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Abstract

Managing the software development and mainte-

nance process has been identified as a great challenge

for several years. Sofiware processes are highly dy-

namic and can only rarely be planned completely in

advance. Dynamic task nets take this into account.

They are built and modified incrementally as a sofl-

ware process is executed. Dynamic task nets have been

designed to solve important problems of process dy-

namics, including product-dependent structural evolu-

tion, feedbacks, and concurrent engineering. In order

to describe editing and enactment (and their interac-

tion) in a uniform way, task nets are formally defined

by means of a programmed graph rewriting system.

1 Introduction
Managing the software development and mainte-

nance process has been identified aa a great challenge

for several years [3]. Only rarely can complex software

processes be planned completely in advance. Software

process management haa to meet the following require-

ments with respect to process dynamics:

1. Forward development The process structure de-

pends on the product structure which evolves

gradually. For example, the modules of a soft-

ware system are determined in the design phase.

Only then may work assignments for implemen-

tation tasks be performed.

2. Concurrent engineering In order to shorten de-

velopment cycles, concurrent engineering [18] pro-

poses methods to increase concurrency in the de-

velopment process. To this end, cooperation be-

tween software engineers must be enhanced such

that reasonable intermediate results may be de-

livered as soon as possible. As a result, each task

is executed in a highly dynamic work context.

3. Feedbacks As development proceeds, errors are

detected in later phases which require enhance-

ments of results produced by earlier phases. The

*This work has partly been supported by the German Re-
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consequences of such feedbacks cannot always be

predicted. For example, a bug discovered during

module testing may require changes to the mod-

ule implementation, but it may occasionally even

affect the design.

The DYNAMITE approach (DYNAMIC ~rASK NETS

[22, 8]) haa been designed to meet these requirements.

DYNAMITE is characterized by the fallowing fea-

tures:

1. Editing and enactment of task nets a,re highly in-

tertwined. This means that the structure of a

task net evolves during execution.

2. The interface of a task (what) is separated from

its realization (how).

3. Tasks are arranged in a hierarchy.

4. Within a subnet, tasks are connected by acyclic

control flow relations. These relations are used to

control the order in which tasks are executed.

5. In addition, feedbacks are represented by rela-

tions which are oriented oppositely tc~control flow

relations.

6. Reactivation of tasks is modeled by creating new

task versions. In thk way, traceability of change
processes is supported.

7. Furthermore, tasks are connected by data flow

relations.

8. During enactment, a task may consume and pro-

duce sequential versions of inputs and outputs,

respectively.

9. Enactment takes the hierarchy into account (i.e.,

the hierarchy is not flattened) and respects the

abstraction principle introduced in 2.

10. The evolution of task nets is controlled by a

schema which defines domain-specific types of

tasks and relations.

Dynamic task nets are formally defined in PRO-

GRES, a specification language which is based on

programmed graph rewriting systems ([19], see e.g.
[13, 7] for related approaches). The formal specifica-

tion is developed using the PROGRES environment,
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DYNAMITE MELMAC SPADE EPOS

formalism graph rewriting Petri nets Petri Nets EER

instantiation instance-level nets populated copies populated copies instance-level nets

abstraction interface hides no abstraction interface hides no abstraction

realization realization

hierarchy design and design design and design and

execution execution execution

horizontal control flow, token flow (control token flow data flow

relations feedback, data flow and data)

interleaving of

editing and fine-grained coarse-grained coarse-grained fine-grained

enactment

support of explicit (feedback implicit (cycle) implicit (cycle) implicit

feedbacks relations) (replanning)

concurrent pre-releases of no specific no specific cooperating

engineering intermediate support support transactions

versions

traceability task versions no specific support no specific support no specific support

Table 1: Comparison with other approaches

which provides tools for editing, analyzing, interpret-

ing, and compiling PROGRES ;pecificatio& [20] .- Op-

erations on task nets are specified by high-level graph

rewrite rules which describe complex replacements of

subgraph patterns. In this way, both execution opera-

tions, which manipulate runtime data, and edit opera-

tions, which perform structural changes, are expressed

in a uniform framework. The PROGRES specification

defines the structure and behavior of dynamic task

nets precisely and unambiguously on a high level of

abstraction. Since the specification is executable, a

software process management system may be gener-

ated from the specifaction.

