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ABSTRACT:
Development processes are inherently difficult to man-

age. Tools for managing development processes have to
cope with continuous process evolution. The management
system AHEAD is based on long-term experience gathered
in different disciplines (software, mechanical, or chemical
engineering). AHEAD provides an integrated set of tools
for evolving both process definitions and their instances.
Furthermore, changes at the definition level may be prop-
agated to the instance level and vice versa (round-trip pro-
cess evolution). Finally, AHEAD deals with both incom-
plete and incorrect process knowledge by supporting un-
typed process instances and allowing for deviations of pro-
cess instances from their definitions, respectively.

I. INTRODUCTION

Development processes in different disciplines such as
software, mechanical, or chemical engineering share many
features. Unfortunately, one of these common features is
that they are hard to manage. Development processes are
highly creative and therefore can be planned only to a lim-
ited extent. The tasks to be performed depend on the prod-
uct to be developed, which is not known in advance. Alter-
native designs (variants) are explored to arrive at an optimal
solution. Feedback may occur frequently — including not
only spontaneous feedback raised by design errors in ear-
lier steps, but also anticipated feedback which may be used
to improve the design or to select among variants of the
design. Finally, development methods such as concurrent
or simultaneous engineering require sophisticated coordi-
nation between inter-dependent design activities.

These considerations illustrate that development pro-
cesses are highly dynamic. Process evolution constitutes
a major challenge for effective management. Development
processes cannot be fixed beforehand, rather they undergo
continuous evolution. Management has to cope with pro-
cess evolution in an adequate way by balancing flexibil-
ity and control. On one hand, management has to react to
changes, e.g., by re-planning the development process in re-
sponse to detected errors. On the other hand, management
has to constrain changes in order to ensure that the devel-
opment process is executed in a well-structured manner.

In order to build effective tools for managing develop-
ment processes, one must face the challenge of process
evolution. While this has been recognized widely, current
management systems can cope with process evolution only

to a limited extent. In particular, this applies to workflow
management systems [19] which were designed for repet-
itive business processes, e.g., by automating routine work
in banks, insurance companies, administrations, etc. In
such systems a high number of workflows are executed ac-
cording to a common definition, ensuring that work is per-
formed following a pre-defined procedure. This approach
cannot be transferred to development processes because it
does not take process evolution into account: Developers
would perceive themselves being tied in a straight-jacket so
that they cannot perform their creative work as desired.

In response to these problems, a variety of mechanisms
have been developed to increase the flexibility of workflow
management systems. Workflow definitions are made more
flexible, e.g., by relaxing ordering constraints for activi-
ties, handling exceptions, or allowing for (usually small)
deviations. Moreover, mechanisms are provided for chang-
ing workflow definitions and instances. Despite these ef-
forts, process evolution is hardly considered comprehen-
sively, and changes are still rather difficult to implement.

In this paper, we present the comprehensive evolution
support [27] offered by AHEAD [13], an Adaptable and
Human-Centered Environment for the MAnagement of
Development Processes. AHEAD is based on nearly 10
years of work on development processes in different engi-
neering disciplines. So far, we have applied the concepts
underlying the AHEAD system in software engineering,
mechanical engineering, and chemical engineering.

In our work, we have developed an interdisciplinary ap-
proach to the management of development processes which
particularly takes process evolution into account. Process
evolution is supported in an integrated way by a variety
of cooperating mechanisms such as wide spectrum process
definitions, top-down propagation of changes from process
definitions to their instances, instance-level evolution (by
seamless interleaving of planning and execution), (selec-
tive) toleration of inconsistencies of process instances with
respect to their definition, and bottom-up inference (learn-
ing) of process definitions from executed instances.

