
Graph-Based Tools for Distributed Cooperation in
Dynamic Development Processes?

Markus Heller, Dirk J̈ager

RWTH Aachen University, Department of Computer Science III,
Ahornstrasse 55, 52074 Aachen, GERMANY

{heller|jaeger }@cs.rwth-aachen.de

Abstract. The highly dynamic character of development processes makes it a
challenging task to provide support for the management of such processes within
an organization. The process management system AHEAD addresses the specific
problems related to the management of development processes in engineering dis-
ciplines. The system stores all management data as graphs. The application logic
is specified in a formal specification based on a programmed graph rewriting sys-
tem. From this specification several management tools of the AHEAD system are
generated. Recently, the AHEAD system has been extended to support distributed
development processes. Two or more organizations use their own instances of
AHEAD and these instances are coupled at run-time. The coupling logic is spec-
ified by graph transformations and the executable code for the coupling can be
automatically generated from this specification. Furthermore, the precise notation
of the coupling by a formal specification makes it easy to enhance or extend the
coupling mechanism. This paper describes how graph transformations are used
to realize the demanded functionality.

1 Introduction

The study of development processes in our group focuses on managing the develop-
ment of a complex end-product in engineering disciplines like software or chemical
engineering. Development processes tend to be highly creative and dynamic. For exam-
ple, it may be difficult to predict all activities, their order, and their duration. Changes
in the product specifications may induce variations of planning the development activi-
ties. Moreover, development processes tend to be highly unique. As a result of this, the
management of activities, performers and resulting products is rather complex.

Today the development of an end-product is not always accomplished by one orga-
nization alone, e.g. a company or department of a company. For example, the know-how
needed to perform some development activity may only be available in another organi-
zation. In a distributed development process the development activities are performed
by employees of different organizations working together while development products
are exchanged across organizational boundaries.

? The authors gratefully acknowledge financial support of Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Center 476 ”Informatische Unterstützung
übergreifender Entwicklungsprozesse in der Verfahrenstechnik”.

Input parameter

Control flowTask Data flow

Task states :

Output parameter Input parameter

Fig. 1.Dynamic task net for a change request process in software engineering

The process management system AHEAD addresses these problems. AHEAD has
been developed within a long-term running Collaborative Research Center IMPROVE
(Information Technology Support for Collaborative and Distributed Design Processes in
Chemical Engineering)[1]. In the supported scenario it is assumed that all participating
organizations use the AHEAD system for their process management. The developed
concepts and supporting tools are described in detail in [2, 3]. A demonstration scenario
is described in [4].

2 The process management system AHEAD

2.1 Graph-based integrated management model

The management of a development process to develop a certain end product comprises
the coordination of all development activities, the management of all related product
data, e.g. technical documents and plans, and the management of the related resources.

The activities of a development process and the relationships between these ac-
tivities can be modeled by adynamic task net. Dynamic task nets are defined by the
underlying model DYNAMITE[5]. They can be planned, executed, and analyzed in an
integrated way.

Figure1 shows an example of a dynamic task net. This task net resembles a specific
change request process in software engineering. Such a process is executed in a software
company during the development process for a new software system (and even after the
release of the system to customers). A change request describes a change of the existing
software system in order to fix a bug or to add some functionality to the system. The

first activity of this process can be a redesign of the current system, followed by the
implementation, documentation, and test of all affected software modules. Finally, the
changed modules have to be integrated into the software system.

The dynamic task net for this example is built oftasksrepresenting activities, e.g.
Redesign, Implement Module A. Each task has anexecution stateas ’InDefinition’, ’Ac-
tive’, ’Suspended’, or ’Finished’. Tasks can be connected with each other by directed
edges representingcontrol flowrelationships defining the temporal execution order of
tasks. Tasks are characterized by aninterfaceof all available output and input products.
To limit the possible types of input or output products,input andoutput parametersare
introduced. An output parameter of a task is linked to a corresponding input parameter
of another task by an edge denoting adata flowrelationship.Tokensrepresenting prod-
ucts can be passed between tasks along these data flows. Tasks can be eitheratomicor
complex. Complex tasks can be further refined by task nets, e.g. the taskTest Module
A is refined by a task net with tasksCreate Test DataandPerform Test. Thus dynamic
task nets are hierarchical.