2 Related work
Many different paradigms have been applied to soft-

ware process management, including rule bases [12,

11], blackboards [14], process programs [17], events

and triggers [2], state charts [9], and object orienta-

tion [5]. DYNAMITE follows a net-based paradigm.

Nets allow for a natural, graphical representation of

complex software processes. They suit the needs of
project managers (planning and control of software

projects), but they also support software engineers

(agendas, work contexts).

Table 1 compares DYNAMITE to some well-

established approaches (MELMAC [4], SPADE [1],

and EPOS [10]). MELMAC and SPADE rely on Petri
nets, EPOS is based on an EER approach, and graph

rewriting provides the formal foundation for DYNA-

MITE. With respect to task instantiation, these ap-

proaches are classified into two categories:

1.

2.

In the first category, instance-level nets are main-

tained where each node represents a specific task

instance. EPOS and DYNAMITE belong to this

category.

In the second category, type-level nets are instan-

tiated by creating copies which are populated

with tokens. Here, each transition represents a

task type rather than a task instance. Of course,

individual task instances are created and man-

aged, as well (e.g. for constructing an agenda).

But instance-level nets are not maintained, nei-

ther for logging nor for planning.

Instance-level nets provide detailed and specific infor-

mation on the status of a project. In this respect,

they are superior to (copies of) type-level nets with a

project-invariant structure.

Since DYNAMITE is based on instance-level nets,

it differs considerably from MELMAC and SPADE.

Furthermore, the table shows that there are still a lot

of differences between DYNAMITE and EPOS, which
is closest to our approach. In contrast to EPOS, in-

terfaces and realizations are strictly separated in DY-

NAMITE, and abstraction is enforced (the interface

hides the realization). Furthermore, DYNAMITE dis-

tinguishes between multiple types of horizontal rela-

tions (control flow, feedback, data flow), while EPOS

only supports one type of relation (data flow). Con-

current engineering is supported in EPOS only be-

tween different workspaces (each of them containing
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a task tree), but not between individual tasks within

one workspace. In DYNAMITE, feedbacks are repre-

sented explicitly by relations which introduce cycles

into the task net. In EPOS, feedbacks are triggered

by asserting error conditions. There is no explicit re-

lation between the triggering task and the triggered

task; the task net does not contain cycles.

3 Informal description

In this section, we describe our approach to soft-

ware process management in an informal way. In

subsection 3.1, we discuss the structure of task nets.

In subsection 3.2, we sketch how task nets may be

adapted to a certain application domain. Subsec-

tion 3.3 describes task enactment in general terms.

Finally, subsection 3.4 illustrates various applications

of our approach. In particular, we show how struc-

tural evolution, concurrent engineering, and feedbacks

are supported.

3.1 Task nets

A task is an entity which describes work to be done.

The interface of a task specifies what to do. In partic-

ular, it describes inputs, outputs, preconditions, post-

conditions, start dates, due dates, etc. The interface

serves as an abstraction which hides the realization.

The realization of a task describes how to do the

work. In general, a given interface may be realized

in multiple ways (note the analogy to module inter-

faces and realizations in programming-in-the-large).

For example, consider development of a software sys-

tem which consists of multiple subsystems. For each

subsystem development task, an appropriate realiza-

tion may be selected. S1 might be developed according

to a waterfall model, while prototyping might be cho-

sen for the development of S2. Finally, S3 might be

delegated to a subcontractor. On the client’s side, the

realization would then describe all activities required

to communicate with the subcontractor and to super-

vise his work.

We distinguish between atomic and complex real-

izations. In case of an atomic realization, a task is

not refined into subtasks. Typical examples are edit-

ing and compiling of modules. A complex realization

consists of a net of subtasks which are connected by

various kinds of relations to be described below.

Control flow relations impose an ordering on the

subtasks to be enacted; they resemble the ordering
relations found in net plans. Fig. 1 shows a sample

net of tasks connected by control flow relations. The

subsystem consists of modules A,... ,D, where B and
C import from A and D imports from B and C (see
fig. 2). Subsystem design is followed by concurrent

DeveloD_Subsvstem J

IntegrationTeat +-- waiting tas

I

Figure 1: Sample task net (control flow view)

implementation of all modules. Subsequently, mod-

ules are tested in a bottom-up fashion. Finally, an

integration test is performed.