Below, we proceed as follows: Section 2 presents the
conceptual framework underlying AHEAD’s evolution sup-
port. Section 3 describes the functionality of the AHEAD
system with the help of a case study in chemical engineer-
ing (space limitations do not allow to cover other engineer-
ing disciplines as well). Section 4 briefly sketches architec-
ture and implementation of AHEAD. Section 5 discusses
related work, and Section 6 concludes the paper.
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Fig. 1. Conceptual framework

II. CONCEPTUAL FRAMEWORK

A. Levels of Modeling

Our work is based on a conceptual framework which dis-
tinguishes four levels of modeling (Figure 1). These levels
are quite common in software process research [20], [6];
however, the meaning of these levels as well as their in-
teraction differs from one approach to another. Each level
deals with process entities such as products, activities, and
resources. Here, we focus on activities, even though our
framework equally applies to products and resources [18].
The level of abstraction on which these entities are consid-
ered decreases from the top to the bottom. Process evolu-
tion may occur on every level. Furthermore, adjacent lev-
els are connected by propagation and analysis relationships.
Propagation is performed top-down and constrains the oper-
ations that may be performed on the next lower level. Con-
versely, analysis works bottom-up and aims at providing
feedback to the next upper level.

The process meta model introduces the language (or meta
schema) in terms of which process models may be defined
at the next lower level. In AHEAD, the activity meta model
is based on dynamic task nets [9]. Tasks are organized hier-
archically. Complex tasks are decomposed into nets of sub-
tasks; atomic tasks form the leaves of the hierarchy. Tasks
are connected horizontally by control flows, which deter-
mine the order of task execution. Feedback flows are ori-
ented oppositely to control flows; they are used to represent
feedback in the development process. Finally, tasks have
inputs and outputs which are connected by data flows.

Process (model) definitions are created as instances of
process meta models. Process models are defined in the

Unified Modeling Language (UML [3]). Tasks and task
types are modeled as objects and classes, respectively. At
the type level, processes are represented by class diagrams.
In addition, collaboration diagrams define processes at the
abstract instance level. In this way, recurring patterns of
tasks and instances may be defined. Process definitions are
organized into packages. A task package defines the inter-
face of a task (in terms of its inputs and outputs), while a
realization package (of a complex task) contains the class
diagram and the collaboration diagrams of the respective
subprocess. UML model elements are adapted to the pro-
cess meta model with the help of extension mechanisms
provided by the UML (stereotypes and tagged values [14]).

Process (model) instances are instantiated from process
model definitions. A process model definition represents
reusable process knowledge at an abstract level. Multi-
ple process instances may share the same definition. In
contrast, there is a 1:1 correspondence between a process
model instance and the respective real-world process, i.e.,
each process model instance represents exactly one real-
world process. A process model instance is composed of
task instances which are created from the task classes pro-
vided by the process model definition.

Finally, the real-world process consists of the steps that
are actually performed by humans or tools. The process
model instance is an abstraction which represents the real-
world process in the process management system. The pro-
cess model is used to guide and control process participants.
Conversely, process participants provide feedback which is
used to update the process model instance.

B. Evolution Support

Evolution may occur on each model level. Furthermore,
the consequences of evolution have to be propagated verti-
cally between the levels. In the sequel, we describe process
evolution support given by the AHEAD system at a concep-
tual level, proceeding from the bottom to the top.

Real-world evolution drives evolution of the upper lev-
els. The real-world process is represented by a correspond-
ing process model instance. When the real-world process
is changed, its model has to be updated accordingly. In
AHEAD, these updates are performed by and large manu-
ally. For example, a designer may indicate that he has fin-
ished a certain design task by triggering the transition Com-
mit from state Active to state Done. Conversely, AHEAD
provides mechanisms to control the real-world process. For
example, for a design task a workspace is maintained which
contains the design documents to read and written. These
documents are owned by AHEAD, i.e., they may be ac-
cessed only via the workspace. In this way, AHEAD tries
to maintain consistency between the process model instance
and the real-world process.

