if OpExp(n) = nil

(147) LoopOpList  ::=
“{” { CondOp “|” } CondOp “}”

A loop path expression is an iterated choose path expression. Its application to a set of nodes is de-
fined as the union of the results for each node in the input set. The loop operator executes its body as
a choose path expression until all its subexpressions return the empty set. Its result set is not the set
of all visited nodes (as in the case of the transitive closure), but just the set of finally reached nodes.
The evaluation of the loop mantains a visited-node-set, thereby recognizing cycles in the graph and
avoiding processing of already visited nodes.

{ Body }(n) =  n ,          if [ Body ](n) = nil
([ Body ] & { Body })(n) ,  if [ Body ](n) # nil

The path expression
{ -child-> | instance of Woman & -Husband-> | instance of Man & -Wife-> }

visits, for instance, all descendents of a given set of input nodes and all descendents of the wifes or
husbands of these descendents, and ... . It returns all visited nodes (including the input set) without
children and without a husband or a wife.

(148) CondOp ::=
GuardOp | OpExpr

A subexpression of a choose or a loop path expression either is a guarded path expression or a normal
path expression. Its evaluation fails if it returns an empty set of nodes.

(149) GuardOp  ::=
OpExpr “::” OpExpr

A guarded subexpression of a choose or loop path expression has a restriction as its guard and any
path expression as its body. Its evaluation returns the empty node set if the guard fails applied to a
selected input node, its evaluation returns the result of the guarded body expression otherwise. Please
note that a guarded body expression, which returns the empty result set, does not trigger the selection
of the following guarded subexpression (from left to right), but returns its empty set of nodes as the
result of the surrounding construct.

The path expression
{ isMarried :: -child-> | self }(n)

returns, applied to an unmarriedPERSONnoden, thePERSONnode itself. Applied to a marriedPER-
SONnoden it computes first the setS of all its child nodes and continues the iteration process with

∪m ∈S { isMarried :: -child-> | self }(m) .

This path expression returns the empty set applied to a married node without children, it returns the
input node itself if applied to an unmarried node.
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3.27 Node Set Restriction Expressions
(150) EqualRestriction  ::=

OpClosureTerm “<=>” OpClosureTerm

An equ(iv)al(ent) restriction returns all those nodes of its input set for which the evaluation of the first
subexpression returns the same result as the evaluation of the second subexpression:

(OpExp 1 <=> OpExp 2)(Set)  =  { n ∈ Set | OpExp 1(n) = set  OpExp 2(n) }

The two subexpressions are both either real path expressions or restrictions. The forbidden combina-
tion of a restriction, which returns a subset of its input node set, and a path expression, which navi-
gates to a different set of nodes in the graph, would almost always return the empty set of nodes.

(151) ImpliesRestriction  ::=
OpClosureTerm implies OpClosureTerm

An implies restriction returns all those nodes of its input set for which the evaluation of the first
subexpression returns a subset of the evaluation result of the second subexpression:

(OpExp 1 implies OpExp 2)(Set)  =  { n ∈ Set | OpExp 1(n) ⊆ OpExp 2(n) }

The two subexpressions are both either real path expressions or restrictions. The forbidden combina-
tion of a restriction, which returns a subset of its input node set, and a path expression, which navi-
gates to a different set of nodes in the graph, would almost always return the empty set of nodes.

(152) IsRestriction  ::=
OpClosureTerm is OpClosureTerm

An is restriction returns all those nodes of its input set, which fulfill the follwing restriction: All re-
sult nodes of the application of the first subexpression to the regarded node fulfill the second subex-
pression, which has to be a restriction. More precisely, this condition is defined as follows:

(OpExp 1 is OpExp 2)(Set) = { n ∈ Set | ( OpExp1 & OpExp2)(n) = OpExp 1(n) }

The is  restriction may, for instance, be used to determine allPERSON nodes without brothers:
((<-child- & -child->) but not self) is instance of Woman .

The first subexpression above computes the children of the parents of a node (the parents are com-
puted by traversing achild edge in reverse direction) without the considered node itself. The second
subexpression checks that the result set of the first subexpression consists ofWoman nodes only.

(153) ContextRestriction  ::=
with OpTerm

A context restriction is valid for a given node if its subexpression applied to this node returns a non-
empty set of nodes. This condition may be defined as follows:

OpExp(Set)  =  { n ∈ Set | OpExp(n) # ∅ } .

The following expression selects, for instance, all married nodes of a given input set:
( instance of Woman & with -Husband->) or ( instance of Man & with -Wife->).

(154) TypeRestriction  ::=
instance of Factor

The type restriction selects all those input nodes, which are instances of a certain set of node types or
node classes. Typical examples of type restrictions are:

instance of (ANIMAL but not MAMMAL) with MAMMAL being a subclass ofANIMAL
instance of (Dog or Cat) with Dog andCat  being two node types.