Control flow relations span an acyclic, connected

graph which acts as the skeleton of the task net. In

order to represent feedbacks, feedback relations are in-

troduced which are oriented in the oppos’ite direction.

For example, fig. 3 shows a feedback from the integra-

tion test to the implementation of module B.

Fig. 3 also illustrates task versions and successor re-

lations, When a terminated task has to be reactivated

later on, a new task version is created. Formally, task

versions are connected by successor relations. In fig. 3,

versioning is illustrated by drawing the successor on

top of its predecessor. In general, a new task version is

created either because of changing inputs or because

of a feedback (see also subsection 3.4).

D

/\
B c

Data .

A

Figure 2: Subsystem architecture

flow relations are used to transmit data be-
tween tasks connected by hierarchical, control flow,

feedback, or successor relations. There are three cases
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Figure 3: Feedback between tasks

to be distinguished:

. Input + input: The input of a supertask is passed

to a subtask.

s Output + input: The output of a subtask is prop-

agated to another subtask.

. Output -+ output: The output of a subtask is

passed upwards to the supertask.

To illustrate data flow relations, fig. 4 refines a

cutout of the task net displayed in fig. 1. The de-

sign task receives the requirements definition from its

supertask and creates interfaces for all modules. The

implementation task for B consumes the export inter-

face to be implemented and the interface of the im-

ported module A; it creates an implementation for B.

To illustrate feedbacks, a feedback relation goes back

to the design; this relation is refined by a data flow car-

rying a bug report. Finally, the test task for B receives

B‘s implementation and a tested implementation of A;

it delivers a tested implementation of B.

3.2 Levels of modeling

Dynamic task nets need a computational represen-

tation. For this purpose we distinguish between three

levels of modeling: generic model, specific model, and

instances.

The generic model is built-in in and is independent

of an application area. While this paper focuses on

software engineering, the generic model can also be

applied to other domains such as Computer Integrated

Manufacturing (CIM) or office automation. It factors

Sys.req Feedback

‘Ill :.-j--feedbackre,ation

wiryytport ;
..’

Bin A.in ..”

. . : -------’

B.imp~ Feedback

output port

alztaflow +

B.tal

1[* ---- Coritrol$ow

Figure 4: Sample task net (data flow view)

out all common properties of dynamic nets in different

scenarios. It introduces the notions of task, input,

output, data flow, etc. and provides a standard state

transition diagram, which can be adapted on the next

layer down.

The specific model is used to adapt the generic

model to a specific application domain. Fig. 5 shows

the structural part of a specific model for the nets de-

scribed in the previous subsection. Task types are rep-

resented by ellipses. For each type, the model defines

the minimum and maximum numbers of instances.

The definitions of input and output ports each carry

a name, the type of document they can pass, and the

minimum and maximum number of ports of this type

a task instance may have. Besides the structural adap-

tion of the task net, execution semantics can also be

adapted on the level of the specific model. In this way,

different execution strategies can be implemented for

different project needs (see also subsection 3.3).

The structural part of the specific model constrains

the task net which is created on the instance level.
A task net is used to model the actual state and the

planned steps of a development process.

3.3 Enactment

Enactment is defined such that evolving task nets

are supported. Task nets need not be built completely

before enactment starts. Rather, they can be modified

incrementally during enactment. In particular, mod-

ifications to a task net do not require its enactment
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Figure5: Model for task nets

to resuspended. Rather, subtasks notaffected by the

modification can continue execution while the net is

being modified. This does not exclude suspension of

the whole net if large modifications are intended.

Each task has an enactment state which is con-

trolled by the state transition diagram shown in fig. 6.

Thk diagram uniformly applies to all tasks, regard-

less of their position in the task hierarchy. It is a fixed

part of the meta model which cannot be modified when

defining a specific model for some application domain.

However, there are still sufficient means to adapt the

enactment behaviour. The conditions for state transi-

tions may be redefined according to the needs of the

application domain (see below).

InDef init ion serves as initial state where a task

is defined, i.e. its interface is described (inputs to

be consumed, outputs to be produced, etc.). The

Defined transition indicates that the task definition

is completed and may now be enacted. If necessary,

Redefine may be used to perform the inverse transi-

tion. As soon as its activation condition is fulfilled,

Start may be used to move the task from waiting to

Act ive. Enactment may be interrupted by perform-

ing the Suspend transition into the state Suspended;

Resume reverts this transition. There are two final
states. Done indicates that the task has been com-

pleted successfully (transition Commit ). In contrast,

Defined

)
Resume

ln_Definition Wating

Redefine Start

Figure 6: State transition diagram

Failed, which is reached by an Abort transition,

means that the task could not be completed success-

fully.

