
��������	� 
���� 	� �
�����	��� �������� ��	���� �� 
�� � ������
���� �������			
��
�����
��������������
���������
���� �� �����

UPGRADE: A Framework for Building
Graph-Based Interactive Tools

B. Böhlen, D. Jäger, A. Schleicher, B. Westfechtel

Department of Computer Science III
Aachen University of Technology

D-52056 Aachen, Germany
westfechtel@i3.informatik.rwth-aachen.de

Abstract

Construction of interactive tools for visual languages is a challenging task. The UPGRADE
framework leverages tool builders by integrating application logic and GUI components. It
is based on attributed graphs as its internal data model. At the user interface (external
representation), graphs can be rendered in multiple ways, including graphics, trees, text
and tables. The framework is open, e.g., third-party viewer components may be plugged
into the framework.

1 Introduction

Visual languages have become popular in a wide range of application domains.
For example, in software engineering a big variety of visual languages is used,
including e.g. PERT or GANTT charts for project management, class diagrams,
entity-relationship diagrams or data flow diagrams for requirements engineering
and design, Petri nets, state charts, etc.

Building tools for visual languages raises a couple of interesting and difficult
problems, including the definition of the syntax and semantics of a graphical lan-
guage, the specification of commands for editing, analyzing, and interpreting, the
rendering of diagrams on the screen (in particular, the generation of a nice layout),
etc. UPGRADE (Universal Platform for GRAph-Based DEvelopment) addresses
these challenges. UPGRADE is a framework for developing graph-based applica-
tions — not only in software engineering, but also in other domains. The develop-
ment of UPGRADE was driven by the following requirements:

(i) Reusability and customizability. Obviously, reuse is the key issue when de-
veloping a framework. On the one hand, the framework’s components have to
be generally applicable to cover a broad range of possible applications within
the desired domain. On the other hand, the resulting tool should provide a
specific user interface as well as a specific visualization of the tool’s internal

c����� ������	
� �� 
��
��
� ���
��
 �� ��



�������� 	�
���� 
���������� �����������

data structures. To jointly achieve both goals, the framework’s components
have to be highly customizable.

(ii) Decoupling of application logic and user interface. The application logic is
the specific part of every visual application. Consequently, the architecture of
the UPGRADE framework has to be clearly separated from it.

(iii) Independence of a specific storage device. The framework should be able to
operate on top of different kinds of storage devices, e.g. RDBMS or OODBMS
or even the data storages of other applications. Thus, the application logic
must provide an interface which abstracts from the underlying data storage.

(iv) Common and generic data model. At the interface between the application
logic and the user interface layer, a common and generic data model is needed.
For the UPGRADE framework, we have chosen graphs as a general data
model because our tools are supposed to handle documents in visual lan-
guages, which in many cases can be easily represented as graphs.

(v) Distribution. Generally, tools should allow different users from different sites
to access a document in parallel. Therefore, the framework provides support
for distribution and synchronization of multiple tool instances.

(vi) Platform independence. The UPGRADE framework is written in Java and can
be used on every platform on which Java is available.

(vii) Openness and extensibility. Even if a framework is highly customizable, this
mechanism naturally has its limitations. If the built-in framework components
should not suffice to implement a tool as intended, it must be easy to integrate
third party user interface components or adapt the existing components by
inheriting from them.

In the following, we will show how these requirements are met by the UP-
GRADE framework, allowing for a convenient construction of visual applications
which use graphs as their internal data model.

2 A Sample Application

On top of UPGRADE, several applications have been developed up to now, e.g.
tools for high-level authoring support [10] or for software reengineering [16]. As a
case study in this paper we will use the AHEAD system, an Adaptable and Human-
Centered Environment for the MAnagement of Development Processes [12]. In the
sequel, we briefly sketch user interface and functionality of the AHEAD system
as far as it is required in the context of this paper. In the next sections, we will
describe how UPGRADE has been used for the realization of the AHEAD system.

AHEAD is a management system which has been applied to development pro-
cesses in different engineering disciplines such as chemical, mechanical, and soft-
ware engineering. It combines project management, engineering/product data man-
agement, and workflow management in a single, integrated system. The screen shot
displayed in Figure 1 illustrates the user interface of AHEAD. It shows three win-

2



�������� 	�
���� 
���������� �����������

Fig. 1. The AHEAD management system

dows, each of which offers multiple views. In addition to tree and graph views
displayed in this screen shot, AHEAD provides table views, e.g., an agenda of
tasks assigned to an engineer.

