
 1

Semantic Tool Support for Conceptual Design

Bodo Kraft, Manfred Nagl

Department of Computer Science III, RWTH Aachen, D-52074 Aachen
PH +49/241/8021314 {kraft|nagl}@i3.informatik.rwth-aachen.de

Introduction
When designing a building, an experienced architect implicitly applies his
aggregated knowledge to the new sketch. In this early design phase, called
conceptual design, most architects do not elaborate their sketches using a CAD
system. They rather work with pencil and paper. Without being directly aware of, the
architect considers design rules, functional requirements, economic and legal
restrictions. Constructive elements, like walls, windows or doors are used with their
conceptual meaning, namely to form organizational areas or rooms, to guarantee e.g.
light and ventilation, or to ensure accessibility. These conceptual elements, therefore,
form a functional view of the design structure which, however, is not explicitly
defined. Existing CAD systems give no support for this creative conceptual design.
There is no smooth transition to constructive design. The architect manually
elaborates the constructive design, now using a CAD system. He replaces the
functional elements of the sketch by constructive ones, e.g. ventilation by a window,
the access by a door etc. The conceptual information he had in mind gets lost.
Furthermore, there are many changes within the development process. E.g., if the
client is not satisfied, the architect has to go back to the conceptual design. The
modified conceptual data are lost again after the next transformation step. Such
iterations are risky and expensive in terms of time and money.

Conceptual Design in Civil Engineering
We divide the building construction process into three main phases. Figure 1 depicts
these different design phases, the level of details increases from a very abstract view
on the whole building in the conceptual design, over the construction of a building
using CAD systems in the constructive design, to the calculation and dimension of
special aspects like heating and cooling system or static calculations. Currently there
is no integration between these phases, the defined concepts have to be manually
transferred. The conceptual design phase is currently not supported by any tool.
Moreover, neither in the constructive design, nor in the detail design phase the
application of conceptual knowledge is supported. The lack of representation
possibilities of the conceptual design information forces the architect to keep the
information in mind, in fact a lot of them get lost.

ITCE-2003 - 4th Joint Symposium on Information Technology in Civil Engineering
ed Flood, I., Seite 1-12, ASCE (CD-ROM), Nashville, USA

 2

During conceptual design the functionality and requirements of a building are fixed
by an architect and an investor. Important aspects of the conceptual design are the
building type, room types, room relations, floor space, the functional connections and
early cost calculations. The investor is more interested in the usable area and room
plans than in detailed material definitions or in structural analysis. The result of this
phase is a coarse and informal sketch of the building and a textual definition of the
requirements.
To plan e.g. an office block, first the number and size of stories has to be fixed.
Further, the usable areas, especially the offices are planned. The number and size of
offices depends on the wishes of the investor, technical and legal restrictions.
Depending on the usable area the traffic area and sanitary installations can be
dimensioned and defined. All this can be fixed in this early phase without
considering exact positions and room arrangements. Currently CAD systems do not
support the definition of requirements or a functional view of a building.

Complete Scenario
Our research to bridge conceptual and constructive design is organized in two
approaches, which differ on the one hand in the used methodology, on the other hand
in the way to support the architect. In the top-down approach (see left side of Figure
2), we build tools for elaborating conceptual knowledge by a knowledge engineer.
Further tools for conceptual design support an architect and incrementally check his
conceptual design results against the available conceptual knowledge. Our goal is to
find conceptual errors as soon as possible. The top-down tools serve as an
experimentation platform, to find suitable concepts and to evaluate their acceptance.
This approach, especially, pays off if the conceptual knowledge is restricted to
specific classes of buildings, and if several conceptual designs within a class are
worked out.
In the bottom-up approach, which is more industrially oriented, we extend the CAD
tool ArchiCAD [GRAPHISOFT1999] by introducing conceptual objects, such as
room types or areas built up by rooms and by defining corresponding relations.
Again, a constructive design result received by using ArchiCAD is checked versus
the underlying conceptual knowledge. To allow also for traditional design processes,
a layout generator creates an initial floor plan from the conceptual design result as a
starting point for constructive design.

Constructive Design Detail DesignConceptual Design

Electricity
Heating Systems
Routing Problems
Numerical Calculations

Architect Civil EngineerArchitect and
Investor

Costs
Usability
Investors wishes
Functionalty
Legal restiction

Manual
transformation

Manual
transformation

Dimensions
Material
Layout

Figure 1: Phases of the architectural design process

 3

In the long run it is planned to integrate both approaches. We hope to achieve the
generation of the conceptual extensions of ArchiCAD from the conceptual
knowledge elaborated by a knowledge engineer using the top-down tools
[KRAFT2002A].