Default conditions are provided for all state transi-

tions. These defaults may be overridden as required.

In this way, a broad spectrum of behaviors maybe de-

fined according to the requirements of a certain appli-

cation domain. For example, in a very formal setting,

the start condition may state that a task may only be

started when all predecessors (with respect to control

flow relations) have been terminated successfully. On

the other hand, in a concurrent engineering setting

we may relax this condition such that pre-releases of

certain (not necessary all) inputs are available. These

adjustments may be performed individually for each

task type. Therefore, the enactment behaviour can

still be customized although the state transition dia-

gram is fixed.

Finally, let us comment on the role of the task hi-

erarchy with respect to enactment. In sclme process

management systems, the hierarchy has no meaning

for task enactment (see also section 2), i.e. enactment

operates on a flat net of atomic tasks. This approach

is not consistent with our distinction between interface

and realization. If the hierarchy is flattened, there is
no abstraction, i.e. a task does not hide its realiza-

tion any more. We want to retain the property that a

task interacts with its neighbors only through its in-

terface. Therefore, the hierarchy has to be preserved

for enactment.

In particular, abstraction implies that a subtask T1

in subnet N1 has no direct connection to a subtask T2

in a different subnet N2. Communication has to be

performed via their supertasks. This might appear a

bit awkward, but cannot be avoided without violating

the abstraction. However, passing data up and down

the hierarchy may be automated. Communication via

supertasks cannot be avoided without violating ab-

straction.

3.4 Evolving nets, concurrent engineer-

ing, and feedbacks

During execution, the structure of task nets usu-

ally changes. In particular subnets may depend on

the contents of the documents produced and therefore
cannot be planned in advance. The development of

e.g. a simple software subsystem starts with the ini-
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Figure 7: Initial net (control flow view)

tial net of fig. 7. After the Design task haa produced

a coarse description of the architecture such as given

in fig. 2, the task net is extended as shown in fig. 1.

For every module, one implementation and one test

task is inserted. Control and data flows are derived

from import relations and the test strategy. In this

example, the process engineer has chosen a bottom up

test strategy. In general, changes are not constrained

to extensions. If the architecture gets modified later

on, this will induce a change of the task net. If the

bottom up test strategy is replaced with a top down

strategy, this again will lead to a net modification.

We do not enforce a strictly phase-oriented ap-

proach, but instead allow concurrent engineering. In

our example, the depending implementation tasks may

start before the Des ign task is completed. During en-

actment, an active task can produce several versions

of its outputs, and conversely consume several input

versions. The net keeps track of which tasks have pro-

duced and consumed which versions. In fig. 8, the

Design task has first delivered an incomplete version

A. int 1 of the interface definition of module A. This

version has been used to start implementing mod-

ules B and C. Since then, Design, Implement B, and

Implement .C have been active concurrently. Later

on, the Design task has created a completed ver-

sion A. intz. Fig. 8 shows the data flow view af-

ter Implement -C has read the new version, but while

Implement _B is still using the old one. The state tran-

sition conditions make sure that Implement B cannot

be terminated successfully in this situation.

The development of complex technical documents

does not always proceed smoothly. If a task detects an

error in one of its input documents, a feedback flow is

added to the net (dashed arrow in fig. 3). Along this
flow, the bug is reported to the producer of the faulty

document. The specific model (see subsection 3.2)

governs which feedbacks are allowed. Actual flows are,

however, added to the task net only when needed so

the net does not get cluttered. If the task which pro-

duced the erroneous document is still active, it uses

the new bug report input to create a corrected version

of the output document. If the task has been termi-

nated, the situation is more severe. In this case, we

%.! ~“+
.. /’

. . ,’
“-planned version”

Figure 8: Different document versions

want to give the project manager the chance to later

trace what has happened. Furthermore, the person

responsible for the original task might be no longer

available (she might even have left the company), and

we have to assign a different actor this time. There-

fore, we do not reactivate the old task, but create a

new version instead. Inputs to this new version are

the feedback flow and copies of the input flows of the

original task. Subsequent tasks that may be affected

by the corrected output version can be automatically

deduced. For the terminated ones among them, new

versions are created as well.