The activity window on the top presents a graphical view on a task net (right-
hand side) as well as tree views showing the task hierarchy (top) and the team
hierarchy (bottom). In the graphical view, each box represents a task whose execu-
tion state is symbolized by an icon (e.g., gear wheels for the state Active). White
and black circles stand for inputs and outputs which are connected by data flows
(dashed lines). Furthermore, the execution order of tasks is represented by control
flows. Project managers are offered commands for editing task nets, assign tasks to
engineers, analyzing their execution state, and performing state transitions.

The resource window (bottom left) is used to organize the project team. The
right view shows the engineers employed by the respective organization, while the
right view displays the positions in a project team. The project manager may define
the positions of the project team and subsequently assign engineers to positions.

Finally, the product window (bottom right) is used to manage the products of
a development process, i.e., documents such as e.g. requirements definitions, soft-
ware architectures in software engineering or flow sheets and simulation models
in chemical engineering. These documents are subject to version control and are
organized in a workspace hierarchy. The left view displays the hierarchy, the right
view also shows non-hierarchical relationships.

3



�������� 	�
���� 
���������� �����������

Fig. 2. Framework context

3 Architecture

The UPGRADE framework has been used to build the AHEAD system. How this
has been done will be explained in the next section. Before that, we present the
framework itself. The architecture is described with the help of UML diagrams [2].

Figure 2 displays the framework’s two most important subsystems in relation
to third-party components used by the framework and components to be devel-
oped when building an application on top of it. UPGRADE internally uses a graph
data model including inheritance on attributed nodes and edges. This data model
is very general and thus serves a large variety of application domains. However,
third-party storage-devices usually do not directly support this data model. There-
fore, the Base package’s main responsibility is to provide connectivity to a storage
device holding the application’s operational data and abstraction from the storage
device’s internal data model. The application logic in the form of complex data ma-
nipulation operations is made available to the framework through the Base pack-
age. In addition, the latter uses a middleware component to provide ready-to-use
distribution functionality.

The Views package’s responsibility is to render the data on the screen with the
help of suitable GUI components. For this purpose, it uses third-party GUI-toolkits
like Sun’s second-generation toolkit Swing and ILOG JViews which ships with
efficient data structures to hold representation data to enhance rendering speed. The
Views package is dependent on the Base package as it needs access to the offered
operations (e.g. to offer them in menus and to query the user for their respective
input parameters) and to the data in case of view updates.

Figure 3 shows a simplified class diagram of the framework’s architecture. In
the sequel, we will explain the architecture bottom-up. The classes Applica-
tionLogic and Storage are not part of the UPGRADE framework. Rather,
they belong to the application for which interactive tools are to be developed.

Central to the Base package is the class Base Filter. It is this class’
responsibility to realize the connection to and abstraction from a chosen storage
device and to the application logic’s offered operations. Above the base filter, UP-
GRADE assumes a graph data model with attributed nodes and edges which is
consistent with the GXL [11] standard graph interchange format. The base filter

4



�������� 	�
���� 
���������� �����������

Fig. 3. Class Diagram

aggregates three classes: Storage Acess provides read access to the applica-
tion data and handles the mapping of the application data model to the UPGRADE
data model. Operations encapsulates the write operations offered by the appli-
cation. This class can either be generated from an interface description (in case the
application logic has been implemented e.g. in C or C++) or might be a generic im-
plementation to read out Java-libraries via reflection. Finally, Event Handler
serves as a collector of changes performed to the data within the storage device dur-
ing the execution of an operation. After execution has finished the change events
are propagated through the filter stack (see below) and result in automatic updates
of all connected views.

The base filter is a special kind of Filter. A filter’s general duty is to offer
access to the logical data, the generated events and the offered operations, which
is ensured by the three interfaces each filter has to implement. Generally, this duty
is already sufficiently fulfilled by the base filter. However, a filter stack may be
used to implement further abstraction steps. The framework contains generic and
configurable filters to block out certain edge and node types or to map complex
constructs from the logical data to nodes and edges within the internal data model.

In addition to providing a significant abstraction step by hiding away the inter-
nals of the storage device and application logic subsystems, the base filter also pro-
vides ready-to-use distribution support to enable the building of multi-user, multi-
client tools. The latter is based on the freely available middleware Voyager, which
allows for the distribution of Java classes, simply by letting the class to be dis-
tributed implement the interface Remote.

5



�������� 	�
���� 
���������� �����������

All classes above the base filter are part of the client. A client consists of one or
many View Windows, each of which contains an arbitrary number of views (like
diagrams, trees or text). A view window contains menus and tool bars allowing
the invocation of the operations and displays a dialog to request the operation’s
parameters from the user. The operations offered and their respective parameters
are read out via the Dynamic Operations interface implemented by the filter.
The user may then fill the dialog by selecting objects within the contained views or
by typing in data manually.

