
UPGRADE: Building Interactive Tools for Visual Languages

Boris Böhlen, Dirk J̈ager, Ansgar Schleicher, Bernhard Westfechtel
Department of Computer Science III, Technology University of Aachen

52074 Aachen, Germany
(boris|jaeger|schleich|bernhard)@i3.informatik.rwth-aachen.de

Abstract

Construction of interactive tools for visual languages is a
challenging task. The UPGRADE framework leverages tool
builders by integrating application logic and GUI components. It
is based on attributed graphs as its internal data model. At the
user interface (external representation), graphs can be rendered
in multiple ways, including graphics, trees, text and tables. The
framework is open, e.g., third-party viewer components may be
plugged into the framework.

Keywords: Meta-CASE, framework, graph-based specifi-
cation, visual languages

1 Introduction

Visual languages have become popular in a wide range of ap-
plication domains. For example, in software engineering a big
variety of visual languages is used, including e.g. PERT or
GANTT charts for project management, class diagrams, entity-
relationship diagrams or data flow diagrams for requirements en-
gineering and design, Petri nets, state charts, etc.
The development of sophisticated interactive tools for visual lan-
guages requires considerable effort. On the one hand, the tool
builder has to design and implement the tool’s internal logic and
its data storage. For the data storage, effort can be reduced by
using third party software, e.g. a DBMS. On the other hand, ef-
fort must be spent to develop the tool’s user interface. This in-
cludes the programming of different views on the tool’s internal
data, which have to be combined in one or more windows and
which must be kept consistent. We need mechanisms for select-
ing model elements within a view and invoking commands on
them via buttons and menu items. The language elements have
to be rendered inside the views and a suitable layout has to be
calculated. Finally, the user interface has to be connected to the
application logic, preferably in a way which allows a distributed,
multiple user access to the models.
While each tool’s internal application logic is highly specific,
many aspects of the user interface and its connection to the
application logic can be tackled independently from a specific
tool. TheUPGRADEframework (UniversalPlatform forGRAph
BasedDEvelopment) aims at reducing the effort required for de-

veloping visual language tools. Its components provide a con-
figurable user interface and visualization layer on top of an ex-
changeable application logic. The development of UPGRADE
was driven by the following requirements which we have identi-
fied as being crucial:

1. Reusability and customizability.Obviously, reuse is the key
issue when developing a framework. On the one hand, the
framework’s components have to be generally applicable to
cover a broad range of possible applications within the de-
sired domain. On the other hand, the resulting tool should
provide a specific user interface as well as a specific visu-
alization of the tool’s internal data structures. To jointly
achieve both goals, the framework’s components have to be
highly customizable.

2. Decoupling of application logic and user interface.The
application logic is the specific part of every visual appli-
cation. Consequently, the architecture of the UPGRADE
framework clearly separates the application logic from the
framework itself.

3. Independence of a specific storage device.The framework
should be able to operate on top of different kinds of storage
devices, e.g. relational or object oriented DBMS or even the
data storages of other applications. Thus, the application
logic must provide an interface which abstracts from the
underlying data storage.

4. Common and generic data model.At the interface between
the application logic and the user interface layer, a com-
mon and generic data model is needed. For the UPGRADE
framework, we have chosen graphs as a general data model
because our tools are supposed to handle documents in vi-
sual languages, which in many cases can be easily repre-
sented as graphs.

5. Distribution. Generally, tools should allow different users
from different sites to access a document in parallel. There-
fore, the framework provides support for distribution and
synchronization of multiple tool instances.

6. Platform independence.The UPGRADE framework is
written in Java and can be used on every platform on which
Java is available.

Figure 1. The AHEAD management system

7. Openness and extensibility.Even if a framework is highly
customizable, this mechanism naturally has its limitations.
If the built-in framework components should not suffice to
implement a tool as intended, it must be easy to integrate
third party user interface components or adapt the existing
components by inheriting from them. It must be equally
possible to connect external tools to the framework.

In the following, we will show how these requirements are met by
the UPGRADE framework, allowing for a convenient construc-
tion of visual applications which use graphs as their internal data
model.