Instance-level evolution is crucial to match the process
model instance with the real-world process as closely as
possible. Instance-level task nets are built up and modified



3

Fig. 2. Wide spectrum approach

at run time by instantiating tasks from their classes in the
process model definition. Therefore, the topology of task
nets is determined only at run time. Planning and execution
may be interleaved seamlessly. In contrast to project plans
known from project management systems, task nets may
represent feedback in the development process. Handling
of feedback may imply reactivation of already terminated
tasks in order to propagate changes through the task net. Fi-
nally, AHEAD provides simultaneous engineering by con-
trol flows which allow for overlapping execution of prede-
cessor and successor tasks. Preliminary versions of outputs
may be released to and consumed by successor tasks, result-
ing in a dynamic workspace which is updated according to
changes in the context of a task.

Instance evolution is controlled with the help of process
model definitions. A wide spectrum approach allows to ad-
just control as desired. How stringently process models are
defined, depends on the available process knowledge and
the desired balance of flexibility and control. The spectrum
of process model definitions is illustrated in Figure 2. If no
domain-specific process knowledge is available at all, task
nets may be composed from untyped tasks. More precisely,
this means that all tasks are instantiated from the same pre-
defined type Task. In this case, only built-in constraints of
the process meta model are enforced. If domain-specific
process knowledge is available, yet incomplete, a partially
typed process instance may be created. Here, the known
parts of the process are instantiated from domain-specific
types explicitly defined in the model; for the rest, untyped
tasks are used. In the case of complete process knowledge
at the type level, a typed process instance is created in line
with a class diagram defining task classes and associations.
Finally, the process modeler may define instance patterns
for frequently occurring subgraphs of tasks and relation-
ships (e.g., a control flow — feedback pattern). Instance
patterns are defined by collaboration diagrams which de-
scribe the operations to be executed in order to insert an
instance of a pattern into a task net.

The wide spectrum approach allows to balance flexibil-
ity and control as desired. For different parts of the overall

process, subprocess models may be defined at the differ-
ent levels illustrated in Figure 2, according to the knowl-
edge which is available for the respective subprocess. How-
ever, the flexibility provided by the wide spectrum approach
alone is not sufficient and must be complemented by fur-
ther mechanisms. No matter how carefully a process model
is defined: A process definition may contain errors, i.e., it
may turn out to be inadequate because of missing task or
relationship types, inappropriate ordering constraints, etc.
Therefore, AHEAD provides for flexible consistency con-
trol by allowing for inconsistencies of process model in-
stances with respect to their definitions. The level of consis-
tency enforcement may be controlled individually for each
subprocess (refinement of a complex task). If the man-
ager permits inconsistencies, the respective part of the over-
all process model instance may deviate from the definition
(e.g., a task class may be instantiated which is not con-
tained in the respective class diagram). The manager is in-
formed about all occurring inconsistencies. Process execu-
tion may continue even in the presence of inconsistencies,
which may (or may not) be removed later on.

Toleration of inconsistencies avoids the well-known
problem of getting stuck in the execution of an erroneously
defined workflow. Execution may continue even in the case
of an inadequate process model definition. However, it is
rarely acceptable to live with inconsistencies forever. Thus,
definition evolution has to be supported to improve pro-
cess model definitions. In AHEAD, process models may be
evolved in terms of packages, which serve as units of ver-
sion control. Versions are immutable to ensure traceability.
In order to evolve a package, a new version is created. This
may induce the creation of new versions of related pack-
ages. To make use of a new version of an interface pack-
age, a version of an importing realization package has to be
created likewise.

Changes at the definition level may be propagated top-
down to the instance level. That is, instances may be mi-
grated to new definitions. Migration is handled in a flexible
way in multiple respects. The user (manager) determines
the time of migration, the scope (which instances to mi-
grate), and the target (which versions of definitions to use).
Furthermore, inconsistencies may be tolerated during mi-
gration. Migration can always be performed, even if new
errors are introduced or old errors persist. This provides
the manager with the flexibility to clean up the task net step
by step. Please note that the overall migration process can
be automated only partially; human expertise is required to
perform essential decisions.