The product model COMA [6, 7] defines the representation ofproducts(or docu-
ments) and the relationships between documents. Documents can be versioned.Con-
figurationscontaining a set of product versions can be defined. The management of
human and non-human resources is defined in the resource model RESMOD[8]. Plan
resources, e.g. project teams and roles, and actual resources, e.g. organizational team
units and team members, as well as a mapping between them can be represented.

The management models of AHEAD rely on graphs as the fundamental data struc-
ture. For example, a dynamic task net can naturally be represented as a graph of task
nodes connected by edges denoting control or data flow relationships between different
tasks. Operations on task nets (e.g. the insertion or deletion of tasks) are realized by
graph transformations.

An example of such a graph structure is shown in figure2. Different instances of
the node classesTASKandPARAMETERas well as different instances of edge types
for relationships between nodes are shown. Node classes are connected viahas -edges
with instances of the node typesInput or Output .

The graph schema for dynamic task nets contains the common superclass of all
model elementsITEM as root of the class hierarchy from which the node classesEN-
TITY andRELATION are derived. WhileENTITY is used to represent entities like
TASKandPARAMETER, the node classRELATION is introduced to model relation-
ships between entities as, for examplehas .

In a similar way, the human and non-human resources and the product model are
modeled using graphs and all operations on these models are realized as graph trans-
formations. All management data for an instance of a development process are stored
within a single graph containing all information about development tasks, product data,
and resource data.

The models for dynamic task nets, resources, and products form the base model
layer of the integrated management model of AHEAD. These base models are then
integrated with each other pair-wise in a higher layer. The full integration of all three
models is realized in a third layer above. A detailed discussion of this integrated man-
agement model can be found in [5].

T1

T3

T4
T5

T6

T2

Fig. 2. Internal representation of dynamic task nets

The base models and the integration of these models are all combined in one single
specification written in the language PROGRES[9]. PROGRES uses directed, attributed
graphs with labeled nodes and edges as its fundamental data model. A PROGRES spec-
ification defines a graph schema and graph transformations. In agraph schemadifferent
node classes, node types and edge types can be defined. A node type is an instance of
a node class. Attributes can be defined for node classes or types (not for edge types)
to store additional information.Graph transformationsare written in the form ofgraph
rewrite rules. Each graph rewrite rule consists of a left-hand side, describing a matching
graph pattern, and a right-hand side, with a subgraph for the replacement of the pattern
on the left-hand side for each matching part of the graph. Further details can be found
in [9].

2.2 System Architecture of the AHEAD system

Figure3 gives an overview of the AHEAD system. Users of the AHEAD system are
usually eitherprocess managersor developers. Process managers use themanagement
tool to create and manipulate instances of dynamic task nets which represent devel-
opment processes. The states of all activities of the process can be controlled, e.g. by
starting or suspending activities. The managers may also define project teams (from
human or non-human resources), manipulate the status of product data and assign team
members to tasks. Developers use thedeveloper frontendto get an agenda contain-
ing all tasks that are assigned to them. For every task, a work context can be opened
showing detailed information about this task together with all associated input or output
documents. There, developers can activate specific development tools working on the
documents, too.

So all management data (task net, resource, and product data) are represented as
graphs. Management tools and developer frontends have access to the management
data, which are stored in the graph-based database GRAS[10]. The underlying base
models are combined with each other in a PROGRES specification.

specific
AHEAD-code

UPGRADE
framework

management tool

process
manager

GRASGRAS

Metamodell

spezifischer
Anteil

Metamodell

spezifischer
Anteil

generic model

specific model

PROGRES environment

generation of
executable

C-code

database
Arbeitskontext

developer frontend
work context

controlling

developer

editing and enacting of
process model instances

feedback of
process performance

analysis
tools

modeling environment

process
modelergeneration of

PROGRES-code

agenda

monitoring of
process performance

Fig. 3.Overview of the AHEAD system

The PROGRESenvironmentprovides a graphical editor for specifications and an in-
terpreter to execute the graph code, generated from specifications as executable C-code.
With the help of the framework UPGRADE[11] the specific AHEAD-code can be em-
bedded in graphical user interfaces of the AHEAD system, e.g. the management tool
or the developer frontend. With our graph-based tool machinery (GRAS, PROGRES,
UPGRADE) tools can be generated by rapid prototyping, starting with a formal speci-
fication. Changes of the functionality of the generated prototype are done by changing
the related parts of the graph schema and graph transformations in the specification, fol-
lowed by an almost mechanical procedure to generate the new version of the prototype.