2 A Sample Application

On top of UPGRADE, several applications have been developed
up to now, e.g. tools for high-level authoring support [13] or
for software reengineering [22]. As a case study in this pa-
per we will use theAHEAD system, anAdaptable andHuman-
CenteredEnvironment for the MAnagement ofDevelopment Pro-
cesses [18]. In the sequel, we briefly sketch user interface and
functionality of the AHEAD system as far as it is required in the
context of this paper. In the next sections, we will describe how
the UPGRADE framework has been used for the realization of
the AHEAD system.
AHEAD is a management system which has been applied to
development processes in different engineering disciplines such
as chemical, mechanical, and software engineering. It com-
bines project management, engineering/product data manage-
ment, and workflow management in a single, integrated system.
The screen shot displayed in Figure 1 illustrates the user inter-
face of AHEAD. It shows three windows, each of which offers
multiple views. In addition to tree and graph views displayed in
this screen shot, AHEAD provides table views, e.g., an agenda of
tasks assigned to an engineer.
The activity window on the top presents a graphical view on a
task net (right-hand side) as well as tree views showing the task
hierarchy (top) and the team hierarchy (bottom). In the graphical
view, each box represents a task whose execution state is symbol-
ized by an icon (e.g., gear wheels for the stateActive). White and

Figure 2. Framework context

black circles stand for inputs and outputs which are connected by
data flows (dashed lines). Furthermore, the execution order of
tasks is represented by control flows. Project managers are of-
fered commands for editing task nets, assign tasks to engineers,
analyzing their execution state, and performing state transitions
(e.g., suspension of a task).
The resource window (bottom left) is used to organize the project
team. The right view shows the engineers employed by the re-
spective organization, while the right view displays the positions
in a project team. The project manager may define the positions
of the project team and subsequently assign engineers to posi-
tions.
Finally, the product window (bottom right) is used to manage the
products of a development process, i.e., documents such as e.g.
requirements definitions, software architectures in software engi-
neering or flow sheets and simulation models in chemical engi-
neering. These documents are subject to version control and are
organized in a workspace hierarchy. The left view displays the hi-
erarchy, the right view also shows non-hierarchical relationships.

3 Architecture

The UPGRADE framework has been used to build the AHEAD
system. How this has been done will be explained in the next
section. Before that, we present the framework itself. The archi-
tecture is described with the help of UML diagrams [3].
Figure 2 displays the framework’s two most important subsys-
tems in relation to third-party components used by the framework
and components to be developed when building an application on
top of it. UPGRADE internally uses a graph data model includ-
ing inheritance on attributed nodes and edges. This data model
is very general and thus serves a large variety of application do-
mains. However, third-party storage-devices usually do not di-
rectly support this data model. Therefore, theBase package’s
main responsibility is to provide connectivity to a storage device
holding the application’s operational data and abstraction from
the storage device’s internal data model. The application logic in
the form of complex data manipulation operations is made avail-
able to the framework through theBase package. In addition,
the latter uses a middleware component to provide ready-to-use
distribution functionality.
The Views package’s responsibility is to render the data on
the screen with the help of suitable GUI components. For
this purpose, it uses third-party GUI-toolkits like Sun’s second-
generation toolkit Swing and ILOG JViews which ships with ef-

(a) Class Diagram

(b) Operation invocation collaboration

Figure 3. Framework architecture and operation invocation

ficient data structures to hold representation data to enhance ren-
dering speed. TheViews package is dependent on theBase
package as it needs access to the offered operations (e.g. to of-
fer them in menus and to query the user for their respective input
parameters) and to the data in case of view updates.
Figure 3 (a) shows a simplified class diagram of the framework’s
architecture. In the sequel, we will explain the architecture
bottom-up. The classesApplicationLogic andStorage
are not part of the UPGRADE framework. Rather, they belong to
the application for which interactive tools are to be developed.
Central to theBase package is the classBase Filter . It is
this class’ responsibility to realize the connection to and abstrac-
tion from a chosen storage device and to the application logic’s
offered operations. Above the base filter, UPGRADE assumes a
graph data model with attributed nodes and edges which is con-
sistent with the GXL [17] standard graph interchange format. The
base filter aggregates three classes:Storage Acess provides
read access to the application data and handles the mapping of
the application data model to the UPGRADE data model.Op-