After having introduced fairly comprehensive mecha-
nisms for process evolution support, we conclude this sec-
tion by mentioning a limitation which still exists: Meta
model evolution is not supported so far. The process meta
model is fixed (as usual). In general, changes to the meta
model would invalidate the tools provided as well as the
models maintained by the AHEAD system.
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III. EXAMPLE

After having introduced the conceptual framework un-
derlying the AHEAD system, we present an example which
is drawn from the chemical engineering domain. AHEAD
is being developed in the context of IMPROVE [22], a long-
term research project which is concerned with models and
tools for design processes in chemical engineering. Within
the IMPROVE project, a reference scenario is being studied
referring to the early phases (conceptual design and basic
engineering) of designing a plant for producing Polyamide6
[24]. To a large extent, the requirements for process evolu-
tion support were derived from this scenario, even though
we also studied processes in other domains (e.g., software
engineering). In fact, the reference scenario constitutes a
fairly challenging benchmark against which process evo-
lution capabilities of management systems can be evalu-
ated. Process knowledge is incomplete, instable, and rather
fuzzy, feedback occurs frequently in the design process,
multiple design variants have to be considered, etc.

In the sequel, we present a sample process which is based
on the Polyamide6 scenario. The example is chosen such
that essential process evolution capabilities of the AHEAD
system is demonstrated. The overall design process being
studied is much more comprehensive; see [24]. The ex-
ample below shows a process evolution roundtrip: During
the execution of the design process, changes are performed
which introduce inconsistencies with respect to the process
definition. In response to this problem, an improved version
of the process definition is created. Finally, the process in-
stance is migrated to the new definition.

Fig. 3. Top-level task net for the design process

Figure 3 shows the top-level task net for the Polyamide6
design process on the instance level. Each task is repre-
sented by a box containing its name, its type, and an icon
for the current state of execution. Since execution has not
started yet, all tasks are still in their initial state. White
and black circles stand for inputs and outputs, respectively.
Solid and dashed arrows visualize control and data flows,
respectively. The design process start with a pre-study in
which requirements are gathered and an initial flow sheet
for the chemical process is drawn (Figure 4). After that,
the steps of the chemical process are studied in greater de-
tail. The main steps are: reaction of monomers, separation
of polymers from monomers, which are fed back into the

reaction phase, and compounding, which is concerned with
fine-tuning the properties of the produced material. After
having designed reaction, separation, and compounding, an
evaluation step follows to determine whether the require-
ments to the chemical process are met. Otherwise, the de-
sign created so far has to be revised.

Fig. 4. Flow sheet for the chemical process

Below, we focus on a certain subprocess, namely separa-
tion design. Before we continue to examine the evolution of
this subprocess instance, we take a look at the process defi-
nition. Figure 5 presents a definition of a subprocess design
as it can be used for any part of the overall chemical process
(i.e., not only for the separation, but also for the reaction
and the compounding). The subprocess design is defined in
two UML packages for the interface and the realization, re-
spectively. Both are defined on the type level with the help
of UML class diagrams which are adapted to the underly-
ing process meta model by stereotypes. Partly, stereotypes
are represented textually; e.g., a task class is decorated with
the string ��Task��. Partly, new graphical symbols are
introduced to enhance the visualization (white and black
circles for classes of input and output parameters, respec-
tively). In addition to stereotypes, further meta data are
represented by tagged values which are used to annotate
model elements. In the figure, tagged values are attached as
notes to model elements.

The interface is defined in terms of inputs and outputs.
A task of class SubprocessDesign receives a flow sheet
for the overall chemical process and the results of related
subprocesses. The output parameter denotes the result of
the subprocess design, including the flow sheet for the sub-
process, simulation models, and simulation results.

The realization is described by a class diagram contain-
ing a class for the respective task net as well as classes for
the subtasks. In general, multiple realizations may be de-
fined. Here, we discuss only a simulation based realiza-
tion (in contrast to a realization based on laboratory ex-
periments). The tag Partial is used to distinguish between
partially and completely typed processes (Figure 2b and c,
respectively). The value false excludes the insertion of un-
typed tasks and relationships.