Graph based tools for conceptual design
We use the graph rewriting system PROGRES [PROGRES1999] to develop graph
based tools. PROGRES allows to formally specifying graph schema consisting of
attributed, typed nodes and edges. Transactions allow executing graph
transformations and tests, and to dynamically create and modify a graph structure. A
code generator creates C-code out of the PROGRES specification. The UPGRADE
framework [JÄGER2000] provides a universally and extensible platform for graph
based application, generated code is integrated and executed in so called prototypes.
Starting from an initial prototype, extensions can be introduced to adapt the
representation to the need of an application domain. Most of the projects in our group
use graph technology based on PROGRES and UPGRADE to model and solve
problems from different application domains [NAGL1990]. In AHEAD
[SCHLEICHER2002] we develop a management system for the development
processes. Integration tools [BECKER2001] are developed to keep documents from
different applications consistent; we develop graph based tools to support the
understanding and restructuring of complex legacy telecommunication systems
[CREMER1999; MARBURGER2003] or for author support, while writing technical
documents [GATZEMEIER2000]. All these projects use PROGRES to store the
specific knowledge of the application domain as the schema of the graph,
comfortable UPGRADE prototypes allow an abstract and problem-oriented view on
the graph structure.
In the top-down approach, drawn on the left side of Figure 2, we also use graph
technology to build up graph based tools for the conceptual design phase. A graphed

T
O

P
-D

O
W

N
: K

now
ledge E

ngineering and K
now

ledge U
se

Domain Model Graph

T
R
U
E

e
l
e
c
t
r
i
c
i
t
y

e
l
e
c
t
r
i
c
i
t
y

28
,
5

8
,
5
8
,
5

8
,
5

eating
11,17 qm

living
17,24 qm

kitchen
10,50 qm

hall
2,10 qm

to
ile

t
2,

27
 q

m stairs
3,48 qm

B
O

TT
O

M
-U

P
: I

nt
eg

ra
te

d
su

pp
or

t t
hr

ou
gh

 k
no

w
le

dg
e

 Consistency
Checks

 Consistency
Checks

Design Graph

Figure 2: Complete scenario with top down and bottom up approach

 4

based editor for the knowledge engineer provides a possibility to define domain
specific knowledge, here rules and restrictions about a specific building type. As the
usual architect is not familiar with graph technology, the prototype’s user interface
presents a filtered view on the graph and methods to create and change the graph
structure. A second graph-based editor enables the architect to define the conceptual
design of a building project.
The graphs we use graphs to support the conceptual design correspond to the high
abstraction level of this phase. Important entities for the conceptual design are the
complete building, stories and rooms. Material definitions, wall constructions or
exact dimension are not yet defined and need not to be considered. Relations
between entities describe functional connections. Using graph nodes as rooms and
edges as relations, a graph depicts a concrete building organisation. A graph that
represents an actual sketch of a building is called design graph, depicted in the lower
left corner of Figure 2.
An additional application of graph technology in conceptual design is knowledge
representation. In this context knowledge consists of technical restrictions, e.g.
minimal and maximal dimensions, legal restrictions, e.g. escape routes, functional
requirements, e.g. the flow of traffic, economical and design restrictions. Moreover
the wishes of the investor and architects personal favours have to be observed. These
restrictions are represented by another graph that does not describe a concrete
building, but universally applicable regulations and restrictions about a special
building type. Graph nodes now represent room types, edges describe relations
between room types; this graph is called domain model graph.
Using both graphs together allows architects to specify rules in a formal way and to
use these rules during the design of a building. The knowledge stored in the domain
model graph can be used for all buildings of the described building type; incremental
checks guarantee the consistency between the defined knowledge and the actual
sketch.