The AHEAD system can be adapted for different applications. Therefore, the spec-
ification is split into two parts. The first part of the specification, thegeneric model,
contains all concepts which are independent of a special domain. This generic part is
coded only once. The second part of the specification, thespecific model, comprises all
concepts (e.g. special types of tasks or special relationships between tasks) valid only
in a specific application domain. For every new application domain a corresponding
specific model can be defined. Aprocess modelerdoes not need to use PROGRES for
the definition of the specific part of the model directly, but he can rely on amodeling en-
vironmentwhich allows to model the specific parts using the UML (Unified Modeling
Language)[12]. The modeling environment is based on the commercial toolRational
Rose. From the model in UML a PROGRES specification can be generated. Additional
analysis tools help to evaluate the management data and aid process modelers in defin-
ing domain-specific models [13].

Organization B (subcontractor)

developers

process
manager

AHEAD

developers
process
manager

AHEAD
Organization A (contractor)

Run-time
Synchronization

Delegation of Process

Fig. 4.Scenario of a distributed development process

3 Concept and tool support of distributed development processes

Often two organizations cooperate indelegation relationshipwhere one organization
(contractor) delegates a set of activities to another organization (subcontractor). The
delegated activities have to be carried out by the subcontractor and some resulting prod-
ucts have to be returned to the contractor.

If each participating organization uses a process management system (each with
its own database) to manage its development process, the question arises, how these
management systems can be coupled to support a distributed development process. Up
to now, it is assumed that both organizations use the AHEAD system with separate
databases. Both AHEAD systems use the same graph-based PROGRES specification.
This scenario is shown in figure4 where organization A acts as a contractor and dele-
gates a part of the overall process to organization B. Both organizations have to estab-
lish a run-time synchronization of their process management systems in order to inform
each other about changes of those process parts which are executed on either side.

3.1 Requirements for an efficient support of distribution

In the AHEAD-project several importantrequirementsfor an efficient support of dis-
tributed development processes have been identified[3]:

1. Thecontractormust be able todelegateone or more related activities to be carried
out by thesubcontractor. The results of the delegated activities have to be returned
to the contractor.

2. The contractor must be able to monitor the execution of the delegated activities
(based onmilestones).

3. The subcontractor must be able to refine the delegated activities.
4. Both sides must be able to work independently with their own management sys-

tems.
5. Both parties must be able to hide process details from each other.
6. Both parties understand every delegation of activities as acontract. The violation

of this contract by the contractor or the subcontractor may have legal consequences.
7. The execution semantics of the delegated activities have to be preserved by the

management systems used by both sides.

These requirements are chosen in order to balance the interests of organizations taking
part in a distributed development process. For example, contractors are interested in

in3´2out out2´ in3

T1 T2 T3' T2' T3 T4

system A system B

update

Fig. 5.Strategy for the distribution of a task net

gaining extensive control of the progress of delegated activities, while subcontractors
aim to shield their internal process structure. Both interests tend to conflict with each
other. A detailed discussion of these requirements is given in [2].

One extreme case in the bandwidth of possible concepts for a proper support of
distributed development processes is the so calledwhite-boxapproach where the con-
tractor has full access to all data maintained by the subcontractor. This is typically the
case when the subcontractor is forced to work on the contractor’s database. In the other
extreme, the subcontractor uses an independent instance of a database to which the con-
tractor has no access (black-boxapproach). The proposed concept is right-hand in the
middle of these extremes and, therefore, called agrey-boxapproach.

3.2 Strategy for the coupling of process management systems

Figure5 shows a part of a development process which is distributed over two different
process management systems A and B. The process consists of four tasks T1 - T4 which
are linked by control flows. As T2 and T3 reside in different systems, the control flow
between these tasks has to be realized in a different way. It is assumed that a command
to start T3 was activated in system B. Due to the control flow between T2 and T3,
the state of T2 has to be tested before T3 can start (for example, if the control flow is
sequential, T2 has to be finished before activation of T3).