(155) ValueRestriction  ::=
valid Term

The value restriction is the “gateway” from path expressions to attribute expressions. It is used to in-
spect node attributes in path expressions. The following path expression returns, for instance, all ba-
bies of a given set ofPERSON nodes:

-child-> & valid( self . Age < 1 ) .

(156) NotOp  ::=
not OpTerm

Thenot operator realizes the negation of a restriction, i.e. it returns all those nodes of the input set
which do not fulfill the restriction of its subexpression. The subexpression has to be a restriction, i.e.

not with -child-> is a permitted path expression, but
not -child-> is not a permitted path expression.
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3.28 Simple Path Expressions
(157) TypeCheckOp  ::=

OpTerm “:” Type

The type checking operator should be used, whenever static analysis computes a more general type
(class) for some path expression than required. It may, for instance, be used to restrict (cast) the type
of the path expression

<-child- & not instance of Man

from the static typePERSON [0:n] (computed by the type checker) to the actual typeWoman [1:1]
in

path Mother: PERSON [0:n] => Woman [1:1] =
( <-child- & not instance of Man) : Woman [1:1]

end;

Please note that the type check operator is not a downcast in the sense of C or Modula-2, but checks
the (node) types of its input set as follows:

  (OpTerm : T [x:y])(Set)
= ((OpTerm & instance of T) : [x:y])(Set)

It is, therefore, realized as a combination of the restriction ofSet to all nodes of type (class)T fol-
lowed by the application of a cardinality checking operator (see below).

(158) CardCheckOp  ::=
OpTerm “:” Qualifier

The cardinality checking operator is useful for situations, where static type checking is not able to
guarantee that the result of a certain path expression is always a well-defined or uniquely defined re-
sult. Based on the edge type definition

edge type child: PERSON [0:n] -> PERSON [0:n];

static analysis is not able to guarantee that the path expression
<-child- & instance of Man

returns at least one node or at most one node, i.e. that anyPERSONnode has at least or at most one
father. The path expression

(<-child- & instance of Man) : [1:1]

has the static typeMan [1:1] . Its application to aPERSONnode without a father node or with more
than one father node aborts and terminates the whole execution process.

(159) HaltOp  ::= halt

Thehalt operator is often used as the last branch of a conditional (choose) path expression. It ter-
minates execution immediately and converts the static type of a conditional path expression from
[0:x]  to [1:x] . A path expression of the form

  [ -child-> | halt ] = -child-> : [1:n]

either returns a nonempty set of nodes or terminates the execution process.

(160) NilOp  ::= nil

Thenil  operator always returns the empty set of nodes.

(161) SelfOp  ::= self

Theself  operator returns its input node (set) without any modifications. The path expression
(<-child-> & -child-) but not self

returns, for instance, all children of the parents of aPERSON node, except the node itself.
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3.29 Edge Traversals, Attribute Accesses, and Path Calls
(162) EdgeTypeOp  ::=

PlusOp | MinusOp

The operators for forward and backward traversal of edges. They are used for the definition of edge
traversing path expressions and for the definition of textual embedding clauses (cf. rules on page 27).
Referenced edges are either declared as (cf. rules on page 5)

edge type e: SourceClass -> TargetClass;

or inside a node classSourceClass  as an intrinsic attribute (cf. rules on page 7)
intrinsic e: TargetClass;

(163) PlusOp  ::=
“-” ApplEdgeTypeId “->”

The plus operator traverses an edge of a given typee from source to target. It returns all target nodes
of e edges which have input set nodes as sources.

(164) MinusOp  ::=
“<-” ApplEdgeTypeId “-”

The minus operator traverses an edge of a given typee from target to source. It returns all source
nodes ofe edges which have input set nodes as targets.

(165) RelCall  ::=
ApplRelId [ OptActParList ]

The identifier of the “relation call” operator is either the name of an attribute (of any kind) or the name
of an edge type or the name of a path or restriction declaration. Its actual parameter list is always the
empty list for attribute declarations, it corresponds to the formal parameter list of a path or restriction
declaration otherwise. Typical examples of “relation calls” as the second argument of a select ex-
pression (cf. rules on page 45) are:

n.AgeAttribute    or n.childEdge   or n.motherPath    or n.marriedRestriction .

Any expression of the form

n.-edge->    may be abbreviated to the “relation call”n.edge  ,
any expression of the form

n.=path=>    may be abbreviated to the “relation call”n.path  .

(166) PlusRelCall  ::=
“=” ApplDAttPathId [ OptActParList ] “=>”

A path expression of this kind is the standard notation for triggering the forward evaluation of a de-
clared path such as (cf. rules on page 28)

path Parent: PERSON [0:n] => PERSON [0:n] = <-child- end;

or a derived attribute (cf. rules on page 8) such as
node class PERSON;

derived Parent: PERSON [0:n] = self.<-child-;
end;

(167) MinusRelCall  ::=
“<=” ApplDAttPathId [ OptActParList ] “=”

A path expression of this kind offers the standard notation for the backward evaluation (reverse ap-
plication) of a declaredstatic  path such as

static path Ancestor: PERSON [0:n] => PERSON [0:n] = <-child- + end;

or for the backward evaluation of a derived attribute (cf. rules on page 8) such as
node class PERSON;

derived Ancestor: PERSON [0:n] = self.<-child- +;
end;

The path expression

n.<=Ancestor=      is, therefore, equivalent to  n.-child-> +  .

