Process Evolution Support in the AHEAD System*

Markus Heller! and Ansgar Schleicher? and Bernhard Westfechtel!

L Lehrstuhl fur Informatik 111, RWTH Aachen
Ahornstrasse 55, D-52074 Aachen
[hel |l er| bernhard] @3.informatik. rw h-aachen. de
2 DSA Daten- und Systemtechnik GmbH
Pascalstr. 28, D-52076 Aachen
Ansgar . Schl ei cher @isa. de

Abstract. Development processes are inherently difficult to manage. Tools for
managing development processes have to cope with continuous process evolu-
tion. The management system AHEAD is based on long-term experience gath-
ered in different disciplines (software, mechanical, or chemical engineering).
AHEAD provides an integrated set of tools for evolving both process definitions
and their instances. This paper describes a demonstration of the AHEAD system
which shows the benefits of process evolution support from the user’s point of
view.

1 Introduction

Development processes in different disciplines such as software, mechanical, or chem-
ical engineering share many features. Unfortunately, one of these common features is
that they are hard to manage. Development processes are highly creative and there-
fore can be planned only to a limited extent. In this paper, we present the comprehen-
sive evolution support [1] offered by AHEAD [2], an Adaptable and Human-Centered
Environment for the MAnagement of Development Processes. The tool demonstration
given here complements the conceptual paper in this volume [3]. AHEAD is based
on nearly 10 years of work on development processes in different engineering disci-
plines. So far, we have applied the concepts underlying the AHEAD system in software
engineering, mechanical engineering, and chemical engineering. In contrast to the con-
ceptual paper, our tool demonstration will refer to the chemical engineering domain.

2 Process Evolution

For managing evolving development processes, AHEAD offers dynamic task nets [4].
Within dynamic task nets, tasks describe units of work to be done. Tasks are orga-
nized hierarchically, i.e., a task may be decomposed into a set of subtasks. Control flow
relationships define the order of subtask enactment. Data flow relationships connect in-
put and output parameters of tasks and allow to exchange documents between them.

* The work presented in this paper was carried out in the Collaborative Research Center IM-
PROVE which is supported by the Deutsche Forschungsgemeinschaft.



2 Markus Heller and Ansgar Schleicher and Bernhard Westfechtel

Feedback relationships model cycles within the process which may stem from planned
iterations or occurring exceptional situations. Software processes evolve continuously
and it is usually impossible to completely plan a process before its enaction. Therefore,
dynamic task nets are designed to be editable and enactable in an interleaved fashion.

With respect to dynamic task nets, we have to distinguish between process def-
initions and process instances. A process instance represents a specific development
process being executed. In contrast, a process definition describes a whole class of pro-
cesses. It describes the structures of processes of this class, and the constraints that have
to be met. Process instances refer to definitions; e.g., the task | npl ement Foo might
be an instance of the task type | npl enment .

Process evolution is supported by the AHEAD system in the following ways:

— Instance-level evolution. Planning and enactment of dynamic task nets may be in-
terleaved seamlessly.

— Definition-level evolution. Process knowledge at the definition level may evolve
as well. Evolution is supported by version control at the granularity of packages
(modular units of process definitions).

— Bottom-up evolution. By executing process instances, experience is acquired which
gives rise to new process definitions. An inference algorithm supports the semi-
automatic creation of a process definition from a set of process instances.

— Top-down evolution. A revised process definition may be applied even to running
process instances by propagating the changes from the definition to the instance
level.

— Selective consistency control. By default, process instances are required to be con-
sistent with their process definition. However, the process manager may allow for
deviations resulting in inconsistencies. These deviations are reported to the process
manager who may decide to reinforce consistency later on (e.g., when an improved
process definition is available).

3 AHEAD System

Figure 1 displays the architecture of AHEAD. The tools provided for different kinds
of users are shown on the right-hand side. “Process modeler”, “process manager”, and
“developer” denote roles rather than persons: A single person may play multiple logical
roles, and a single role may be played by multiple persons. The left-hand side, which
will not be discussed further here (see [3]), shows internal components of the AHEAD
system which are not visible at the user interface. Furthermore, the horizontal line sep-
arates definition and instance level.

The process modeler uses a commercial CASE tool — Rational Rose — to cre-
ate and modify process definitions in the UML [5]. Rational Rose is adapted with the
help of stereotypes which link the UML diagrams to the process meta model (dynamic
task nets). The process definition introduces domain-specific types and constraints for
operating on the instance level. Definition-level evolution is supported through version
control for model packages.