A possible strategy is to store duplicates of all tasks of system A, which have to be
accessed from system B. For instance, in figure5a new task T2’ (shown as a grey box) is
created in system B as alocal copyof themaster copyT2 of A. From the perspective of
system A, the task T2 is called amonitoredtask, as a local copy of it is stored in another
system. Aprivate task is neither monitored nor a (local) copy of a monitored task. In
the example, T1 and T4 are private tasks. All changes to the state of the monitored task
T2 are passed bychange messagesto system B, and system B updates its local copy
of T2. Thus, both tasks T2 and T2’ are kept consistent with respect to their state. Of
course, the same strategy can be applied to duplicate copies of tasks of system B and
maintaining them in system A, for instance, a duplicate task T3’ is created for task T3
in figure 5. The definition of private, monitored tasks and local copies is always seen
from the perspective of one of the two systems, which is called alocal system. The
other system then is acoupledsystem.

It can be decided within the system boundaries of system B, if a certain command,
where a task of system A is involved, will be applicable or not, because all relevant in-

ImportExport ImportExport

SubcontractorContractor
Process

description file
Process

description

Local task Monitored task (executed locally)Local copy of a task (executed elsewhere)

Communication
Server

Fig. 6.Coupling of two instances of the AHEAD system

formation is stored within system B. Both systems do not need to be coupled when such
a command is triggered. It is sufficient to ensure that every change message, sent by one
of the systems, is delivered to the other system. If one of the two systems becomes un-
available, all change messages are temporarily stored in queues. Thus, both systems
can workautonomously. With this idea of duplicate tasks, the relations between tasks
in different systems can be handled in exactly the same way as relations between tasks
residing in the same system. Concerning the execution of commands it now becomes
transparentwhether a task is private or not.

If a task is to be stored in two systems as described, it is necessary to store some
context information for that task as well. Thecontextof a task T contains all tasks
that are directly connected to T, e.g. the parent task of T, all tasks connected to T by
a control flow, all tasks connected to T by a data flows and the relevant output and
input parameters, and all tasks in a refining task net of T. For example, in the lower
part of figure5 the context of task T2 consists of T1 and T3, together with all relevant
parameters of these two tasks, and the control flow between T2 and T3.

3.3 Delegation of processes

The developed concept and tool support of distributed development processes in the
AHEAD system is based on the delegation of process fragments[3]. Figure6 provides
an overview of the coupling of two instances of AHEAD:

1. Preparation step: The contractor selects a part of the task net for delegation within
his own instance of the AHEAD system and exports this subprocess into a file. This
file is sent to the subcontractor. The subcontractor imports the file into his own in-
stance of AHEAD. A task net is set up there which corresponds to the delegated
subprocess in the AHEAD system on the contractor side. The subcontractor’s task
net contains all delegated tasks together with their context elements. Copies thereof

remain in the system of the contractor and they are updated every time the corre-
sponding tasks within the system of the subcontractor change their state.

2. Run-time coupling: The management systems of contractor and subcontractor are
connected via acommunication serverat run-time to exchange change messages.
With these messages the two management systems inform each other about changes
of the state of the tasks maintained on either side. The contractor is informed about
changes at delegated tasks, which are executed by the subcontractor, and vice versa.
Each task can only be manipulated by exactlyone of the two coupled AHEAD
systems. For example, the subcontractor is responsible for the delegated tasks. He
may also refine the delegated tasks with private task nets, which are hidden from
the contractor. The contractor cannot manipulate the delegated tasks and can only
monitor changes performed by the subcontractor. Conversely, the responsibility for
the tasks of the context tasks remains with the contractor. These tasks can only be
changed in their state by the contractor and these changes can only be monitored on
the subcontractor side. If one of the two management systems is disconnected for
a while and can no longer process incoming events, messages are stored in queues
maintained by the communication server between the two AHEAD systems. After
the system is connected again, queued events are processed.

3. Manipulation of the delegated sub-process: When the two systems are coupled at
run-time, the delegated sub-process can be altered: for example, new tasks may be
added to the delegated task net, input and output parameters may be attached to
tasks, control flow and data flow relationships between tasks can be created, be-
tween local tasks as well as non-local tasks. Private tasks can be made visible for
the partner by including them into the corresponding context. As contractor and
subcontractor have to agree about these structural changes of the delegated pro-
cess fragment, achange protocolis enforced by the AHEAD system. All structural
changes have to be carried out by the contractor and are propagated to the subcon-
tractor. The subcontractor can reject any of the propagated changes.