Please note that non-static  or virtual  paths such as
[ virtual] path Parent: PERSON [0:n] => PERSON [0:n] = <-child- end;

may not be traversed in reverse direction.

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier

ApplEdgeTypeId is the applied occurrence of an alphanumeric identifier

ApplRelId is the applied occurrence of an alphanumeric identifier

ApplRelId is the applied occurrence of an alphanumeric identifier

ApplDAttPathId is the applied occurrence of an alphanumeric identifier

ApplDAttPathId is the applied occurrence of an alphanumeric identifier

ApplDAttPathId is the applied occurrence of an alphanumeric identifier

ApplDAttPathId is the applied occurrence of an alphanumeric identifier
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3.30 User Defined Functions and Formal Parameter Lists
(168) FunctionDecl  ::=

function FuncOpName “:” [ OptFormParList ] “->” Type “=”
Expression

end “;”

A function declaration is either a normal function declaration with an arbitrary number of in-param-
eters or a operator declaration. Operators have either two in-parameters and are called in infix nota-
tion, or they have one parameter and are then called in prefix notation. Please note that functions do
not have out-parameters although the context-free syntax allows their definition.

(169) FuncOpName ::=
DeclFunctionId | DeclOpId

The name of a normal function (DeclFunctionId ) is a sequence of alphanumeric characters. The
name of an operator (DeclOpId ) is either a sequence of nonalphanumeric characters or any sequence
of characters which has “‘ ” as the leading delimiter and “’ ” as the trailing delimiter. Legal operator
names are e.g.:

‘conc’ and ! and ++ and $ and ~ and ‘$’ and ‘121’

but not

conc and ‘c and 121  .

(170) OptFormParList  ::=
“(” { ParDecl “;” } ParDecl “)”

A formal parameter list of functions, productions, etc. is a list of in- and out-parameter declarations.
The order of parameter declarations in the list determines the required order of actual parameter val-
ues of function calls, production calls, etc.

(171) ParDecl  ::=
InParDecl | OutParDecl

A formal parameter is either an in-parameter or an out-parameter. In-parameters are read-only, out-
parameters are write-only for the body of the declaration, which has the formal parameter list. There
are no in-out-parameters or call-by-reference-parameters as in many other languages.

(172) InParDecl  ::=
InParIdList “:” Type

An in-parameter declaration is a list of parameter identifiers followed by their common type defini-
tion. A declaration of the form

a, b : T

is just an abbreviation for
a : T; b : T .

(173) InParIdList  ::=
{ DeclInParId “,” } DeclInParId

This is a comma-separated list of formal in-parameters.

(174) OutParDecl  ::=
out OutParIdList “:” Type

An out-parameter declaration is a list of parameter identifiers followed by their common type defini-
tion. Out-parameter declarations with more than one identifier are expanded in the same way as in-
parameter declarations with more than one identifier. An out-parameter declaration of the form

out P1, P2 : Type

is, therefore, an abbreviation for
out P1 : Type; P2 : Type .

(175) OutParIdList  ::=
{ DeclOutParId “,” } DeclOutParId

This is a comma-separated list of formal out-parameters.

DeclFunctionId is the declaration of an alphanumeric identifier.

DeclFunctionId is the declaration of an alphanumeric identifier.

DeclOutParId is the declaration of an alphanumeric identifier.

DeclOutParId is the declaration of an alphanumeric identifier.

DeclOutParId is the declaration of an alphanumeric identifier.
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3.31 Attribute Value and Node Set Computing Expressions
(176) Expression  ::=

Term | InfixOpExpr | IsExpr

An expression is either a simple term or the call of a binary operator in infix notation or it is anis
expression, which serves as a kind of gateway from attribute expressions to path expressions.

(177) InfixOpExpr  ::=
Term { InfixOpId Term } InfixOpId Term

This is an expression of the form
Term0op1 ... opn Termn .

Terms and operators are evaluated from left to right without taking any operator precedences into ac-
count.

(178) InfixOpId  ::=
BinaryStandardOp | ApplOpId

A binary operator called in infix notation is either one of the standard operators or a user-defined op-
erator.

(179) BinaryStandardOp  ::=
  Or | And | ButNot | Implies | Equivalent | In
| Equal | Unequal | Greater | Less | GrEqual | LeEqual
| Plus | Minus | Mult | Div | Mod | Concat

These are all built-in operators with two arguments for standard data types.

(180) Term ::=
Factor | PrefixOpExpr

A term is either a simple factor or the call of a unary operator in prefix notation.