On the instance level, the management tool assists a process manager in planning,
analyzing, monitoring, and controlling a development process. The management tool



Process Evolution Support in the AHEAD System 3

PROGRES environment Y e

Process Meta Model
(Dynamic:Fask-Nets)-=..

stores\ Y~

models in

model gg
Knowledge
 Base

Process

Model
Process Mode 4 Modeler

Definition

definition level

§ T:?erence Tool feeds new
H ©
instance level E retrieves e knowledge
[} instance data
o
offers view e : (J
5 v
UPGRADE
Application Logic | framework & - e = / w
Library extensions i Process
operates on Management Tool Manager

interacts
\

= — L
+  Workspace
offers view a p
" Agenda /

Developers

Management
Data

internal representation external representation

Fig. 1. Architecture of the AHEAD system

support instance-level evolution (through dynamically evolving task nets), consistency
control (with respect to the process definition generated from the UML model), and
top-down evolution (migration of a process instance to a new version of the process
definition). The management tool is coupled with tools provided to developers (or de-
signers) which are used to display agendas of assigned tasks and to operate on these
tasks in workspaces from which domain-specific tools may be activated in order to
work on design documents.

Finally, the inference tool closes the loop by assisting in the inference of process
definitions from process instances. The inference tool analyzes process instances and
proposes definitions of task and relationship types. These definitions are stored in a
knowledge base which may be loaded into Rational Rose. In this way, bottom-up evo-
lution is supported (for a more detailed description, see [1].

4 Demonstration

AHEAD is being developed in the context of IMPROVE [6], a long-term research
project which is concerned with models and tools for design processes in chemical



4 Markus Heller and Ansgar Schleicher and Bernhard Westfechtel

¢ Rational Rose - Dissertationbeispiel_SFB2003nitialmdl - [Class Disgram: R_SubprocessDesign_1 | Composition] =lal x|

% De Edt Yew Gowse Beport Query Teds Adddns Window tiep =18 x|
] 21" Be| & w0 Amalol 84 LleE:
# 03 Use Case View W j
=0 e
2 [=)
# 03 «<TaskP» PlantDesion = g
& 0 <TarkP>> Preucy = | simulatonBasea
P>> SubprocesiDesion E) AR
X, PackageR elaions & o =
-0 <cIntertacePy> 1_SubprocessD | =) .1 <<may haves> 1)
3 i —
=l §8_AFDOUE 4 8
24 Subprocess
@ B SR =l <<dfiow>> <<may contain>> sB_Sim <<may cantain-> SR
= ResultOut
O 58_SubprocesiDesignin > < R
= 03 <<TaskP>> DecisiorPlartDesign = <<dNow=> e
& PackageR elations 4
3 cdrtertaceP>> | DecisiorPlort | 4!
= 03 <cResizationPs> R_DacisierP  |===
Compositon
B <cReakestion S\Dedis0 . /
% (3 <TaskP>> Flowsheetitematives e e . edows
@ TaskP>> Evalusi FAAFDIN 1 s 1 o= 1
& ng<:":;\v;wvaua‘nn ialit™ - g TR o 3.8 E_SimResul ey~ o 1B
. <<Task>> st N sy | <<TESE> | LgeoutOut in +rg | <T35°> [ subprocess
09 Deployment View Flowsheetallernatives | .| simuiation Evaluaion
1, <<cow=> ok 140 <<ciows> :
of 1 i} S = &
— %}
e 1 ‘ <ctows> A/
FA_AFDOU S_AFDIn
- 1 11 _>l_I

Far Help, press F1

Fig. 2. Adapted UML class diagram for defining a chemical engineering design process

engineering. Within the IMPROVE project, a reference scenario is being studied refer-
ring to the early phases (conceptual design and basic engineering) of designing a plant
for producing Polyamide6 [7]. To a large extent, the requirements for process evolu-
tion support were derived from this scenario, even though we also studied processes in
other domains (e.g., software engineering). In fact, the reference scenario constitutes a
fairly challenging benchmark against which process evolution capabilities of manage-
ment systems can be evaluated. Process knowledge is incomplete, instable, and rather
fuzzy, feedback occurs frequently in the design process, multiple design variants have
to be considered, etc.