The AHEAD system offers a set ofremote link commandsfor each of these phases.
For example, there are commands for the export and import of process description files
and for the refinement of delegated tasks. Contractor and subcontractor use special com-
mands to register with the communication server. The largest set of commands deals
with the structural manipulation of the delegated subprocess.

The describeddelegation modelsatisfies all of the requirements for a proper support
of distributed development processes mentioned above. The idea to duplicate tasks in
both management systems allows for the monitoring of duplicated tasks, thereby cov-
ering, together with the developed delegation model, requirements 1 to 4. The duplica-
tion of tasks for use in other systems can be forbidden (requirement 5). Management
systems can work independent of each other, when messages are queued, e.g. in acom-
munication server(also requirement 4). Requirement 6 is met by the change protocol
for the manipulation of the delegated parts of a task net. Finally, both organizations use
AHEAD for their process management and thus the execution semantics for tasks is the
same in both systems (requirement 7).

4 Realization based on graph concepts

The graph-based realization of the proposed delegation concept is explained in this
section. A couple of technical problems had to be solved: First, it had to be made clear
how a delegated process fragment (a portion of a task net) is transferred between two
coupled systems. Second, a mechanism to synchronize two coupled AHEAD systems
had to be developed. Third, the remote link commands had to be specified.

4.1 Export and Import of delegated task nets

After a part of a task net has been selected for delegation in the AHEAD system of a
contractor, it has to be transferred into the AHEAD system of the subcontractor. For this
purpose an asynchronous method has been chosen: The delegated subnet and its context
are exported to a file and then passed to the subcontractor, where it is being imported
into his system. The XML-based language GXL (Graph eXchange Language)[14] has
been selected for the implementation. A synchronous transfer, for example using a net-
work connection between both systems, cannot be used here, because both systems have
to work independently.

All information about delegation relationships is maintained within the graph struc-
tures of AHEAD. The existing AHEAD specification had to be extended to designate
whether elements of the task net are “private”, “remote” or “monitored”, as well as the
unique id’s of remote elements. These id’s refer to elements stored in a coupled sys-
tem, and the local system receives them from the coupled system. They are used within
changes messages to denote the corresponding remote elements.

4.2 Run-time synchronization of a delegated distributed task net

AHEAD stores all graph related data in the graph database GRAS. Unfortunately,
GRAS has not been designed to access graphs in another instance of a GRAS system.
Therefore, a JAVA-basedcoupling modulehas been realized to handle the technical de-
tails of the coupling, such as the connection of two instances of the AHEAD system
and the execution of the remote link commands.

As GRAS is anactive database, it generates adatabase eventof a certain type
when the graph is altered and propagates this event to all interestedevent listeners. For
example, when a graph node of typet is inserted into the graph, a database event of type
NodeCreated(t) is sent to all interested listeners. Similarly, changing the value of
an attribute of a graph node leads to the generation of a corresponding modification
event.

This kind of event handling is used to realize the delegation of tasks between two
management systems. If a task T1, stored in process management system (PMS) A, is
delegated to system B for execution, then a new copy T1’ of T1 is created in PMS B.
Only for monitoring purposes the original task T1 remains in PMS A. When the state of
T1’ in PMS B changes, a change message is sent back to PMS A to trigger appropriate
steps to update the local copy T1 to the new state. The same applies for all task net
elements, e.g. control flows, parameters, and data flows. Every instance of the process
management system can at the same time act as aproducerof events regarding all

command

transaction
transaction

3

2

1

7

6

4 5

OUT
EXT

REALIZATION

IN
EXTDF

CF

CF

T1:TASK

state="Active" CF

DF

Task

Task

OUT
EXT

changedTask=T1

e:EventStart

REMOTELINK

link:

toChangedItem

toConcernedLink

monitored

Remote Link

Manager

e:EventStart(T1)

NodeAdded:

database event

user interface

Start (T1)

OUT
EXT

REALIZATION

IN
EXTDF

CF

CF

T1:TASK

state="Active" CF

DF

Task

Task

OUT
EXT

REMOTELINK

link:

Remote Link

Manager

message queues

Communication server

GRAS

Start(T1)

T1.State := "Active"

CreateEventNode (T1, EventStart)

system A (local system)

User

UpdateStart(T1)

message

GRAS

remote

user interface

database event
NodeChanged:

T1.state="Active"

UpdateStart(T1)

Start(T1)

system B (coupled system)

UpdateStart(T1)

message

node has been inserted by production CreateEventNode

T1 T1

Fig. 7.Delegation of process fragments between two instances of the AHEAD system

elements which are monitored elsewhere and as aconsumerof events regarding all
elements which are executed elsewhere and only monitored locally.

