E-CARES Research Project:
Understanding Complex Legacy Telecommunication

Systems
Dominikus Herzberg André Marburger
Ericsson Eurolab Deutschland GmbH Department of Computer Science IlI
CNM — Node Product Unit MSC University of Technology Aachen
Ericsson Allee 1 Ahornstral3e 55
52134 Herzogenrath, Germany 52074 Aachen, Germany
Dominikus.Herzberg@eed.ericsson.se marand@i3.informatik.rwth-aachen.de
Tony Jokikyyny

Ericsson Research / NomadicLab
Oy L M Ericsson Ab
02420 Jorvas, Finland

Tony.Jokikyyny@ericsson.com

WSR 2000

1 Introduction

The importance oémbedded systerfar our daily life is rapidly increasing. More or less unnoticed they
fulfill the task of controlling the “behavior” of technical systems ranging from drinks’ dispensers to big
industrial plants. Embeddadal-time systemplay a special role. Besides the typical requirements of em-
bedded systems concerning i.e. reliability or fault-tolerance, embedded real-time systems have to also fulfill
requirements concerning availability and response time. Another property often found in embedded real-
time systems is concurrency. One important field of application for embedded real-time systems is in the
telecommunications industry. The complexity of these systems is rapidly increasing while at the same time
the software part is becoming more and more important.

2 The E-CARES Re-engineering Approach

In the E-CARES research cooperation between Ericsson Eurolab Deutschland GmbH (EED) and the
Department of Computer Science lll, RWTH Aachen, the subject of study is Ericsson’s Mobile-service
Switching Center (MSC) called AXE10. The cooperation aims to develop methods, concepts, and tools to
support the processes of understanding and restructuring complex legacy telecommunication systems. A

1The acronym E-CARES stands fricssonCommunicationARchitecture foEmbeddedSystems.

brief outline of the re-engineering approach is shown in figure 1. “E-CARES Metrics” (Ericsson Finland,
NomadicLab) is a subproject of E-CARES and aims to support systems understanding and design decisions
by measurements.

The E-CARES Approach - _
ey -3 internal representation

Software Architecture D« s
T N fulifls

hasin 4
rmnd

mterprezs Literature
(related
work)

AY llegacy)

Design base

System Designer,

| PRQGRES |

] o T 0

Rules, Structure T o
Patterns, document it

VO

1
i
[}
|
|
1 Structure Rules, Concepts, Patterns,
|
1
|
1
\

Heuristics (static data) data)

. Method Shapgs
LS Code Trace

Designer

automatic interactive, manual
fformal knowledge) (informal knowiedge)

| PROGRES |

\

usss geneiates -

modiies Executlon Machine

System Architecture

Figure 1: The top-down and bottom-up approach in E-CARES

The overall idea behind this, is to support the process of system understanding. That is, system designers
should be able to understand the implemented system and the underlying system architecture without read-
ing the source code and associated documentation. Suitable abstraction techniques comprising algorithms,
heuristics, measurements and notations are to be developed for this purpose. The difficulty is to distinguish
vital from non-vital information. Our research project is determined by the combination of two apparently
opposite approaches: a top-down approach from a system’s perspective and a bottom-up approach from
a “pure” software perspective. In addition, we will look for some practical measurements as a supporting
approach. The following three subsections will briefly describe these approaches in more detalil.

2.1 The Top-Down Approach

The idea of the top-down approach is to identify a set of rules, principles, and concepts, which are typically
used in the telecommunication domain for describing and modeling telecommunication systems along with
a proper notation (ideally visual). Furthermore, patterns or components might be identified, which define a
commonly used composition of conceptual entities. The problem is that these “intellectual tools” (concepts,
patterns, etc.) are only partly explicitly defined; as yet they have not reached the same level of “formal”

maturity as already obtained in the software engineering domain.

As shown in figure 1, standards (e.g. GSM, UMTS) are not the sole source of information. The system
architect does not only read and interpret the standards, but also has an intimate knowledge of the legacy.
The problem of mediating between standards and actual implementations forces one to reflect about defi-
ciencies in the standards as well as in the implemented architecture. As a result, system designers/architects
tend to develop their own mental representation of the problem and solution space, which is documented
almost nowhere with public access or is not documented at all.

Another source of information is literature, with its articles and related work. Related work includes
languages, for example, the Specification and Description Language (SDL) and the real-time profile of the

Unified Modeling Language (UML). Typically, these languages condense basic concepts of their application
domain.

Information about the system structure can be derived from the design base and standards. At Ericsson’s
explicit structural information is stored in a database, organized according to principles and rules defined by
a framework called System 108. It reflects a functional grouping of products in a hierarchical manner and
— on a higher level — a component-oriented system architecture. Implicit structural information is fixed in
documents describing functional relations, for example, protocol specifications, interworking descriptions
and so ort. It remains to be investigated as to what extend implicit structural information can be extracted
automatically from the documents and whether it is of use for our purposes.