erations encapsulates the write operations offered by the ap-
plication. This class can either be generated from an interface de-
scription (in case the application logic has been implemented e.g.
in C or C++) or might be a generic implementation to read out
Java-libraries via reflection. Finally,Event Handler serves
as a collector of changes performed to the data within the stor-
age device during the execution of an operation. After execution
has finished the change events are propagated through the filter
stack (see below) and result in automatic updates of all connected
views.
The base filter is a special kind ofFilter . A filter’s general
duty is to offer access to the logical data, the generated events
and the offered operations, which is ensured by the three inter-
faces each filter has to implement. Generally, this duty is already
sufficiently fulfilled by the base filter. However, a filter stack may
be used to implement further abstraction steps. The framework
contains generic and configurable filters to block out certain edge
and node types or to map complex constructs from the logical
data to nodes and edges within the internal data model.
In addition to providing a significant abstraction step by hiding
away the internals of the storage device and application logic
subsystems, the base filter also provides ready-to-use distribution
support to enable the building of multi-user, multi-client tools.
The latter is based on the freely available middleware Voyager,
which allows for the distribution of Java classes, simply by let-
ting the class to be distributed implement the interfaceRemote .
All classes above the base filter are part of the client. A client
consists of one or manyView Windows , each of which con-
tains an arbitrary number of views (like diagrams, trees or text).
A view window contains menus and tool bars allowing the invo-
cation of the operations and displays a dialog to request the opera-
tion’s parameters from the user. The operations offered and their
respective parameters are read out via theDynamic Opera-
tions interface implemented by the filter. The user may then
fill the dialog by selecting objects within the contained views or
by typing in data manually.
A View is responsible for rendering the information on the
screen. The elements to render are held within a representation
document. A view’s unparser reads out the logical data via the
Graph Queries interface from its associated filter whenever
an update of its owning view is necessary, and fills the view’s
representation document. The necessity of an update is signaled
by the filter with which the view has registered itself through
the Event Manager interface to receive the set of change
events. A view and its respective filter are designed along the
observer pattern [12]. Third-party GUI components plugged into
the framework usually ship with their own representation docu-
ment (e.g., in Swing it is called model). Thus, the relations be-
tween a view, its representation document and its unparser are
very tight. We use the adapter design pattern to implant new com-
ponents into the framework (cf. Section).
To illustrate the interaction between these classes the collabo-
ration diagram in Figure 3 (b) shows an operation call and its
propagation through the framework. Initially, the user calls an
operation to perform changes on the logical data by selecting a
menu item or a button in the tool bar. He is asked to fill the pa-
rameters of the operation. The window handles this event and
invokes an operation call within the filter of the current view

(1). The filter maps the given actual parameters of the opera-
tion to the formal parameters defined in the application logic’s
interface. The actual mapping is propagated from the filter to its
linked object of classOperations (1.1). The latter then uses
dynamic invocation in order to call the operation within the appli-
cation logic library (1.1.1). The execution of the operation then
manipulates the logical data structures within the storage device
(1.1.1.1). During manipulation events are generated by the stor-
age device informing any listener of the performed changes on
the logical data structure (1.2). The event handler, as part of the
base filter, maps the received events onto meaningful ones with
respect to the framework’s internal data model. When the op-
eration has completed its execution the event handler sends the
mapped and packed changes to every registered listener (1.2.1).
In this case, listeners are always the base filters owned by one
specific view. Please note, that every view within a running tool
registers its base filter with the event handler and receives the
change events regardless of the view that induced them. The fol-
lowing steps are thus performed by all views. A filter calls the
update-method of its owning view (1.3) who forwards the update
request to its unparser (1.3.1). The unparser subsequently iterates
over the changes contained in the changes object and reads out the
logical data via the filter to receive information about the change’s
nature (1.3.1.1). This reading of the data is propagated through
the storage access object (1.3.1.1.1) and the storage device itself
which returns the requested data (1.3.1.1.1.1). On the way back
to the unparser the returned data is again mapped onto the internal
data model. Upon reception of the data the unparser propagates
the data changes into the representation document of its owning
view if necessary (1.3.1.2). The representation document informs
the view of the changes made to its internal data structures (1.3.2)
(this mechanism is dependent on the GUI-component used) and
the view redraws itself to reflect these changes (1.4). Finally, the
user who invoked the operation call sees the result of the graph
manipulation on the screen.