This idea is now illustrated in the following example (see figure7):

1. A user triggers a command “Start(T1)” at the graphical user interface of the (local)
PMS A. Then a corresponding PROGRES transaction is executed in PMS A.

2. In this transaction it is tested whether the command is applicable in the current state
of T1 or not. If so, the state of task T1 is changed toActive . If T1 is a task which
is monitored elsewhere, a node of typeEventStart is inserted into the graph of
PMS A. This new event node is connected with T1 by an edge and T1 contains all
data needed in a coupled system to update the maintained copy of T1 there (in the
example, the identification of T1 is stored inchangedTask as the only necessary
information).

3. The insertion of the new event node raises a new database eventNodeAdded gen-
erated by GRAS. This database event is propagated to all registered listeners of this
event type.

4. TheRemote Link Managerof PMS, listening to all events of such type, receives this
event. The Remote Link Manager sends (via acommunication serverbetween the

node type EventAddConFlowNeutralDelegated : RELATION_EVENT
derived

taskID = getNetworkID (self.-toChangedItem->);
parentID = getNetworkID (self.-toChangedItem-> : TASK.=toParent=>);
taskName = self.-toChangedItem-> : TASK.Name);
taskState = self.-toChangedItem-> : TASK.State);
[...]

end;

Fig. 8.Event node typeEventAddConFlowNeutralDelegated

two Remote Link Managers) a messageUpdateStart together with the stored
data of the event node to the Remote Link Manager of the coupled system. As
stated before, the communication server can store such messages in case that one
of the two systems is temporarily unavailable. The stored messages are processed
when the system is available again. In the current prototypical implementation it
is assumed that no change message is lost during transport from one system to
another. This standard problem in distributed systems can be addressed by using a
more reliable transport protocol. The messages can be numbered and the receipt of
a message with a certain number can be signaled to the sender.

5. In PMS B the Remote Link Manager receives the message and executes an appro-
priate graph transactionUpdateStart(T1) . The parameters for this transaction
are taken from the received message.

6. The execution of the transactionUpdateStart(T1) first determines the ID of
the copy of task T1 in system B. Second, the state of this task is changed toAc-
tive .

The data exchange mechanism between the systems using the Remote Link Manager
and the communication server is realized in JAVA, while the underlying logic of this
coupling mechanism is specified in PROGRES.

4.3 Implementation of theremote link commandsin PROGRES

As mentioned earlier, every event node type stores all needed data to update the state of
the local copy of the task in a coupled system. PROGRES offersderived attributesfor
these node types. These attributes are not set to a specific value. Rather, it is specified
which graph data have to be evaluated to determine the correct value of the attribute. By
this mechanism it is possible to calculate the data of the event node types automatically
in the instance the attribute is queried.

Figure8 shows the corresponding specification of an event node typeEventAdd-
ConFlowNeutralDelegated . This event is raised, when a control flow between
two tasks is inserted while one of the two connected tasks, which has not been part of the
delegated task net before, becomes a context task. As this task has not been instantiated
in the coupled system before, a new context task has to be created in the coupled system,
before the new control flow can be inserted between the two tasks. The corresponding
event node type aggregates all data needed to perform the two described steps. To obtain
the taskID , the evaluation starts at the event node (self) and if possible, navigates
over an edge of typetoChangedItem to the changed model entity. Next, the function

getNetworkID is called with this entity as an argument to obtain a network-wide ID
that can be used in a coupled system to access this entity in the local system. The name
of the changed task is retrieved in a similar way. Here the changed entity, which is
expected to have typeTASK, is reached during the graph navigation and its attribute
Nameis retrieved.

In the local system the insertion of a control flow between two tasks is done within
a specific graph transformation. If both connected tasks are located in the local system,
only the control flow is inserted. But if one of the connected tasks is located in a coupled
system, it is decided during a case analysis, which type of event node is inserted into
the local system.