Modelling Conceptual Knowledge
The domain model graph stores structural knowledge about a building type, inserted
by a knowledge engineer. To generalize from the concept of rooms, we introduce
areas. Usually an area is a room, it may, however, be a part of a room (a big office
may be composed of personal office areas) or a grouping of rooms (a chief officer
area may contain a secretariat, a personal office for the chief officer, and a meeting
room)
Area models describe knowledge on the type level to define universally valid rules
for all areas of the same type. Attributes allow defining concrete aspects of an area,
e.g. required or forbidden equipment. As we describe knowledge about a building
type and not a sketch, the definition is based on area models. An attribute linked to
an area model prescribe, that in a future building, all areas of this area model have to
consider the attribute’s content. Relations describe functional connections between
area models. While obligatory relations demand all areas of the linked area models
to have a relation installed, a forbidden relation does not allow any area to have such
a relation installed. The definition of area models, relations and attributes is the first

 5

step in the knowledge definition process; these basic elements are then used to create
the domain model graph.
Figure 3 shows a screenshot of the domain model graph editor, the workspace of the
knowledge engineer. The screenshot shows an example domain model graph on the
right side and two trees containing relations and attributes. In this example attributes
electricity, network, sanitary, phone, and dimensions restrictions are already defined
just as the obligatory relations access and view. The graph depicted on the right side
of the screenshot defines a domain model graph for a small office block, five area
models are defined. The secretariat model in this example has attributes to demand a
number of phone, network and electricity sockets, moreover dimension restrictions
are defined. The 2 person office model has the same attributes as the need of these
room types are the similar; however, the dimension restrictions will be different.
Sanitary installation is required in toilets, in the graph again defined by an attribute.
The secretariat model is linked with the corridor model and the chief office model. In
the building type we restrict in this graph, chief offices do not need to have an access
to the corridor, but they must have access and view to the secretariat. The secretariats
must have access to the corridor, just as 2 person offices and toilets.

Once defined, the domain model graph serves as a knowledge base for all building
projects of this building type. Functional organisations, traffic flow, equipment,
technical and legal restrictions of a small office building are then stored in the graph,
the visualization provides a clear presentation and enables browsing though the
knowledge database.

Using the knowledge during design
The design graph allows to evaluate the specified knowledge and to test if the
defined rules are applicable to a building design. Further, and this is the main
application, the design graph allows recording the structure and requirements of a

Figure 3: Domain Model Graph Editor to insert knowledge

 6

building in a very early design phase. Requirements consist of investor’s wishes e.g.
the number of offices and size of usable area, dimensions and equipment of rooms,
and relations between rooms. The specification of a building without considering any
layout and material aspects allows the investor to define the usage of a building on a
high abstraction level. During the subsequent constructive design, this definition can
be matched with an actual floor plan to discover misunderstandings and design
errors.
The design graph editor is the workspace of an architect; it supports him during the
conceptual design of a building. If there exists a domain model graph as a knowledge
base for a specific building type, the architect profits directly from the specified
knowledge. The area models, relations and attributes defined by the knowledge
engineer serve now as input for the design graph editor. The underlying building type
of the domain model graph shown in Figure 3 is an office block, when constructing a
building of this type, the design graph editor imports the building type specification
of area models, attributes and relations. Using these predefined basic elements, in
represented by the trees on the left side of the screenshot, the architect sketches an
actual building by selecting an element from the tree and inserting it into the sketch.
In contrast to the domain model graph, the design graph represents a building; each
graph node represents an area, the number of graph nodes corresponds to the number
of rooms in the future building.

The design graph, depicted on the right side of represents a part of an office building,
sketched by an architect. The corridor in the middle of the graph has direct access to
all areas, except to the chief office, which is only accessible from the secretariat. An
access relation is symbolized by an arrow icon between two areas. Attributes define
the existence of equipment in this area (e. g. the chief office has electricity, network

Figure 4: Design Graph Editor to use knowledge during construction of a building

 7

access and a phone installed, furthermore length and width defined). As an office
block consists of several offices, the 2 person office model is multiply used, each
office is again described by attributes so that equipment and dimensions of the
offices can differ.

Consistency Analyses between knowledge and design
The top down approach described in this paper consists of two parts, the domain
model graph and the design graph. Whereas the domain model graph is used to store
knowledge about building types, the design graph provides a data structure to sketch
an actual building. To be able to profit from the specified knowledge, consistency
analyses inform the architect if rules that are defined in the domain model graph are
violated.
The design graph is in an inconsistent state, if areas, attributes or relations are used in
the design graph without being defined in the domain model graph; we call these
errors a structural inconsistency. While designing a building an architect should be
able to use areas even if they are not yet defined; they can be defined later or keep
undefined if no knowledge support is wished. Therefore, we tolerate structural
inconsistencies as we do not want to block the architect’s creativity. However, they
are found and marked with an error message.
The second category of inconsistencies is based on violations of the defined rules.
The attributes of an area model prescribe the usage of an area in the design graph. A
secretary office should have a specified number of network sockets. If the attribute
network socket is missing or the number of planned network sockets remains under
the defined boundary, the design graph contains inconsistencies. Because
inconsistencies are based on the content of the domain model graph, they are called
regulation violation.