(181) PrefixOpExpr  ::= PrefixOpId Factor

The call of a unary operator in prefix notation. Unary operators have higher precedence than binary
operators, i.e.1 + -2   is evaluated as1 + (-2) .

(182) PrefixOpId  ::=
UnaryStandardOp | ApplOpId

A unary operator called in prefix notation is either a standard operator or a user-defined operator.

(183) UnaryStandardOp  ::=
  Minus | Not | All | Char | Ord

The first two operators are built-in operators with one argument for standard types. Theall operator
is used for applying binary operators to sets of arguments of any type.

(184) Factor  ::=
  ConstExpr | FuncVarParExpr
| StringToValueExpr | ValueToStringExpr
| ExistExpr | ForAllExpr | UseExpr
| BracketExpr | ChooseExprList
| ApplNodeId | ApplNewNodeId
| TypeCheckExpr | CardCheckExpr
| SelectExpr | TypeOfExpr | InstanceOfExpr

All offered kinds of factors. Most of them will be explained later on.

(185) ConstExpr  ::=
  Halt | False | True
| Nil | Number | StringConst
| Self

These are all built-in constants of typeinteger , string , boolean , and so on, except the operator
self  which is needed for referencing an attribute’s node inside its own evaluation rule.

(186) Halt  ::= halt

The operatorhalt is mainly used as the last branch of a choose expression. Its evaluation causes im-
mediate termination of a running execution process.

ApplOpId is the applied occurrence of an alphanumeric identifier
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3.32 Function Calls and Actual Parameter Lists
(187) FuncVarParExpr  ::=

FuncVarPar [ OptActParList ]

Expressions of this category are either function calls with an optional parameter list or applied occur-
rences of various kinds of identifiers without a parameter list.

Variable identifiers and in-parameters denote their values, node type identifiers return themselves as
value, and node class identifiers are evaluated to the set of all their node types (directly or indirectly
derived from the given node class). The occurrence of a node classC_1 with subtypeT_1 and sub-
classC_2, which has in turn a subtypeT_2, is for instance evaluated to the set{T_1,T2} .

Standard or user-defined function calls are  evaluated as usual. They have the form
f(exp 1, ... , exp n)

for functions with at least one argument and withexp i as actual parameter values or the form
f

for functions without any formal parameters at all.

(188) FuncVarPar  ::=
StandardFunc | ApplFuncVarParId

The identifier of a standard function or a user-defined function or the identifier of a variable, in-pa-
rameter, node type, or node class.

(189) StandardFunc  ::=
  Card | Empty | Elem | SetOf
| Length | Substr

The standard functions for strings and sets of any element type.

(190) OptActParList  ::=
“(” { ActPar “,”  ActPar } “)”

A list of actual parameter values for functions and other kinds of functional abstractions. Formal pa-
rameter lists are explained together with function declarations (cf. rules on page 35).

(191) ActPar  ::=
Expression | ActOutPar

Formal parameters are either in- or out-parameters in the general case. Actual values for in-parame-
ters are expressions, actual values for out-parameters are identifiers. The same identifier may not ap-
pear as actual value for two out-parameters of the same actual parameter list. Please note that
functions have in-parameters and return values, but no out-parameters (out-parameters are used later
on for calls of graph rewrite rules etc.).

(192) ActOutPar  ::=
out ApplVarOutParId

The actual value of an out-parameter is the identifier of a variable or another out-parameter.

ApplFuncVarParId is the applied occurrence of an alphanumeric identifier

ApplVarOutParId is the applied occurrence of an alphanumeric identifier
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3.33 Standard Types Boolean and Sets of Any Type
(193) True  ::= true

The boolean constanttrue (internally realized as integer value1).

(194) False  ::= false

The boolean constantfalse (internally realized as integer value0).

(195) Not  ::= not

The operatornot builds the complement ofboolean values. It is the onlyboolean operator which
is not overloaded. All followingboolean  operators are also used as set operators.

(196) Or  ::= or

Computes the logical “or” of twoboolean values or the union of two sets of arbitrary types. Single
elements are automatically converted into singleton sets. Sets may be constructed as follows:

{1,2,3} = 1 or {2,3} = 1 or 2 or 3 .

Please note that sets of boolean values are not supported. It is, therefore, always clear from context
whetheror  denotes the logical∨ or the set union operator∪ .

(197) And ::= and

Computes the logical “and” of twoboolean values or the intersection of two sets of arbitrary types.
The discrimination between the usage as theboolean ∧ operator or the usage as the set intersection
operator∩ is as simple as in the case ofor  above.

(198) ButNot  ::= but not

Computes the difference of two sets of values if applied to non-boolean arguments. Its behavior for
boolean  values is as follows:

a but not b := a and ( not b)

(199) Implies  ::= implies

Compares two sets of values and returnstrue (false ) if the first set is (not) a subset of the second
set. Its behavior forboolean  values is as follows:

a implies b := ( not a) or b .