4 Application Development

Building a full-fledged application using the UPGRADE frame-
work comprises various steps. In this section we will first de-
scribe how the application logic can be attached to the frame-
work. Then we will discuss how the framework can be extended
to fit the needs of a particular application. At the end we will
describe how the different components of the framework can be
configured to suit a tool builder’s requirements without extending
the framework.
The first step in building an application based on UPGRADE is
to provide the application logic. This can be done by implement-
ing it manually using for example an OODB as a storage device.
However, this may be a tedious and error-prone task. Rather,
we use thePROGRES environment[26] for generating the appli-
cation logic from a formal specification. PROGRES is a visual
language based on programmed graph transformations. Here, we
use PROGRES as a meta language for defining visual languages.
In the AHEAD system introduced in Section , visual languages
for activities, products, and resources have been defined in PRO-
GRES. It goes beyond the scope of this paper to discuss the spec-
ification underlying the AHEAD system; the interested reader

Figure 4. Extended framework

is referred e.g. to [21]. To make the application logic accessi-
ble we have implemented a corresponding base layer. In this
base layer, which implements the abstract classes provided by the
framework, the following tasks must be accomplished: map the
storage device’s model to the UPGRADE graph model, provide
some way to invoke the operations of the application logic and
generate events to reflect changes in the storage device caused by
these operations. The application logic generated from the for-
mal PROGRES specification can be accessed by using a generic
wrapper. Thus, the base layer is implemented in a generic way
such that it can be used for any PROGRES specification without
further adaptation.
The framework provides everything that is needed for a rapid pro-
totype. With the application logic generated by the PROGRES
environment, a rapid prototype can be created without extending
or configuring the framework. Such a prototype would display a
default graph view and may be used for validating the application
logic. However, it does not yet present a suitable GUI as shown
in Figure 1.
The UPGRADE framework is open and extensible. Figure 4
shows anextensionof the core framework displayed in Figure 3.
Note that the core framework does not provide specific views,
windows, unparsers, etc. The core may be extended by reusing
third-party components (grey boxes). Additional components
may have to be implemented (hatched boxes) either once or for
each application.
The classesTree View andGraph View need only be im-
plemented once to provide for tree and graph views, respectively.
However, they do not implement the required functionality on
their own. Rather, they serve as adapters [12] communicating
with third-party components. The adapter pattern is also used
for the classesTree ReprDoc andGraph ReprDoc . Trees
and graphs are realized with the help of Java Swing and ILOG
JViews, respectively.
A few classes have to be implemented for each application. For
example, in the case of the AHEAD system we have to imple-
ment aAHEAD Windowoffering a tree view and a graph view
on a dynamic task net. Furthermore, the respective unparsers for
filling the representation documents depend on the application
logic and therefore have to be implemented as well. Please note
that the classView together with the abstract classUnparser
and the specific unparser classes form a strategy design pattern

[12].
The implemented framework extension can be further enhanced
by making use of UPGRADE’s manifoldconfiguration capabil-
ities. These can be used to define the menu structure, provide
a tool-bar, describe the specific local layout of graph nodes and
edges, tree nodes and table cells. Additionally, the filters can be
configured to block out node and edge types or to transform one
graph pattern into another. In the sequel, we illustrate some of
these configuration facilities using the graphical representations
of task nets as an example.
Every logical graph contains many node and edge types that have
been introduced solely for implementation reasons and should not
be visible to the user. A tool builder can configure the filters pro-
vided by the framework to hide these node and edge types from
the user. Moreover, the filters may also provide abstract represen-
tations of graph elements. For example, a control flow is repre-
sented internally by a node and adjacent edges. Using the frame-
work’s edge-node-edge filter, this graph pattern can be translated
into a single edge having the same attributes as the original node.
UPGRADE offers a style-sheet mechanism for view elements
which enables the tool builder not only to determine a view el-
ement’s local layout according to its type but also according to its
internal state retrieved from the application logic. For example,
task nodes from dynamic task nets can be configured to be ren-
dered as rectangles with an icon at the left-hand side symbolizing
the task’s execution state and the task’s name printed at the right.
Furthermore, parameter nodes can be rendered as white and black
circles with a description written near to the element.
Every visual language has special requirements according to the
layout of its representation elements. Besides standard layout al-
gorithms like Sugiyama, for hierarchical layouts, or Giotto, for
orthogonal layouts, the framework includes a constraint based
layout algorithm. Constraints are specified in a declarative way
and are generated by the unparser for the graph representation.
For example, for dynamic task nets we specified constraints that
attach the parameter nodes to the left and right of a task node.