An example of a consistency analysis is depicted in Figure 5. As defined in the
model domain graph each 2 person office should have the above defined attributes
and an access relation to the corridor. To check the consistency, each 2 person office
in the design graph is examined, if it has (a) access to the corridor, (b) all the
demanded attributes, and (c) none of the forbidden ones. As shown in Figure 5, one

C
onsistency
A

nalyses

Network Access Missing

Figure 5: Consistency Analyses between Domain Model Graph and Design Graph

 8

of the 2 person offices has no network access; this inconsistency is found and marked
by an error message.
The architect has now several possibilities to react on the error message. He can fix
the error by adding the missing attribute; the design graph is then again consistent
with the domain model graph, and the error message disappears. He can further
ignore the error message and stay in an inconsistent state, or he can confirm the
sketch as correct and define exceptions from the rules.

Conceptual design support in CAD systems
The bottom-up approach is more industrially oriented; our goal is here to provide a
high level support for architects during the sketch in commercial CAD-systems. We
extend the CAD-system ArchiCAD [GRAPHISOFT2002] with additional features to
enable the architect to conceptual design, integrated in a tool he is familiar with.
Integrated in ArchiCAD, the effort to learn handling new features is minimized;
further, integration provides the advantage that constructive design and visualization
are already realized.

Semantic objects in ArchiCAD
In the first step we developed a room object to allow the architect to abstract from
the wall structure to the semantic higher level concept of rooms. The room object is
represented by a rectangle; a room type description and dimension information are
depicted inside it. Each room type e.g. corridor or secretariat is represented by an
instance of a room object, they are distinguished by fill pattern, background colour,
and default dimensions. Even if the room object is currently restricted to rectangular
forms, designing with typed objects is more flexible than classic designing with a
wall structure. Moving or resizing a room object is much easier than changing the
corresponding wall structure. The future usage of a building can be considered
during the design process. Our room objects are developed with GDL
[GRAPHISOFT1999], a BASIC-like language provided by GRAPHSOFT that is
usually used to create furniture objects or sanitary installation. As the architect is
familiar with GDL objects, the handling of room objects is very intuitively, further, a
3D representation allows estimating proportions. Actually we have a set of room
objects for a single family house and a small office building.
In the second step we introduced a possibility to define relations between room
objects, we call them room links. As we abstract form constructive elements,
relations do not describe the realization but the semantic concepts defined between
two room objects. An access relation, defined between two rooms is usually realized
by a door, it can, however, be realized by a hole in the wall or by leaving out the
complete wall.
In ArchiCAD, relations are depicted as labelled arrows connecting the centres of two
room objects; if the architect drags a room object, the room link is automatically
redrawn. The technical realization of room links is done with the aid of an
application programming interfaced called C-API [GRAPHISOFT1999] provided by
GRAPHISOFT and again GDL.
Using room objects and room links, the architect can sketch a building and define the
functional relations of it. In fact, the sketch with room objects and room links

 9

describes a graph, where room objects represent graph nodes and room links
represent edges. Without being aware of it, the architect builds up a graph, he uses
ArchiCAD as graph editor. The result corresponds to the above described design
graph, in addition room arrangements and dimensions can be fixed.

In Figure 6 the sketch of a small, one floor office building with room objects and
room links is depicted. We see again the room types corridor, chief office, secretariat
and 2 person office, just as in Figure 4. Each room object shows information about
its size, horizontal and vertical dimension, furthermore information about the
complete building size displayed and automatically calculated. We also see room
links in Figure 6, they define here accessibility between the rooms and the corridor.
As defined in the domain model graph (c.f. Figure 3) each 2 person office and
secretariat should be accessible from the corridor, the chief office should be
accessible from the secretariat.

Integration between conceptual and constructive design
To bridge the gap between conceptual design and traditional constructive design a
new tool called wall generator automatically transforms the sketch with room objects
and room links into an initial ArchiCAD wall structure. Wall dimensions are defined
before sketching, so that dimensions depicted in the room objects are real space in
the future building. Currently, we just distinguish between inside and outside walls,
load-bearing and partitions are not yet considered. Starting from the generated wall
structure, the architect defines materials of the walls, of course his also free to
change a wall thickness or to move a wall.