A View is responsible for rendering the information on the screen. The el-
ements to render are held within a representation document. A view’s unparser
reads out the logical data via the Graph Queries interface from its associated
filter whenever an update of its owning view is necessary, and fills the view’s rep-
resentation document. The necessity of an update is signaled by the filter with
which the view has registered itself through the Event Manager interface to re-
ceive the set of change events. A view and its respective filter are designed along
the observer pattern [9]. Third-party GUI components plugged into the framework
usually ship with their own representation document (e.g., in Swing it is called
model). Thus, the relations between a view, its representation document and its un-
parser are very tight. We use the adapter design pattern to implant new components
into the framework (cf. Section 4).

4 Application Development

Building a full-fledged application using the UPGRADE framework comprises var-
ious steps. In this section, we will first describe how the application logic can be
attached to the framework. Then we will discuss how the framework can be ex-
tended to fit the needs of a particular application. At the end, we will describe how
the different components of the framework can be configured to suit a tool builder’s
requirements without extending the framework.

The first step in building an application based on UPGRADE is to provide the
application logic. This can be done by implementing it manually using for example
an OODB as a storage device. However, this may be a tedious and error-prone task.
Rather, we use the PROGRES environment [19] for generating the application logic
from a formal specification. PROGRES is a visual language based on programmed
graph transformations.

In the AHEAD system introduced in Section 2, visual languages for activities,
products, and resources have been defined in PROGRES. It goes beyond the scope
of this paper to discuss the specification underlying the AHEAD system in detail;
the interested reader is referred e.g. to [15].

An example of a PROGRES graph rewrite rule operating on the internal graph
representation is given in Figure 4. The rule defines the graph transformation to be
performed when the user intends to insert a feedback flow into the task net. The
tasks to be connected are supplied as input parameters; the created node represent-
ing the feedback flow is returned as an output parameter. The left-hand side defines

6



�������� 	�
���� 
���������� �����������

Fig. 4. Specification of a graph transformation

the graph pattern to be replaced. In addition to feedback flow’s source and target
task nodes, the graph pattern contains another task node representing the common
parent of both tasks. Further positive and negative application conditions ensure
that certain paths do exist or must not exist, respectively. For example, the source
of the feedback flow to be created must be a transitive control flow successor of the
target. Finally, the right-hand side says that a feedback node has to be created and
connected with the respective task nodes.

Access to the application logic is provided by a generic base layer. In this
base layer, which implements the abstract classes provided by the framework, the
following tasks must be accomplished: map the storage device’s model to the UP-
GRADE graph model, provide some means to invoke the operations of the appli-
cation logic, and generate events to reflect changes in the storage device caused
by these operations. The application logic generated from the formal PROGRES
specification can be accessed by using a generic wrapper. Thus, the base layer is
implemented in a generic way such that it can be used for any PROGRES specifi-
cation without further adaptation.

These steps are necessary because UPGRADE’s graph model is richer than the
one used by PROGRES. For example, in Figure 4 the feedback flow is represented
by a node of type FBType and two edges instead of one edge, because the PRO-
GRES graph model does not support attributed edges. But with such an edge-node-
edge pattern it is possible to simulate them. When the PROGRES graph model is
mapped to the UPGRADE graph model, simple transformation rules are defined to
map an edge-node-edge pattern into an attributed edge. If the application logic is
backed by an OODBMS, other transformation rules have to be defined to map the
object oriented data model of the application to the UPGRADE graph model. For
instance, it is longer necessary to handle the edge-node-edge pattern, but attributes
of certain types may be converted to edges.

The framework provides everything that is needed for rapid prototyping. With
the application logic generated by the PROGRES environment, a rapid prototype
can be created without extending or configuring the framework. Such a basic pro-
totype displays a default graph view and may be used for validating the application
logic. However, it does not yet present an appealing user interface as shown in

7



�������� 	�
���� 
���������� �����������

Fig. 5. Extended framework

Figure 1.
The UPGRADE framework is open and extensible. Figure 5 shows an extension

of the core framework displayed in Figure 3. Note that the core framework does
not provide specific views, windows, unparsers, etc. The core may be extended by
reusing third-party components (grey boxes). Additional components may have to
be implemented (hatched boxes) either once or for each application. For example,
we have used Java Swing and ILOG JViews for implementing tree and graph views,
respectively.