(200) Equivalent  ::= “<=>”

Compares two sets of values and returnstrue (false ) if these sets are (not) equal. Its behavior for
boolean  values is as follows:

a <=> b := (a and b) or ( not a and not b) .

(201) Nil  ::= nil

The operatornil  represents an undefined value or an empty set of values of any possible type.

(202) Elem ::= elem

The operator selects one randomly chosen element from a set of elements. Its usage in assignments
of the form

ElementVar := elem( SetExpression )

is recommended, but not enforced (missing set-to-element conversions are automatically inserted).
Its execution fails if the argument is the empty set. It depends on the context of the built expression
whether this kind of failure causes the execution to terminate or triggers backtracking.

(203) SetOf  ::= set of

The operator offers the inverse function toelem . It takes a single element as input and returns a sin-
gleton set. The usage of this operator is again optional; needed element-to-set conversions are auto-
matically inserted, whenever needed.

(204) Card  ::= card

The expressioncard(set)  returns the size of its parameter set as a nonnegative integer value.

(205) Empty  ::= empty

The boolean test for empty sets of any possible type.

(206) In  ::= in

The expressione in S returns true ( false )  if elemente is (not) in setS.
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3.34 Relational Operators
(207) Equal  ::= “=”

The operator compares two elements which have a common type or superclass. It returnstrue if two
compared attribute values are equal or if two compared node objects are identical.

(208) Unequal  ::= “#”

This is the negation of “=”, i.e.
a # b := not (a = b) .

(209) Greater  ::= “>”

The operator compares twointeger  values (but not sets ofinteger  values) as usual.

(210) Less  ::= “<”

The operator compares twointeger  values (but not sets ofinteger  values) as usual.

(211) GrEqual  ::= “>=”

The operator compares twointeger  values (but not sets ofinteger  values) as usual.

(212) LeEqual  ::= “<=”

The operator compares twointeger  values (but not sets ofinteger  values) as usual.

3.35 Standard Types Integer and Integer Set
(213) Number ::= ...

An integer constant, called number, is a sequence of digits∈ 0 | ... |9, which may be stored in four
bytes.

(214) Plus  ::= “+”

The expressiona + b  computes the sum of two integer elements or two sets of integer elements.
{1, 2} + {3,4} = {4,5,6}

returns a set of integer values, where each element of the first set is added to each element of the sec-
ond set.

(215) Minus  ::= “-”

The expressiona - b computes the difference of two integer elements or two sets of integer elements
in the same manner as+ computes the sum of (two sets of) integer values:

{4,5} - {3,8} = {1,2,-4,-3} .

The expression-a  returns all elements ofa with changed sign, i.e.
- {4,5} = {-4,-5} .

(216) Mult  ::= “*”

The expressiona * b  multiplies (two sets of) integer values.

(217) Div  ::= “/”

The expressiona / b  divides (all elements of)a by (all elements of)b, neglecting the remainder.

(218) Mod ::= “%”

The expressiona % bcomputes the remainder ofa / b . This is again a set in the general case, e.g.:
{1,4,-7} % {2,3} = {1,0,-1} .

(219) Char  ::= char

The operator converts a character (string of length 1) into its ordinal number. Applied to a set of
characters it computes the set of their ordinal numbers, as e.g. in:

(char("c","e")- char("a")) = {2,4} .

(220) Ord  ::= ord

The operatorord is the inverse function of the operatorchar. It translates any number between0
and255  into the appropriate ASCII character (string  of length 1).
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3.36 Standard Types String and String Set
(221) StringConst  ::= ...

A string is a sequence of arbitrary characters(except double quotes) with a leading and a trailing dou-
ble quote “" ”. Masking of double quotes inside strings is not (yet) supported. The length of a string
is restricted to 250 characters. Examples of legal strings are:

"abcd’‘"    and "$^&%#@^*" .

(222) Concat  ::= “&”

The operator takes two (sets of) strings as input and concatenates them pairwise, as e.g. in:
{"Andy","Hannah","Margot"} & " " & "Schürr"

= {"Andy Schürr","Hannah Schürr","Margot Schürr"}.

(223) StringToValueExpr  ::=
value “(” Expression “,” Type “)”

The operator converts (a set of) strings into expressions of a given type. The conversion process is
split in an element-wise conversion of strings to values, followed by a restriction of the computed set
of values to the givenType  expression, i.e.

value( {"a", "-2"}, Type ) = {"a",-2} : Type .

It depends on the specific form ofType whether failing string conversions return the empty set of
values or stop the overall execution process. The expression

value( "abc", integer ) = value( "abc", integer [1:1] )

is for instance expected to return a single well-defined integer value, but its first argument is not the
string representation of aninteger . As a consequence its evaluation fails and terminates the over-
all execution process. The expression

value( "abc", integer [0:1] )

on the other hand simply returns the permitted undefinedinteger  valuenil .