Constraint checker to run consistency analyses in ArchiCAD
The intuitively way of editing with room objects is not the only advantage of the
conceptual design extensions in ArchiCAD. As the architect designs using objects of
a defined type, consistency analyses can be incrementally executed to examine the
sketch and notify violations of the defined rules. Currently, rules are defined in a
XML file manually edited; in the long run we will generate the rule definition from
the domain model graph, described in the top-down approach.
The constraint checker examines at runtime each room object and room links
between them. In the rule base, rules are defined about a single room object, e.g.
length and with restrictions and minimal area. In contrast to the design graph, room

3m
4m

3m

5,
5

m

access

18m

1,
5m

3m

4m

Chief Office
16,5m²

Corridor
27m²

Secretariat
12m²

2 Person
Office
12 m²

3m

4m

2 Person
Office
12 m²

3m

4m

2 Person
Office
12 m²

3m

4m

2 Person
Office
12 m²

3m

4m

2 Person
Office
12 m²

acce
ss

ac
ce

ss

access
access access

access

Office Building 115,5m² 21m

5,
5m

Figure 6: Conceptual Design in ArchiCAD

 10

objects are now drawn with a defined size, so that this additional information can be
now analysed. The existence of obligatory room links can be analysed, and, using the
geometric information, the correctness of the drawing. E.g. when an access relation
is defined by a room link, the corresponding room objects have to be neighbouring.
If the constraint checker discovers an error, a notification object is displayed, related
to the position where the error occurred and containing an error message and a
reference. The architect has again the possibility to fix the error, to ignore the error
message or to confirm his sketch as correct so that the error message will disappear.
The technical realization of notification objects is again done with GDL; the
constraint checker is based on the C-API.

In Figure 7 we see a cutting of the above introduced office building sketch after the
constraint checker has been run. As rule base we assume here two sources, the
domain model graph depicted in Figure 3, and [NEUFERT2000] a German reference
book for technical restrictions. Two inconsistencies have been found in the sketch. In
a typical office building, the corridor is the main escape route; legal restrictions
define its maximal length and minimal width. The corridor in Figure 7 does not fulfil
the recommendation that an escape route should have a minimal width of 1,8m. The
architect is pointed to that design error by an error message and a reference. The
second error is based on the investors wishes defined in the domain model graph.
The graph depicted in Figure 3, demanded a view relation between the chief office
and the secretariat, in our example sketch only an access room link has been
installed. Again, the error found by the constraint checker and visualized by a
notification object.

Summary
In this paper we discussed graph based tools to support architects during the
conceptual design phase. Conceptual Design is defined before constructive design;
the used concepts are more abstract. We develop two graph based approaches, a top-
down using the graph rewriting system PROGRES and a more industrially oriented
approach, where we extend the CAD system ArchiCAD. In both approaches,
knowledge can be defined by a knowledge engineer, in the top-down approach in the
domain model graph, in the bottom-up approach in the in an XML file. The defined
knowledge is used to incrementally check the sketch and to inform the architect

3m

4m

3m

5,
5

m

access

18m

1,
5m

3m
4m

Chief Office
16,5m²

Corridor
27m²

Secretariat
12m²

2 Person
Office
12 m²

3m

4m

2 Person
Office
12 m²

ac
ce

ss

access

Office Building 115,5m²

This Corridor as escape route, should
have a minimal witdth of 1,8m.
[Neuffert00, S. 237]

There is now view relation between chief
office and secretariat.
[Investor Preference]

Figure 7: Consistency Analysis of the sketch in ArchiCAD

 11

about violations of the defined knowledge. Our goal is to discover design error as
soon as possible and to support the architect to design buildings with consideration of
conceptual knowledge.

Related Work
There are several approaches to support architects in design. Christopher Alexander
describes a way to define architectural design pattern [ALEXANDER1995].
Although design pattern are extensively used in computer sciences, in architectural
design this approach has never been formalized, implemented and used. In
[GIPS1972] Shape Grammars are introduced to support architectural design, e.g. the
design of Queen Ann Houses. The concept of shape grammars is related to graph
grammars. However this approach rather supports a generation of building designs
than an interactive support while designing, what we propose. Graph rewriting has
been used by [GÖTTLER1990], to build a CAD system that supports the design
process of a kitchen. In contrast to our approach, the knowledge is hard-wired in the
specification. In [BORKOWSKI2002; GRABSKA2002] graph grammars are used to
find optimal positions of rooms and to generate an initial floor plan as a suggestion
for the architect. Formal concept analysis [STUMME2000] and conceptual graphs
[SOWA1984] describe a way to store knowledge in a formally defined but human
readable form. The TOSCANA system describes a system to store building rules;
this approach is related to our research, but is based on another graph formalism.