In the sequel, we will sketch how a third-party component is integrated into
the framework. As an example, we will show which steps are necessary to inte-
grate ILOG JViews into the framework as a view for displaying graphs. First, two
classes have to be implemented to integrate the new graph view into the framework,
a Graph Unparser by implementing the Unparser interface and a Graph
View by extending the View class. These classes can be found in Figure 5. Our
experience showed that introducing a third class serving as a model for the view,
called Graph ReprDoc in this case, contributes to the extensibility of the entire
view. These three classes make up a variant of the Model-View-Controller pattern
presented in [9].

The class Graph View utilizes JViews Manager View to display the
contents of our graph model which provides a convenient interface for our un-
parsers above the JViews graph model provided by JViews Grapher. Special
graphic representation elements for nodes and edges have been implemented using
the standard JViews classes. A detailed look at all these classes reveals that the
only difference compared to a standard ILOG JViews application is the unparser
which is responsible for translating database updates into representation updates.

A few classes have to be implemented for each application. For example, in the
case of the AHEAD system we have implemented an AHEAD Window offering
a tree view and a graph view on a dynamic task net. Furthermore, the respective
unparsers for filling the representation documents depend on the application logic
and therefore have to be implemented as well.

8



�������� 	�
���� 
���������� �����������

The implemented framework extension can be further enhanced by making use
of UPGRADE’s manifold configuration capabilities. These can be used to define
the menu structure, provide a tool-bar, describe the specific local layout of graph
nodes and edges, tree nodes and table cells. Additionally, the filters can be con-
figured to block out node and edge types or to transform one graph pattern into
another. For example, the last option has been used to realize the transformation of
a edge-node-edge graph pattern to an attributed edge.

UPGRADE offers a style-sheet mechanism for view elements. This mechanism
enables the tool builder not just to determine a view element’s local layout accord-
ing to its type. Moreover the element can be rendered according to its internal
state retrieved from the application logic. For example, task nodes in dynamic task
nets can be configured to be rendered as rectangles with an icon at the left-hand
side symbolizing the task’s execution state and the task’s name printed at the right.
Furthermore, parameter nodes can be rendered as white and black circles with a
description written near to the parameter.

Every visual language has special requirements according to the layout of its
representation elements. Besides standard layout algorithms like Sugiyama, for
hierarchical layouts, or Giotto, for orthogonal layouts, the framework includes a
constraint based layout algorithm. Constraints are specified in a declarative way
and are generated by the unparser for the graph representation. For example, for
dynamic task nets we specified constraints that attach the parameter nodes to the
left and right of a task node.

5 Related Work

Many tools for visual languages have been built up to date, but usually these are
designed for a specific language (e.g., LabVIEW [13] and Prograph [3]). In con-
trast, UPGRADE offers a reusable framework which is independent of the visual
language to be supported. Therefore, it is closely related to meta-CASE tools.

Often, the term meta-CASE tool is used for tools dealing with graphical lan-
guages. At the logical level, a language is typically defined in terms of a graph-like
or ER data model. At the representation level, graphical representations are con-
sidered most important. However, other representations such as trees, tables, or
text are offered as well. For programming extensions, a meta-CASE tool typically
provides either a scripting language or an application programming interface (API)
for Java, C++, etc. As examples, we may list MetaEdit+ [14]and KOGGE [4].

Most meta-CASE tools suffer from several restrictions. First, the language def-
inition includes only the structure. As a consequence, generated graphical edi-
tors provide only primitive commands such as insertion or deletion of single nodes
and edges. Complex commands have to be programmed with the help of scripts
or the API. UPGRADE solves this problem through its integration with PRO-
GRES, which supports the declarative specification of complex operations with
graph rewrite rules.

Second, meta-CASE tools are tied to a specific data model and store their data

9



�������� 	�
���� 
���������� �����������

in a home-grown repository. In contrast, UPGRADE defines a standard graph inter-
face in line with the GXL standard graph exchange format [11]. Thus, UPGRADE
can be integrated with any storage device by implementing that interface.

Third, meta-CASE tools can be extended only to a limited extent, using a script-
ing language or an API. This is supported in UPGRADE, as well. In addition, UP-
GRADE provides standard interfaces for plugging in GUI components as required.
Therefore, it is more open than current meta-CASE tools.

There is a small set of competing research prototypes which also rely on graph
transformations and therefore address the first restriction in the list above. This
includes e.g. DiaGen [17], GenGEd [1], Fujaba [8] and AGG [7]. However, these
systems do not strive for providing an extensible, reusable and open framework,
i.e., they fail to address restrictions 2 and 3.