The insertion of such event nodes is detected by the Remote Link Manager of the
local system and a corresponding change message is sent to a coupled system. The
Remote Link Manager of the coupled system then executes an update transaction. Every
update transaction corresponds to exactly one event type, e. g.EventAddConFlow-
NeutralDelegated , and specifies all necessary steps on the side of the coupled
system to reach a synchronized state with the local system concerning this event.

This mechanism serves for the run-time synchronization of two AHEAD systems.
In general, this mechanism can be used for the coupling of two graph rewriting systems
operating on different (graph) databases. By this mechanism it is possible to execute re-
mote transactions in one of the two rewriting systems triggered by the other system. For
instance, within a graph transactiongt, executed in rewriting system A, the execution
of a second graph transactiongt′ in rewriting system B has to be triggered.

To achieve this, a new node of a special event node typeet is created in system A.
This event node can carry in its attributes some information of interest to system B in
order to execute the remote transactiongt′. The new event node is inserted into the graph
of system A. This leads to the generation of an event node of typeNodeAdded(et) .
A coupling module listens to all events regarding such event nodes. If the insertion of an
event node of a specific type is detected, a corresponding message is sent to the coupling
module of the other system B. The coupling module there by executing a predefined
graph transactiongt′, which can manipulate the graph of system B in a deliberate way.

5 Related work

Related work is shortly discussed on a conceptual level (delegation of processes) and
on a technical level (coupling of two graph rewriting systems).

Van der Aalst gives an overview about concepts for distributed cooperation in [15].
Although the focus is on workflow management, the classification can also be used for
the management of dynamic development processes.Subcontractingis similar to the
delegation of process fragments proposed in this paper, but only allows to assign single
activities of a process to another organization for execution. Delegation allows to assign
whole task nets to another organization.

In [16] Dowson describes the use of contracts in the system IStar. There, the struc-
ture of a software development process is hierarchical and the responsibilities for all
process parts are described by contracts. However, these contracts do not define how

the process is structured (black-box approach). Instead, every subcontractor is free to
refine the assigned activities individually.

TheContract Net Protocol (CNP)[17] also deals with relationships between a con-
tractor and a subcontractor. This work focuses on the fully automated negotiation of
buying and selling of goods between systems, e.g. on electronic markets. A communi-
cation protocol with standardized messages is followed between an initiating agent and
one or more participating agents who compete for an offered contract. The main focus
lies on the automatic calling for and receiving of bids and awarding the contract to the
most suitable bidding agent. This negotiation phase is not addressed in the AHEAD
system. Here, both organizations have to come to a mutual agreement about details of
the delegation relationship outside of AHEAD. After both organizations have come to
an agreement, the AHEAD system handles the technical realization of the delegation of
process parts and the coupling of both process management systems.

Taentzer et. al[18] use distributed graph transformations for the specification of
static and dynamic aspects of distributed systems. There, a network structure consisting
of local systems is modeled by anetwork graph. The internal state of each local system
can also be described as a graph where nodes are data objects and edges between nodes
express relationships between these data objects.Local viewscontaining export and im-
port interfacesare used to define the coupling of local systems within a network. The
interfaces of a local system store a subgraph with all accessible nodes and edges. Cou-
pling means connecting an export interface of one local system with an import interface
of another. In contrast to this general specification approach, the coupling mechanism
of this paper is developed with respect to the special case of coupled instances of the
AHEAD system (based on PROGRES). The coupling of two AHEAD systems is the
basis for the proposed concept of delegation of processes in the research area of process
management. By a research prototype this delegation concept and the coupling of two
AHEAD systems have been implemented.

6 Summary

In this paper a delegation-based concept supporting distributed development processes
and its realization by the graph-based AHEAD system has been presented. In the scope
of the IMPROVE project[1] this approach has been applied to a case study in chemical
engineering, where the development of a chemical plant for polyamide is carried out in
more than one organization.

The decision to use graph technology for the realization of the AHEAD system
has proven to be a good basis for future extensions. The formal specification of the
application logic of AHEAD gives a precise definition of the semantics of commands
operating on the management data with AHEAD. The generation of executable code
from this specification avoids the programming effort of implementing the commands
in a traditional way. The application logic of AHEAD and the coupling logic are speci-
fied in PROGRES. As the coupling logic is based on the application logic of AHEAD,
the same specification language can be used for both parts. Furthermore, changes in
the logic are easy to implement by changing the specification and generating new exe-
cutable code.