Based on our work on the reference scenario, we have prepared a demo session
which is sketched briefly below. First, the process modeler creates a process definition
for design processes in chemical engineering. The process definition describes design
processes at the type level. Figure 2 shows a class diagram which defines a part of
the overall design process. The described part consists of one task for designing a set
of flowsheet alternatives, a set of simulation tasks (one for each alternative), and one
evaluation task for selecting the best alternative.

The design process is planned and executed according to this process definition. On
the top level, the design process is essentially decomposed according to the structure
of the chemical process, which consists of three steps (reaction, separation, and com-
pounding). We will focus on the design of the separation, which requires input from
the reaction design. The process manager insert tasks for elaborating flowsheet alterna-
tives and for performing a final evaluation of the alternatives. So far, the task net is still
incomplete because the simulation tasks have not been instantiated yet.

Now, the process manager detects the need for performing a task which has not been
anticipated in the process definition. To insert this task (a task for estimating the inputs
to a certain component of the chemical plant in order to accelerate the overall design
process by concurrent engineering), consistency enforcement is switched off. The task



Process Evolution Support in the AHEAD System 5

PobamidsDesign
Manager

ReartionDesign
’Rﬂmﬂr&uhur
(X

SeparationDesign
SeparationEngineer

E Flowsheetalternatives

SeparationEngineer Evaluation
ﬂ SeparationEngineer

SeparationDesign
‘Smmnrﬁmnur

SimulationExtraction
ﬂ SeparationEngineer
e

{ )
o S iowsheerarematives|
SeparationEngin ®

® SimulationDistillation
SeparationEngineer

Fig. 4. Task net after migration

net is extended, resulting in inconsistencies which are displayed by colored markings
(Figure 3).



6 Markus Heller and Ansgar Schleicher and Bernhard Westfechtel

The process definition is extended accordingly by introducing a new package ver-
sion (not shown in a figure). In this way, traceability on the definition level is main-
tained. The corresponding class diagram differs from the previous version in the defini-
tion of a task class for estimation tasks.

The modified process definition is propagated to the process instance. In this way,
running process instances may be migrated to improved definitions. In general, migra-
tion has to be performed in a semi-automatic way (i.e., some steps may be automated,
but some have to be performed interactively by the process manager). Figure 4 shows a
state of the task net which is nearly consistent with the improved definition. The control
flow between the estimation task and the design task is still inconsistent: Although it has
been defined as a sequential control flow, source and target are active simultaneously.
This inconsistency will be removed when the estimation task is terminated. After that,
consistency enforcement may be switched on again. This final step closes the process
evolution roundtrip.

5 Conclusion

We have presented a management system supporting comprehensive evolution sup-
port for dynamic development processes. AHEAD provides round-trip process evolu-
tion, combining instance-level evolution, definition-level evolution, bottom-up and top-
down evolution as well as toleration of inconsistencies into a coherent process evolution
framework. We have applied our system to an industrially relevant reference scenario.
In the future, we hope to transfer the implementation into industrial practice, resulting
in feedback from practical use.

References

1. Schleicher, A.: Management of Development Processes — An Evolutionary Approach.
Deutscher Universitéts-Verlag, Wieshaden, Germany (2002)

2. Jdger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for modeling and
managing development processes. [8] 325-339

3. Heller, M., Schleicher, A., Westfechtel, B.: Graph-based specification of a management sys-
tem for evolving development processes. In Nagl, M., Pfaltz, J., eds.: Proc. AGTIVE 2003.
LNCS, Springer (2004) In this volume.

4. Heimann, P., Krapp, C.A., Westfechtel, B., Joeris, G.: Graph-based software process manage-
ment. Int. Journal of Software Engineering and Knowledge Engineering 7 (1997) 431-455

5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison
Wesley, Reading, Massachusetts (1998)

6. Nagl, M., Marquardt, W.: SFB-476 IMPROVE: Informatische Unterstiitzung tibergreifender
Entwicklungsprozesse in der Verfahrenstechnik. In Jarke, M., Pasedach, K., Pohl, K., eds.:
Proc. Informatik ‘97. Informatik aktuell, Aachen, Springer-Verlag (1997) 143-154

7. Nagl, M., Westfechtel, B., Schneider, R.: Tool support for the management of design processes
in chemical engineering. Computers & Chemical Engineering 27 (2003) 175-197

8. Nagl, M., Schiirr, A., Miinch, M., eds.: Proc. AGTIVE “99. LNCS 1779. Springer (1999)