5 Related Work

Many tools for visual languages have been built up to date, but
usually these are designed for a specific language (e.g., Lab-
VIEW [19], Prograph [5], and Agentsheets [25]). In contrast,
UPGRADE offers a reusable framework which is independent of
the visual language to be supported. Therefore, it is closely re-
lated to meta-CASE tools.
Often, the term meta-CASE tool is used for tools dealing with
graphical languages. At the logical level, a language is typically
defined in terms of a graph-like or ER data model. At the rep-
resentation level, graphical representations are considered most
important. However, other representations such as trees, tables,
or text are offered as well. For programming extensions, a meta-
CASE tool typically provides either a scripting language or an ap-
plication programming interface (API) for Java, C++, etc. As ex-
amples, we may list MetaEdit+ [20], ToolBuilder [1], DB-MAIN
[9], JComposer [15, 16], KOGGE [6], and MetaBuilder [14].
Most meta-CASE tools suffer from the following restrictions:

1. The language definition includes only the structure. As
a consequence, generated graphical editors provide only

primitive commands such as insertion or deletion of sin-
gle nodes and edges. Complex commands have to be pro-
grammed with the help of scripts or the API. UPGRADE
solves this problem through its integration with PROGRES,
which supports the declarative specification of complex op-
erations with graph rewrite rules.

2. Meta-CASE tools are tied to a specific data model and
store their data in a home-grown repository. In contrast,
UPGRADE defines a standard graph interface in line with
the GXL standard graph exchange format [17]. Thus, UP-
GRADE can be integrated with any storage device by im-
plementing that interface.

3. Meta-CASE tools can be extended only to a limited extent,
using a scripting language or an API. This is supported in
UPGRADE, as well. In addition, UPGRADE provides stan-
dard interfaces for plugging in GUI components as required.
Therefore, it is more open than current meta-CASE tools.

There is a small set of competing research prototypes which
also rely on graph transformations and therefore address the first
restriction in the list above. This includes e.g. DiaGen [23],
GenGEd [2], Fujaba [11], AGG [10], and VisPro [27]. However,
these systems do not strive for providing an extensible, reusable
and open framework, i.e., they fail to address restrictions 2 and 3.
Before building UPGRADE, we looked into other frameworks in
order to save development effort. In particular, we investigated
DV-Centro [4], which does offer an architecture with clearly sep-
arated layers of abstraction. Finally, however, we excluded DV-
Centro because it would have forced us to mirror the logical graph
as a materialized DV-Centro data structure. As a result of this
experience, we introduced the filter layer into the UPGRADE ar-
chitecture. Thus, the logical graph need not be duplicated.

6 Conclusion

We have presented UPGRADE, a framework for building tools
for visual languages. UPGRADE relies on a graph model for
defining the application logic, abstracts from the actual storage
device through a graph-based interface, decouples the application
logic from the user interface, includes multi-user and distribution
support, and provides hooks for plugging in external GUI com-
ponents, e.g., from ILOG JViews or Swing. It is implemented
in Java and hence provides platform independence. So far, the
implementation comprises about 70 packages, 250 classes, and
70,000 lines of code. Currently, we are using UPGRADE in our
research group for several projects in the areas of book authoring,
reverse engineering and process management. However, we are
planning to deliver the framework to external users as well.

7 References

[1] A. Alderson, J. Cartnell, and A. Elloit. ToolBuilder: From CASE
tool components to method eng. InProc. 1st International Sym-
posium on Constructing Software Engineering Tools (CoSET‘99),
pages 9–18, Los Angeles, California, May 1999.

[2] R. Bardohl. GenGed: A generic graphical editor for visual lan-
guages based on algebraic graph grammars. InProceedings of the

1998 Symposium on Visual Languages (VL ‘98), pages 48–55, Hal-
ifax, Canada, Sept. 1998.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling

Language User Guide. Addison Wesley, Reading, Massachusetts,
1998.

[4] P. C. Brown. Satisfying the graphical requirements of visual lan-
guages in the DV-Centro framework. InProc. IEEE Symposium on
Visual Languages (VL‘97), pages 84–91, Capri, Italy, Sept. 1997.

[5] P. Cox, F. Giles, and T. Pietrzykowski. Prograph. In M. M. Burnett,
A. Goldberg, and T. G. Lewis, editors,Visual Object-Oriented Pro-

gramming: Concepts and Environments, pages 45–66. Manning
Publications Co., Greenwich, 1995.