6 Conclusion

We have presented UPGRADE, a framework for building tools for visual lan-
guages. UPGRADE relies on a graph model for defining the application logic,
abstracts from the actual storage device through a graph-based interface, decouples
the application logic from the user interface, includes multi-user and distribution
support, and provides hooks for plugging in external GUI components, e.g., from
ILOG JViews or Swing. It is implemented in Java and hence provides platform in-
dependence. So far, the implementation comprises about 70 packages, 250 classes,
and 70,000 lines of code. Currently, we are using UPGRADE in our research group
for several projects in the areas of book authoring, reverse engineering and process
management. However, we are planning to deliver the framework to external users
as well.

References

[1] Bardohl, R., GenGed: A generic graphical editor for visual languages based on
algebraic graph grammars, in: Proceedings of the 1998 Symposium on Visual
Languages (VL ‘98), Halifax, Canada, 1998, pp. 48–55.

[2] Booch, G., J. Rumbaugh and I. Jacobson, “The Unified Modeling Language User
Guide,” Addison Wesley, Reading, Massachusetts, 1998.

[3] Cox, P., F. Giles and T. Pietrzykowski, Prograph, in: M. M. Burnett, A. Goldberg
and T. G. Lewis, editors, Visual Object-Oriented Programming: Concepts and
Environments, Manning Publications Co., Greenwich, 1995 pp. 45–66.

[4] Ebert, J., R. Süttenbach and I. Uhe, Meta-CASE in practice: A case for KOGGE, in:
Proc. 9th International Conference on Advanced Information Systems Engineering
(CAiSE‘97), LNCS 1250, Barcelona, Spain, 1997, pp. 203–216.

[5] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages, and
Tools,” World Scientific, Singapore, 1999.

10



�������� 	�
���� 
���������� �����������

[6] Engels, G. and G. Rozenberg, editors, “Proc. TAGT ‘98 — 6th International Workshop
on Theory and Application of Graph Transformation,” Springer-Verlag, Paderborn,
Germany, 1998.

[7] Ermel, C., M. Rudolf and G. Taentzer, The AGG approach: Language and
environment, in: Ehrig et al. [5] pp. 551–604.

[8] Fischer, T., J. Niere, L. Torunski and A. Zündorf, Story diagrams: A new graph
rewrite language based on the Unified Modeling Language and Java, in: Engels and
Rozenberg [6], pp. 296–309.

[9] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of
Reusable Software,” Addison-Wesley, Reading, Massachusetts, 1995.

[10] Gatzemeier, F. and O. Meyer, Improving the publication chain through high-level
authoring support, in: Nagl and Schürr [18], pp. 255–262.

[11] Holt, R., A. Winter and A. Schürr, GXL: Toward a standard exchange format,
in: Proceedings 7th Working Conference on Reverse Eng. (WCRE 2000), Brisbane,
Australia, 2000.

[12] Jäger, D., A. Schleicher and B. Westfechtel, AHEAD: A graph-based system for
modeling and managing development processes, in: Nagl and Schürr [18], pp. 325–
340.

[13] Johnson, G., “LabVIEW Graphical Programming,” McGraw-Hill, Maidenhead,
England, 1994.

[14] Kelly, S., K. Lyytinen and M. Rossi, MetaEdit+: A fully configurable and multi-tool
CASE and CAME environment, in: Proc. 8th International Conference on Advanced
Information Systems Engineering (CAiSE‘96), LNCS 1080, Heraklion, Greece, 1996,
pp. 1–21.

[15] Krapp, C.-A., S. Krüppel, A. Schleicher and B. Westfechtel, Graph-based models for
managing development processes, resources, and products, in: Engels and Rozenberg
[6], pp. 455–474.

[16] Marburger, A. and D. Herzberg, E-CARES research project: Understanding complex
legacy telecommunication systems, in: P. Sousa and J. Ebert, editors, Proc. 5th
European Conference on Software Maintenance and Reengineering (CSMR ‘2001),
Lisboa, Portugal, 2000, pp. 139–147.

[17] Minas, M. and G. Viehstaedt, DiaGen: A generator for diagram editors providing
direct manipulation nad execution of diagrams, in: Proc. 11th IEEE Symposium on
Visual Languages (VL‘95), Darmstadt, Germany, 1995, pp. 203–210.

[18] Nagl, M. and A. Schürr, editors, “Proc. AGTIVE — Applications of Graph
Transformations with Industrial Relevance,” Castle Rolduc, The Netherlands, 1999.

[19] Schürr, A., A. Winter and A. Zündorf, The PROGRES approach: Language and
environment, in: Ehrig et al. [5] pp. 487–550.

11