References
ALEXANDER1995 Alexander, C.: Eine Mustersprache. Löcker, (1995)
BECKER2001 Becker, S., Jäger, D., Schleicher, A., and Westfechtel, B.: A

Delegation Based Model for Distributed Software Process
Management. In: Ambriola, V.: Proc. of the 8th. Europ.
Workshop on Software Process Technology (EWSPT), LNCS
2077, pages 130-144, Springer, Berlin, Heidelberg, New York
(2001)

BORKOWSKI2002 Borkowski, A., Schürr, A., and Szuba, J.: GraCAD - Graph-
Based Tool for Conceptual Design. In: 1st International
Conference on Graph Transformation Barcelona, to appear
(2002)

CREMER1999 Cremer, K.: Anwendung von Graphentechnik zum Reverse
Engineering und Reengineering, Diss., RWTH Aachen,
Deutscher Universitätsverlag, Wiesbaden (1999)

GATZEMEIER2000Gatzemeier, F.: Patterns, Schemata, and Types - Author Support
Through Formalized Experience. In: Int. Conf. on Conceptual
Structures (ICCS2000), LNAI 1867, pages 27-40, Springer,
Heidelberg (2000)

GIPS1972 Gips, J. and Stiny, G.: Shape Grammars and the Generative
Specification of Painting and Sculpture. In: Freiman, C. V.:
Proceedings of IFIP Congress 71, pages 1460-1465 (1972)

 12

GÖTTLER1990 Göttler, H., Günther, J., and Nieskens, G.: Use Graph
Grammers to Design CAD-Systems. In: Rozenberg, G. and et al.:
Graph Grammers and Their Application to Computer Science,
LNCS 532, pages 396-409, Springer (1990)

GRABSKA2002 Grabska, E. and Palacz, W.: Floor Layout Design with the use of
Graph Rewriting System PROGRES. In: 9th Intern. Workshop of
the European Group for Intelligent Computing in Engineering,
Fortschritt Berichte VDI (2002)

GRAPHISOFT1999 GRAPHISOFT: General API Development Kit 2.2 in
GRAPHISOFT, Budapest

GRAPHISOFT2002 GRAPHISOFT: Homepage, www.graphisoft.de (11-3-2002)
JÄGER2000 Jäger, D., Schleicher, A., and Westfechtel, B.: UPGRADE: A

Framework for Building Graph-Based Software Engineering
Tools, Technical Report AIB 00-3, RWTH Aachen, Aachen
(2000)

KRAFT2002A Kraft, B., Meyer, O., and Nagl, M.: Graph Technology Support
For Conceptual Design In Civil Engineering (invited lecture).
In: 9th Intern. Workshop of the European Group for Intelligent
Computing in Engineering, Fortschritt Berichte VDI, Darmstadt
(2002)

MARBURGER2003Marburger, A. and Westfechtel, B.: Tools for Understanding the
Behavior of Telecommunication Systems. In: Proc. of the 25th.
Int. Conf. on Software Engineering (ISCE'2003), pages 430-441,
IEEE Computer Society Press, Portland (2003)

NAGL1990 Nagl, M.: Characterization of the IPSEN-Project. In: Madhavji,
N. and et al.: Proceedings of the 1st International Conference on
Systems Development Environments & Factories, pages 141-
150, Pitman Publishing, London, UK (1990)

NEUFERT2000 Neufert, E.: Bauentwurfslehre. Vieweg, Wiesbaden (2000)
PROGRES1999 PROGRES Group: The PROGRES Language Manual 9.x

inLehrstuhl für Informatik III, RWTH Aachen (1999)
SCHLEICHER2002 Schleicher, A.: Roundtrip Process Evolution Support in a Wide

Spectrum Process Management System, Diss., RWTH Aachen,
Dt. Universitätsverlag, Wiesbaden (2002)

SOWA1984 Sowa, J.: Conceptual Structures: Information Processing in
Mind and Machine. Addison-Wesley, (1984)

STUMME2000 Stumme, G., and Wille, R.: Begriffliche Wissenverarbeitung.
Springer, Heidelberg (2000)