[6] J. Ebert, R. S̈uttenbach, and I. Uhe. Meta-CASE in practice: A case
for KOGGE. InProc. 9th International Conference on Advanced
Information Systems Engineering (CAiSE‘97), LNCS 1250, pages
203–216, Barcelona, Spain, June 1997.

[7] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.
Handbook on Graph Grammars and Computing by Graph Trans-

formation: Applications, Languages, and Tools, volume 2. World
Scientific, Singapore, 1999.

[8] G. Engels and G. Rozenberg, editors.Proc. TAGT ‘98 — 6th In-
ternational Workshop on Theory and Application of Graph Trans-
formation, LNCS 1764, Paderborn, Germany, Nov. 1998. Springer-
Verlag.

[9] V. Englebert and J.-L. Hainaut. DB-MAIN: A next generation
META-CASE. Information Systems, 24(2):99–112, Apr. 1999.

[10] C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Lan-
guage and environment. In Ehrig et al. [7], pages 551–604.

[11] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams:
A new graph rewrite language based on the Unified Modeling Lan-
guage and Java. In Engels and Rozenberg [8], pages 296–309.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Pat-
terns: Elements of Reusable Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[13] F. Gatzemeier and O. Meyer. Improving the publication chain
through high-level authoring support. In Nagl and Schürr [24],
pages 255–262.

[14] M. Gong, L. Scott, Y. Xiao, and R. Offen. A rapid development
model for Meta-CASE tool design. InProc. Conceptual Modeling
— ER ‘97, LNCS 1331, pages 464–477, Los Angeles, California,
Nov. 1997.

[15] J. Grundy, W. Mugridge, and J. Hosking. Visual specification of
multi-view visual environments. InProceedings of the 1998 Sym-
posium on Visual Languages (VL ‘98), pages 236–243, Halifax,
Canada, Sept. 1998.

[16] J. Grundy, W. Mugridge, and J. Hosking. Constructing component-
based software engineering environments: Issues and experiences.
Information Software and Technology, 42(2):103–114, Jan. 2000.

[17] R. Holt, A. Winter, and A. Scḧurr. GXL: Toward a standard ex-
change format. InProceedings 7th Working Conference on Reverse
Eng. (WCRE 2000), Brisbane, Australia, Nov. 2000.

[18] D. J̈ager, A. Schleicher, and B. Westfechtel. AHEAD: A graph-
based system for modeling and managing development processes.
In Nagl and Scḧurr [24], pages 325–340.

[19] G. Johnson. LabVIEW Graphical Programming. McGraw-Hill,
Maidenhead, England, 1994.

[20] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+: A fully config-
urable and multi-tool CASE and CAME environment. InProc. 8th
International Conference on Advanced Information Systems Engi-

neering (CAiSE‘96), LNCS 1080, pages 1–21, Heraklion, Greece,
May 1996.

[21] C.-A. Krapp, S. Kr̈uppel, A. Schleicher, and B. Westfechtel. Graph-
based models for managing development processes, resources, and
products. In Engels and Rozenberg [8], pages 455–474.

[22] A. Marburger and D. Herzberg. E-CARES research project: Under-
standing complex legacy telecommunication systems. In P. Sousa
and J. Ebert, editors,Proc. 5th European Conference on Software
Maintenance and Reengineering (CSMR ‘2001), pages 139–147,
Lisboa, Portugal, Mar. 2000.

[23] M. Minas and G. Viehstaedt. DiaGen: A generator for diagram
editors providing direct manipulation nad execution of diagrams. In
Proc. 11th IEEE Symposium on Visual Languages (VL‘95), pages
203–210, Darmstadt, Germany, Sept. 1995.

[24] M. Nagl and A. Scḧurr, editors. Proc. AGTIVE — Applications
of Graph Transformations with Industrial Relevance, LNCS 1779,
Castle Rolduc, The Netherlands, Sept. 1999.

[25] A. Repenning and W. Citrin. Agentsheets: Applying grid-based
spatial reasoning to human-computer interaction. InProc. IEEE

Symposium on Visual Languages (VL ‘93), pages 77–82, 1993.
[26] A. Scḧurr, A. Winter, and A. Z̈undorf. The PROGRES approach:

Language and environment. In Ehrig et al. [7], pages 487–550.
[27] D.-Q. Zhang and K. Zhang. VisPro: A visual language generation

toolset. InProceedings of the 1998 Symposium on Visual Lan-
guages (VL ‘98), pages 195–202, Halifax, Canada, Sept. 1998.