4 Formal specification

In this section, we will be concerned with the devel-

oper’s view of an environment for dynamic task nets.

To define the semantics of such nets, we use the spec-

ification language PROGRES, which is based on pro-

grammed graph rewriting systems. Furthermore, the
PROGRES environment provides tools for generating

an end-user environment from a specification.

4.1 Overview

PROGRES is a specification language which is

based on attributed graphs. A PROGRES specifica-

tion — a specification written in PROGRES — con-

sists of two parts. The graph schema defines types

of nodes, edges, and attributes. Subsequently, opera-
tions are specified which conform to the graph schema.

This is done on a high level of abstraction. Instead
of describing a graph transformation in terms of ele-

mentary operations such as creation and deletion of

single nodes and edges, a graph rewrite rule — also

called production — describes replacement of a whole

subgraph in a declarative way. The PROGRES com-

piler takes care of all algorithmic details for performing

graph transformations efficiently.
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Figure 9: Generic approach for dynamic task nets

We follow a generic approach to the design and

implementation of an environment for dynamic task

nets which is described in fig. 9. Recall that we dis-

tinguish between three levels of modelling: generic

model, specific model, and instances (subsection 3.2).

The generic model is defined by a graph schema and a

set of productions which are independent of a specific

application domain. The specification of this model

contains formal generic parameters which are used

to parametrize generic productions. By supplying

corresponding actual parameters, the productions are

adapted to a specific application domain. To this end,

a domain specific part is added to the generic graph

schema (upper left corner of fig. 9). In the simplest

case, we may adapt the generic model without writing

‘code’ (productions). In general, we may have to write

domain specific productions as well (not shown in the

figure).

The PROGRES specification is used to generate a

process management system adapted to a specific ap-

plication domain (lower left corner of fig. 9). The pro-

cess management system manipulates instance-level

task nets, represented by task graphs.

Different views on task graphs are offered according

to varying user roles (lower right corner of fig. 9). As

we will show below, task graphs are complex internal

data structures which cannot be presented directly to

the users of a process management system. More high-
level and condensed presentations are needed which

hide the complexity of the underlying task graphs. For

example, a control flow view of a task net as shown in

developer I

developer II

fig. 1 maybe presented to a project manager. Further-

more, a developer maybe supplied with an agenda, i.e.

a textual list of tasks to be carried out.

For similar reasons, we want to shield process mod-

elers from the inherent complexity of PROGRES spec-

ifications. For example, a diagram as shown in fig. 5

may be used to define a specific model in a convenient

way (upper right corner of fig. 9). Such a diagram

can be transformed into the domain specific part of

the PROGRES specification. Hence, procless modelers

need to use PROGRES only for further modifications

which go beyond simple standard adaptations.

In the remainder of this section, we describe the

specification of the DYNAMITE model in a more de-

tailed way.

4.2 Graph schema

The graph schema serves as a database schema

which defines types of objects, relations, and at-

tributes. In PROGRES, objects are modeled as nodes,

and properties of objects are represented by node at-

tributes. Edges represent binary relaticms between

nodes and do not carry attributes. N-ary relations,

attributed relations, and relations participating them-

selves in relations are modeled by nodes and adjacent
edges.

Fig. 10 displays a graphical schema for the generic

model. Each box represents a node class. Node classes

declare attributes for nodes and are organized into
a multiple inheritance hierarchy. A subclass inherits

from its superclasses all attributes and all incoming

and outgoing edge types, which are drawn as labeled
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solid arrows. For the sake of readability, attributes are

not shown in fig. 10.

Node class ITEM acts as root of the class hierarchy,

not only for the process model, but also for the re-

source model and the product model, which are not

discussed in this paper. A TASK is realized by a com-

plex or atomic TASKBODY and has some input and out-

put parameters. Control and data flow relations be-

tween process items are modeled as nodes. Vertical

relations exist between a task and all its task children.

Horizontal relations connect sibling tasks. Data flow

relations refine the corresponding task relations. The

data flow is modeled by a token game. Each token

refers to some item. Arbitrary items are permitted by

the meta model as inputs of tasks, including products,

tasks and resources. Released30r edges indicate to

which tasks a certain token has been released. In order

to keep the development information about produced

and consumed data, the tokens are not deleted. They

are collected in a token list linked by Next edges.