References

1. Nagl, M., Westfechtel, B., eds.: Integration von Entwicklungssystemen in Ingenieuranwen-
dungen. Springer, Heidelberg (1998)

2. Becker, S., J̈ager, D., Schleicher, A., Westfechtel, B.: A delegation-based model for dis-
tributed software process management. In Ambriola, V., ed.: Proc. 8th Europ. Workshop on
Software Process Technology (EWSPT 2001). LNCS 2077, Springer (2001) 130–144

3. Jäger, D.: Untersẗutzungübergreifender Kooperation in komplexen Entwicklungsprozessen.
Volume 34 of Aachener Beiträge zur Informatik. Wissenschaftsverlag Mainz, Aachen
(2003)

4. Heller, M., J̈ager, D.: Interorganizational management of development processes. In Nagl,
M., Pfaltz, J., eds.: Proc. AGTIVE 2003. LNCS, Springer (2004) In this volume.

5. Westfechtel, B.: Models and Tools for Managing Development Processes. LNCS 1646.
Springer, Heidelberg (1999)

6. Westfechtel, B.: A graph-based system for managing configurations of engineering design
documents. Intern. Journal of Softw. Eng. and Knowledge Eng.6 (1996) 549–583

7. Westfechtel, B.: Integrated product and process management for engineering design appli-
cations. Integrated Computer-Aided Engineering3 (1996) 20–35

8. Krüppel-Berndt, S., Westfechtel, B.: RESMOD: A resource management model for devel-
opment processes. In Engels, G., Rozenberg, G., eds.: TAGT ‘98 — 6th Intern. Workshop on
Theory and Application of Graph Transformation. LNCS 1764, Springer (1998) 390–397

9. Scḧurr, A., Winter, A., Z̈undorf, A.: The PROGRES approach: Language and environment.
In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars
and Computing by Graph Transformation: Applications, Languages, and Tools. Volume 2.
World Scientific, Singapore (1999) 487–550

10. Kiesel, N., Scḧurr, A., Westfechtel, B.: GRAS, a graph-oriented software engineering
database system. Information Systems20 (1995) 21–51

11. Böhlen, B., J̈ager, D., Schleicher, A., Westfechtel, B.: UPGRADE: Building interactive tools
for visual languages. In Callaos, N., Hernandez-Encinas, L., Yetim, F., eds.: Proc. of the 6th
World Multiconference on Systemics, Cybernetics, and Informatics (SCI 2002). Volume I
(Information Systems Development I). (2002) 17–22

12. Jäger, D., Schleicher, A., Westfechtel, B.: Using UML for software process modeling. In
Nierstrasz, O., Lemoine, M., eds.: Software Engineering — ESEC/FSE ‘99. LNCS 1687,
Springer (1999) 91–108

13. Schleicher, A.: Management of Development Processes – An Evolutionary Approach.
Deutscher Universitäts-Verlag, Wiesbaden (2003)

14. Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL graph exchange language.
In Diehl, S., ed.: Software Visualization. LNCS 2269, Heidelberg, Springer (2002) 324–336

15. van der Aalst, W.M.P.: Process-oriented architectures for electronic commerce and interor-
ganizational workflows. Information Systems24 (1999) 639–671

16. Dowson, M.: Integrated project support with ISTAR. IEEE Software4 (1987) 6–15
17. Smith, R.G.: The contract net protocol: High level communication and control in a dis-

tributed problem solver. IEEE Transactions in Computers29 (1980) 1104–1113
18. Taentzer, G., Fischer, I., Koch, M., Volle, V.: Distributed graph transformation with appli-

cation to visual design of distributed systems. In Ehrig, H., Kreowski, H.J., Montanari, U.,
Rozenberg, G., eds.: Handbook on Graph Grammars and Computing by Graph Transfor-
mation: Parallelism, Concurrency and Distribution. Volume 3. World Scientific, Singapore
(1999)

	Graph-Based Tools for Distributed Cooperation in Dynamic Development Processes
	Markus Heller, Dirk Jäger