Please note that the operator works for any built-in attribute type as well as for imported types, node
identifiers, and node types. Assuming thatn_i is a node of typeT_i , T_i is a node type derived from
classC_i  but not from classC_j , the following expressions are evaluated as follows:

value( {"n_1", "n_2"}, T_1 [0:n] ) = {n_1}
value( {"T_1", "T_2"}, type in C_1 [0:n] ) = {T_1} .

(224) ValueToString  ::=
string “(”  Expression “)”

The operator performs the inverse computation of thevalue operator, i.e. translates any given set of
values (of the same type) into a set of strings:

string( {123,456} ) = {"123","456"} )
string( "abc" ) = "abc" .

Please note that the operator works for any built-in attribute type as well as for imported types, node
identifiers, and node types.

(225) Length  ::= length

The operator returns the length of (a set of) strings as a nonnegative integer value:
length( {"","abc","d"} ) = {0,3,1} .

(226) Substr  ::= substr

The operator selects substrings of a given string. It needs three arguments for this purpose:
substr( str, fpos, lpos  ).

The three arguments are used as follows:
(1) str  is the regarded string,
(2) fpos  is the first position of the selected substring, and
(3) lpos  is the last position of the selected substring.

The function returns the empty string "" forfpos > lpos . Its parameterfpos is set to1 if it is less
then1, its parameterlpos  is set tolength(str)  if it is greater thanlength(str) .
All three arguments may be sets of values:

substr( {"abcd","efg"}, {1,2}, {2,4} )
= { substr( "abcd", 1, 2 ), ... , substr( "efg", 2, 4 )}
= {"ab","ef","b","f","abc","efg","bcd","fg"} ) .
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3.37 Expression Iterators
(227) ExistExpr  ::=

exist VarDeclList “::”
Expression

end

This is the existential quantifier of first order predicate logic. An expression of the form
exist a := elem( {1,3} );
      b := elem( {1,3} );
      c := elem( {2,3} ) ::

a < c < b
end

executes theboolean subexpression between:: andend for any possible combination of value as-
signments to variablesa, b, andc , respectively. It returnstrue if and only if any subexpression eval-
uation returnstrue . The evaluation of the example above yieldstrue , because of

(a = 1) < (c = 2) < (b = 3) .

(228) ForAllExpr  ::=
for all VarDeclList “::”

Expression
end

This is the all quantifier of first order predicate logic. It has about the same behavior as the existential
quantifier, except the fact that its result istrue if and only if all its subexpressions are evaluated to
true .

(229) UseExpr  ::=
use VarDeclList “::”

Expression
end

Theuse expression allows the assignment of subexpression values to local variables. These variables
may be referenced in the subexpression between:: andend . Please note that it is possible to assign
a set of elements to a local variable which may only hold a single element:

use v : integer := elem( {1,2,3} ) ::
v + v

end

In this case, the subexpression between:: andend is evaluated for any possible assignment of a sin-
gle value to the declared variable. The result of the whole expression is the set of all possible subex-
pression evaluations. The result of evaluating the example above is

{(1 + 1),(2 + 2),(3 + 3)} = {2,4,6} .

(230) All  ::= all

Theall operator transforms the application of a binary operator or function with two parameters to
a single start element on one side and a set of elements on the other side into a nested sequence of
operator applications. Each operator or function call takes one element of the given set as one input
value and the until now computed value as the other input value:

0 + all {1,2,3, ... } = ( ... ((0 + 1) + 2) + 3) + ...
max( all {1,2}, 0) = max(2, max(1,0))
max( all nil, 0 ) = max( all {}, 0 } = 0 .

The performed nesting of operator or function calls requires that the type (class) of the involved ac-
tual set-parameter is the same type (class) as the function’s return type (class) or that it is a subtype
(subclass) of the function’s return type (class). Furthermore, the regarded operator or function should
be associative and commutative such that the order of element selections in the given set has no in-
fluence on the computed result.
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3.38 Variable Declarations and Type Definitions
(231) VarDeclList  ::=

{ VarDecl “;” }
  VarDecl

This is the declaration of a list of local variables. The order of list elements is of no importance. The
expressions which assign initial values to introduced variables may not access other variables in the
same list, but they may access variables or parameters defined in the surrounding block:

a : integer := x;
b : integer := a

are valid variable declarations ifx anda areinteger variables of the surrounding block; variableb
does not receive the value of the just defineda := x , but the value of a previously declared variable
a of a surrounding block as initial value.

(232) VarDecl  ::=
VarIdList [ “:” Type ] [ “:=” Expression ]

A variable declaration is a list of variable identifiers followed by their common type definition and
their common initial value definition. The initial value definition may be omitted if the variable’s val-
ue is defined later on, a variable’s type definition may be omitted if its type may be inferred from a
given initial value. The declaration

a, b := {1,3}

is e.g. expanded to
a : integer [1:n] := {1,3};
b : integer [1:n] := {1,3} .