In order to adapt the generic model, specific types

of tasks, parameters, documents, etc. have to be de-

fined. In PROGRES, node types are defined as in-

stances of node classes. PROGRES has a stratified
type system: nodes are instances of node types, which

in turn are instances of node classes. The generic

model and the specific model are defined on the level

of node classes and node types, respectively.

As outlined in the previous subsection, we fol-

low a generic approach: The generic model intro-

duces formal parameters which are replaced by ac-

tuaJ parameters in the specific model. In our speci-

fication, we model formal generic parameters as type-

level attributes (called meta attributes in PROGRES).

A meta attribute is attached to a node class or node

schema for the meta model

node type Implement : TASK
redef meta

In := {Export, Import, FeedbackIn};
Out: = {Body, FeedbackOut};

Realizations := {Implement_Body};

end;
node type Export : INPUT

redef meta
FormalType : = Interface;
Formal Opt ional : = false;
FormalMany : = false;

end;

node type Import : INPUT

redef meta

FormalType : = Interface;

FormalOptional : = true;

FormalMany := true;

end;

node type Implementlody : ATOMIC

/* tool name */

end;

Figure 11: Cutout of specific model

type; its value is type- rather than instance-specific.

On the level of the generic model, uninitialized meta

attributes are introduced. On the level of the spe-

cific model, values are assigned to meta attributes.
These values serve as actual parameters bound to for-

mal generic parameters.

As an example, fig. 11 shows the specification

of the task Implement, which is introduced as part

of the specific model. Recall that process model-

ers have a more user friendly view on the specifc

model (cf. fig. 5). The type-level attribute In of the

type Implement is initialized with the types Export,

Import and FeedbackIn. This means that an im-
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plementation task receives the export interface, im-

port interfaces, and error reports resulting from a

feedback aa input parameters. All possible realiza-

tions for the Implement task are listed in the at-

tribute Realizations. The meta attributes cannot

be changed on the task graph level and are used to

check the applicability of the graph rewrite rules spec-

ified in the productions of the meta model (see be-

low). The meta attributes FormalType, FormalMany

and Formal Opt ional of the node type Export are used

to check whether the right tokens are consumed, and

to specify the cardlnalities of the parameters.

After we have described the abstract structure of

task graphs in terms of node classes and node types,

we give an idea of how such graphs look like. A task

graph simply consists of attributed nodes and labeled

edges. Fig. 12 shows a cutout of a graph representing

the task net shown in fig. 1. For the sake of read-

ability, we omit the node attributes. The presented

graph is a snapshot since it evolves dynamically over

time. The nodes are of different classes and types (in-

dicated by symbols and type identifiers, respectively).

For instance, the graph contains a node ImpB of type

Implement, which in turn is an instance of node class

TASK defined in the schema of the meta model.

4.3 Graph operations

Operations on the task graph are specified on the

level of the meta model. Since they refer to values

of meta attributes and receive node types as actual

parameters, they are implicitly adapted to a specific

model by defining specific node types and assigning

values to meta attributes (see above).

Operations on the task graph are specified by means

of graph rewrite rules (called productions in PRO-
GRES). A graph rewrite rule describes a graph trans-

formation and consists essentially of a left-hand side,

which defines the graph pattern to be replaced, and

a right-hand side, which defines the replacing graph.

In thk way, operations on the complex data struc-

ture representing the task net can be easily specified

without regarding algorithmic details concerning the

pattern match, graph replacement, etc. These details

are implemented within the PROGRES system.

A comprehensive discussion of transformations on

task graphs is beyond the scope of this paper ([15]).

We present an example of an edit operation, which

changes the structure of the task net. Fig. 13 presents

an operation to insert a feedback from a successor s

to a predecessor p into the task net. A lot of steps are

performed in a single graph rewrite rule:

1. The rule checks whether s is a (directe or transi-

tive) successor of p. Furthermore, there must not

yet exist a feedback relation from s to p.

2. The rule is only applicable if s resides in state

Act ive.

3. Furthermore, the rule checks whether any con-

straint of the specific model is violated.

4. A feedback relation from s to p is created.

5. Furthermore, a refining dataflow is created which

transmits an error message m.