2.2 The Bottom-Up Approach

For a bottom-up approach, which we restrict to software only, code is definitively the authoritative source.
Ericsson’s in-house programming language PLEX (Programming Language for EXchanges) structures code
in blocks, self-contained units, which encapsulate data and code. The only way to communicate/interact
between blocks is vigignals. Whenever a signal is received by a block, this signal is the entry point to code
execution in the block. So-callgdb buffers are some kind of signal stacks with different queuing priorities;

this allows the system to prioritize and schedule different kind of “activities”.

The use of signals and their entry/exit points in the blocks determine code segments and relations be-
tween these segments; it is obvious that such segments and communication relations describe a structural
model of the code and can easily be modeled as nodes and edges of a graph. Of course, further information
like data structures should be considered as well. This type of structural description is attributed as “static
data” in figure 1.

Further structural information can be derived from the fact that the designer, who writes and modifies
the code, strictly follows conventions of coding, so-called design rules. This specific method of use does not
only shape the code, it also implies design patterns and heuristics. Heuristics include naming conventions; it
is possible to get semantical information from names, which could improve the understanding of structural
relations and dependencies.

While in the past, the term “architecture” was mostly limited to the understanding of static structural
aspects of a (software) system, a shift has happened: dynamic structural issues are generally recognized as
being architecture-level issues. Independent of this insight, we found out that the understanding of so-called
traffic cases is impossible without having a notion of how blocks are incarnated and linked together upon
execution time. Dynamic information can be retrieved from runtime tracings.

2.3 The Measurement Approach

To reliably measure something so abstract as a software system is far from trivial. Nevertheless, what else
could be more convincing of system design quality than clear, quantitative measurement results? The major
reason here for not understanding something properly is the inability to describe the systems with simple,
measurableattributes. Additionally, having this kind of measurement in place would make it possible to
define precise goals for these attributes, in order to quantitatively evaluate a system design.

Even though the attributes of complex systems could be effectively measured, there would be an ad-
ditional problem left to solve; how to actually use the measurement data to gain better understanding of
these systems? This requires a modesydstem qualityconsisting of measurements of several attributes
together with some equations between them. The definition of a valid model is clearly dependent on the
specific system in question; its purpose, requirements, environment, etc. Usually, building such a model is
a lot more difficult than creating the single measurements.

Furthermore, manual measurement data collection and presentation is often cumbersome and slow,
resulting in a lack of measurement-based facts for decision making during early stages of system design.
We have concluded that measurement should be an automated, integral part of the standard design process.

2The categorizationmplicit andexplicit is based on the criterion if structural information is explicitly stored in a database or has
to be implicitly derived from an information object.

To support reuse and transfer of knowledge, it is also important to be able to collect and use the experience
from previous designs. In general, it seems to be a good idea to have all measurement data available in
one place, close to the developer where it can be taken into consideration each time the system design is
modified. It remains to be investigated as to what extend measurement data can be extracted automatically
from the code and other documents describing a system.

3 Conclusion

Although being in a prestudy phase of the research project, it has already became clear that we cannot see
the top-down and bottom-up approaches as separate identities as indicated in figure 1. The software view
will automatically be influenced by a system’s view and vice versa. This is indicated by the dashed arrow
between the two ellipses.

The ability to handle and manipulate structural descriptions as graphs in the PROGRES-Envifonment
allows us to correlate, combine and re-evaluate the different approaches described above — provided that
suitable concepts, abstraction techniques, relations, measurements, heuristics, patterns and a notation have
been identified.

The positive feedback we received on the “Design Base Navigator”, an early prototype of the idea
presented, makes us quite confident that we are on the right“iaclerved as a proof of concept and
showed the feasibility of the approach to try to visualize the block structure given by the signal interfaces
and its grouping derived from the product structure. We could roughly verify that the block structure of two
subsystems maps quite well to the GSM system architecture.

Measurement extraction during system design amihe availability of the results are important steps
towards creating a better understanding of complex systems. We intend to integrate this kind of technology
into the PROGRES-Environment. Part of this work, a vismalasurement dashboardas already been
investigated in a previous research project within Ericsson. We are confident that the facts provided by this
technology will significantly support architectural decision-making. Of course, any such environment must
also provide some means to define the used measurements and models.

SPROGRES (PROgramming with Graph Rewriting Systems) is an environment for manipulating graphs and has been developed
at the Computer Science Department Ill, University of Technology Aachen (Prof. Dr. M. Nagl).

4The “Design Base Navigator” is based on work from Stefan Sandh (dpart.com) and Dominikus Herzberg (EED). Many thanks to
Stephan Kruska (EED) for the JAVA implementation.