A variable declaration of the form
use a, b : integer [1:1] : = elem( IntSet ) ::

exp
end

is prohibited. It is not clear whether it should be expanded to
use a : integer [1:1] : = elem( IntSet ) ::

use b : integer [1:1] := a ::
exp

end
end

or to
use a : integer [1:1] : = elem( IntSet );

b : integer [1:1] : = elem( IntSet ) ::
exp

end

i.e. whether variablesa andb always have the same value taken fromIntSet or whether they receive
values from this set independently from each other.

(233) VarIdList  ::=
{ DeclVarId “,” } DeclVarId

A list of local variable identifiers. The order of list elements is of no importance.
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3.39 Type and Meta Type Definitions
(234) Type  ::=

  QualifiedType | BooleanType

A variable type (parameter type, attribute type, etc.) is either a qualified type or aboolean type.
Qualified types are those types for which sets of values may be constructed. Sets ofboolean values
are not supported in order to avoid the introduction of a four-valued logic with

{} = “unknown” and { true, false}  = “maybe”.

(235) QualifiedType  ::=
SimpleType [ Qualifier ]

A qualified type is any type identifier, exceptboolean , followed by an optional qualifier. The de-
fault value for the qualifier is[1:1] . The type definitions have to be read as follows:

T [0:1]  defines a partially defined variable, ... of typeT (value is element of typeT or nil ).
T [1:1]  defines an always defined element-valued variable, parameter etc. of typeT.
T [1:n]  defines a variable, parameter etc. which has a nonemptyT-set as value.
T [0:n]  defines a variable, parameter etc. which has a maybe emptyT-set as value.

(236) SimpleType  ::=
  ApplTypeId
| MetaType
| IntegerType
| StringType

Identifiers of imported attribute types, node types, node classes, type-containing variables, and type-
containing in-parameters are permitted type identifiers. Attribute type identifiers are used to define
attribute value containing variables etc.. Node type and node class identifiers are used to define node
reference containing variables. Please note that a node class identifier is a short-hand for the union of
all node types belonging to this class. The variable declaration

v : Class [0:n];

defines for instance a container for sets of nodes of any node type directly or indirectly derived from
node classClass .

Variables or in-parameters may have a so-called meta type as their type. They do not have attribute
values or node references, but node types as their values. A meta type is the type of a type value. The
identifiers of these variables or parameters may be used as type identifiers. They introduce parametric
polymorphism:

function f : ( Type : type in C; a, b : Type [0:n] ) -> Type [0:n] =
...

end;

The functionf takes a node typeT of classC as first actual in-parameter and two sets of node refer-
ences of the actual node typeT as second and third in-parameter. It returns a set of node references
of the actual node typeT as its result.

The really simple types are the built-in standard typesinteger  andstring .

(237) MetaType  ::=
type in ApplNodeClassId

A meta type is the type of a type value. Types are almost first-order objects, which have their own
meta attributes, are legal values of variables, and may be used as actual parameters of functions, pro-
ductions etc.

v : type in C := T

is for instance a variable, which has a node typeT derived from classC as initial value.

(238) IntegerType  ::= integer

 One of the three predefined standard types for attribute, variable, ...  values.

(239) StringType  ::= string

 One of the three predefined standard types for attribute, variable, ... values.

(240) BooleanType  ::= boolean

One of the three predefined standard types for attribute, variable, ...  values.

ApplTypeId is the applied occurrence of an alphanumeric identifier

ApplTypeId is the applied occurrence of an alphanumeric identifier

ApplTypeId is the applied occurrence of an alphanumeric identifier

ApplNodeClassId is the applied occurrence of an alphanumeric identifier



44

3.40 Brackets and Conditional Expressions
(241) BracketExpr  ::=

“(” Expression “)”

Brackets may be used to enforce the evaluation of binary operators in a certain order (binary operators
have no associated precedence laws) as e.g. in

a + (b * c)

or to switch fromTerm expressions back to generalExpressions .

(242) ChooseExprList  ::=
“[” { CondExpr “|” } CondExpr “]”

This rather unusual construct generalizes the if-then-else-construct of other programming languages
and Dijkstra’s guarded commands. Its return value is the value of the first succcessfully evaluated
subexpression (from left to right):

[ a > b :: a | b ]

returns the maximum ofa andb,
[ Set1 | Default ] = [ not empty( Set1 ) :: Set1 | Default ]

returnsSet1  if it is not the empty set, it returns theDefault  value otherwise.

(243) CondExpr  ::=
GuardExpr | Expression

A conditional expression of a choose expression is a guarded expression with an explicitboolean
condition or an unguadred expression with an implicitboolean condition. The implicitboolean
condition in the latter case requires that the evaluation of the given expression yields at least one re-
sult, i.e. is unequal to the empty set (the undefined valuenil ).

(244) GuardExpr  ::=
Expression “::” Expression

A guarded expression is aboolean expression followed by an expression of any type. Theboolean
expression is the guard for the following expression. It determines exclusively, whether or not its
choose expression branch is selected. The expression

[ true :: nil | ... ]

returns e.g. always the undefined value due to the fact that the guard of its first branch is alwaystrue .