The rule receives tasks s and p, the message m, the

parts to be connected (out and in), and the types

of token, data flow, and feedback relation as input

parameters (Token, D, and F, respectively).

The lefi-hand side of the rule consists of nodes,

edges and paths. In this example, all nodes are fixed

by input parameters, e.g. node ‘ 2 is fixed by param-

eter in. A path is indicated by a double arrow and

is used to navigate through the task graph. For in-

stance, the path expression Forward searches a path

from a TASK node to another TASK node via a reverse

Source edge, a node instance of class CONTROLFLOW

and a Target edge. The + operator indicates the tran-

sitive closure of the path. The crossed path Backwards

ensures that no feedback relation exists between the

two tasks.

Conditions on attribute values are stated below the

left-hand and right-hand side. First, the State at-

tribute of s must have the value Active. Further-

more, the applicability of the graph transformation is

checked against the specific model using the type pa-

rameters D and F. For example, a feedback between s

and p can only be inserted into the task graph if the

feedback type F is defined such that its TargetTask

and SourceTask attributes contain the t,ype of p and

the type of s, respectively. A similar check is made
for the data flow type D. Furthermore, it is checked

whether the out parameter is compatible with the
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production Feedback ( s, p : TASK; m : MESSAGE; OUt : OUTpUT; iII: INPUT;
.,__

5
‘2= in

Has

‘3= p

m
‘1= m Forward+ Backward

‘4= s

b
Has

‘5= Ou

::=

—----- -- -

m-’

in parameter and the output m is of the right type

(out. FormalType).

If all conditions evaluate to true, the left-hand side

isreplaced bytheright-hand side. Inthisexample, the

graph rewrite rule describes agraphextension, i.e. all

elements of the left-hand side are replaced identically,

and new elements (indicated in boldface) are inserted

into the task graph.

5 Conclusion

We have presented a model for managing task

nets which takes various aspects of process dynam-

ics into account (including structural evolution, feed-

backs, and concurrent engineering). The model has

been defined formally by a graph rewriting system

which covers more than 60 pages of PROGRES. We

are currently implementing a prototype which is par-

tially generated from the PROGRES specification [20].

We will use this prototype as a test bed for evaluat-
ing the DYNAMITE model, but we do not expect the

prototype to be usable for actual software production.

We have evaluated the DYNAMITE model by

studying scenarios in different application domains

(not only software engineering, but also mechanical
engineering), So far, these studies have been per-

formed with paper and pencil, since no tools are yet

available. Although we have not used actual data from

I
Conait ion

(s. State . Active)ti

(P. tYDe in F. TargetTask) end (s. type in F. SourceTask) ) ~~

(in type in D. Target Parameter) end (out type in D. SourceParameter) end

(out. FormalType <.> in. Formal Type) and (m. t~e h out. FormalType)

end;

path Forward : TASK -> TASK .

(<-Source- & instance of CONTROLFLOW & -Target-> )
end;

path Backward : TASK -> TASK .

(<-SOUrCe- & instence of FEEDBACK & -Target-> )
end;

Figure 13: Graph rewrite rule for inserting a feedback into the task graph

real software processes, we believe that we have inves-

tigated realistic examples. These examples demon.

strate that concepts such as structural evolution of

task nets, explicit feedbacks, task versions (for trace-

ability), or pre-releases of intermediate results (con-

currency) are actually needed in practice. We believe

that previous work has not addressed these problems

in a satisfactory way. On the other hand, empirical ev-

idence of the usefulness of our approach is still missing.

DYNAMITE is a successor to CoMa (@figuration

&&wager), a version and configuration management
system for engineering design documents [21, 23]. The

CoMa system primarily supports product manage-

ment, but it also provides support for process man-

agement. CoMa follows a product-centered approach

to process management (for the sake of flexibility,

DYNAMITE separates between products and pro-

cesses, see section 3). The CoMa process model is
less powerful, but it already includes some essential
features of DYNAMITE (in particular structural evo-

lution and concurrent engineering). The first version

of the CoMa system was completed in 1993. The ex-

periences gained from the CoMa system have heavily

influenced the DYNAMITE model.

The research presented in this paper is embedded

into a more comprehensive research activity which

aims at developing an integrated environment for
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managing products, processes, and resources. The

overall conceptual model is described informally in

[16]. DYNAMITE formalizes a part of this model.

Further work on formalizing the overall model is cur-

rently under way.
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