(245) IsExpr  ::=
Term is OpTerm (

A boolean expression which returnstrue if and only if each node determined byTerm fulfills the
restrictionOpTerm. Important examples are

Node is instance of (Class1 or Class2),

which checks whether nodeNode belongs to classClass1  or to classClass2 , or
Node is with (-E1-> or <-E2-)

which checks whether nodeNode is the source of anE1 edge or the target of anE2 edge, or
Node is okay,

whereokay  is either the name of a restriction or the name of aboolean  attribute.
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3.41 Attribute, Node, and Node Type Selections
(246) Self  ::= self

References the regarded node inside intrinisic or derived attribute declarations, constraint declara-
tions and redefinitions of these attributes and constraints. It may also be used as a reference to the
regarded node type inside meta attribute declarations and redefinitions.

(247) ApplNodeId  ::= ...

The applied occurrence of the identifier of a production’s left-hand side node. It has “‘ ” as a leading
character. It may be used to reference a matched node (set of nodes) or the old attribute values of this
node (node set) . The return clause

return OutPar := ‘1.Att;

assigns e.g. the old attribute value of node‘1 (the value before the execution of any required graph
modifications) to the out-parameterOutPar .

(248) ApplNewNodeId  ::= ...

The applied occurrence of the identifier of a production’s right-hand side node. It has “’ ” as a trailing
character. It may be used to reference a matched preserved or a new node (set of nodes) or the new
attribute values of this node (node set) . The return clause

return OutPar := 1’.Att;

assigns e.g. the new attribute value of node1’ (the value after the execution of all required graph
modifications) to the out-parameterOutPar .

(249) SelectExpr  ::=
Factor “.” OpTerm

The select construct applies a path expressionOpTerm to the result of an expressionFactor . Impor-
tant special cases of path expressions are

Node.Attr     and NodeType.MetaAttr  ,

which are used to access an intrinsic or derived attributeAttr of a nodeNode or a meta attribute
MetaAttr of a node typeNodeType . The result ofFactor may be a set of nodes or node types in
the general case. An expression of the form

Node.MetaAttr

is automatically expanded to

Node. type.MetaAttr  .

(250) TypeOfExpr  ::=
Factor “.” type

Applied to a single node or a set of nodes it returns the type of this node or the set of types of these
nodes. Thetype operator may not be applied to node types (classes) or normal attribute values like
integer  or string .

(251) InstanceOfExpr  ::=
instance of Factor

Applied to a single node type or a set of node types or a node class it returns the set of all nodes of
this type or class in the regarded graph. The expression

card( instance of (Class or Type) )

returns, for instance, the number of all nodes of a node type which is either the node typeType or
which is derived from node classClass .
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3.42 Type and Cardinality Constraint Checking Expressions
(252) TypeCheckExpr  ::=

Factor “:” Type

The type checking operator should be used, whenever static analysis computes a more general type
(class) for a (sub-)expression than required. It may, for instance, be used to restrict (cast) the type of
the expression

P.<-child-.( not instance of Man)

from the static typePERSON [0:n] (computed by the type checker) to the actual typeWoman [1:1]
in

function Mother: (P: PERSON [1:1]) -> Woman [1:1] =
(P.<-child-.( not instance of Man)) : Woman [1:1];

end;

Please note that the type check operator is not a downcast in the sense of C or Modula-2, but checks
the (node) types of its input set as follows:

  Factor : T [x:y]
= (Factor. instance of T) : [x:y]

It is, therefore, realized as a combination of the restriction ofSet to all nodes of type (class)T fol-
lowed by the application of a cardinality checking operator (see below).

(253) CardCheckExpr  ::= Factor “:” Qualifier

The cardinality checking operator is useful for situations, where static type checking is not able to
guarantee that the result of a certain expression always delivers a well-defined or uniquely defined
result. Based on the edge type definition

edge type child: PERSON [0:n] -> PERSON [0:n];

static analysis is not able to guarantee that the expression
self.(<-child- & instance of Man)

returns at least one node or at most one node, i.e. that anyPERSONnode has at least or at most one
father. The expression

self.(<-child- & instance of Man) : [1:1]

has the static typeMan [1:1] . Its application to aPERSONnode without a father node or with more
than one father node aborts and terminates the whole execution process.

3.43 Cardinality Qualifiers for Relation Types, Attribute Types, etc.
(254) Qualifier  ::= NullToOne | One | OneToMany | NullToMany

All possible cardinality constraints for edge types, attributes, variables, ... .

(255) NullToOne  ::= “[0:1]”

Indicates or requires the existence of at most one ... .

(256) One ::= “[1:1]”

Indicates or requires the existence of exactly one ... .

(257) OneToMany ::= “[1:n]”

Indicates or requires the existence of at least one ... .

(258) NullToMany  ::= “[0:n]”

Indicates or requires the existence of an arbitrary number of ... .
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