The class diagram of Figure 5 introduces three classes
of subtasks. FlowsheetAlternatives, which is instantiated
exactly once, is used for creating design variants for the
respective subprocess. This task is followed by multiple
simulation tasks, each of which deals with one design vari-
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Fig. 5. Class diagram for a design subprocess

ant. Finally, the process ends with exactly one Evaluation
task which examines the simulation results and composes
the overall subprocess design.

Control flow associations constrain the order of task exe-
cution. Their behavior is defined by the tag Enactment-
Order. In our example, simulation tasks may overlap
with the task of designing flow sheet alternatives, which is
briefly called design task below (enactment order simulta-
neous). Thus, it is possible to start simulation of a design
variant before the final flow sheet containing all variants
is available. Multiple simulation tasks may be executed in
parallel unless mutual control flows constrain the order of
execution (not used in our example). Finally, a control flow
association is defined between the class Simulation and the
class Evaluation. Here, a sequential order is enforced since
it only make sense to perform the final evaluation when all
design variants have been investigated. If the final evalua-
tion identifies a problem that needs to be fixed, a feedback
flow may be created back to the design task, implying that
the design has to be improved and investigated by new sim-
ulations.

Finally, the class diagram defines data flow associations
between parameter classes. The design task receives the
flow sheet as input as well as evaluation results (in case
of feedback). It creates an extended flow sheet containing
the design variants for the subprocess under study. The ex-
tended flow sheet is passed to the simulation tasks, which
may also receive results from other simulations. These re-

sults are received either from the parent task (vertical com-
munication) or from preceding simulations in the same task
net. In the former case, the simulation results refer to re-
lated subprocesses (e.g., the separation design depends on
simulation results from the reaction design). Finally, all
simulation results are passed to the evaluation task, which
in turn delivers the overall result of the subprocess design
to the parent task.

Figure 6 presents a snapshot of the subprocess Separa-
tionDesign which is currently being planned. The task is
consistent with the process definition explained above, but
its not yet complete. From the cardinalities in the class di-

Fig. 6. Early snapshots of the separation design process
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Fig. 7. Task net extend with simulation tasks

Fig. 8. Revised process definition

agram, it is known that exactly one design task and exactly
one evaluation task have to be performed. These tasks have
already been inserted into the task net. The simulation tasks
have not been instantiated so far because the design variants
have not been elaborated yet.

Now, the following problem is recognized: In order to
design the separation, the flow sheet alone is not sufficient.
In addition, certain data on the reaction are required, e.g.,
flow rates and temperature of the substances fed into the
separation step. These data will eventually be delivered
when the reaction design is elaborated, but waiting for them
would severely slow down the design process. Therefore,
the manager of the separation design calls for an initial es-
timation of these data. Accordingly, an estimation task is
inserted. Design may proceed using initial estimations un-
til more detailed data finally arrive from the reaction design.
In this way, simultaneous engineering is introduced to ac-
celerate the design process.

The resulting task net is shown in Figure 6b. Since the
estimation task is not defined in the class diagram, the man-
ager makes use of the pre-defined standard type Task to
insert it into the task net as an untyped task. This modifi-
cation results in an inconsistency which is signaled graphi-

cally. Likewise, the control and data flows emanating from
the estimation task are marked as inconsistent, as well as
the new input parameter of the design task.

Execution may continue even when the task net contains
inconsistencies. Design variants are elaborated, and cor-
responding simulations are performed. Figure 7 shows a
snapshot of the extended task net. The task net contains two
simulation tasks for investigating the separation variants
distillation and extraction. These simulation tasks are sup-
plied with the estimation results via the flow sheet, which
the designer has annotated with these data. So far, the sim-
ulations have been performed based on the estimation re-
sults; the simulation results from the reaction design are
not yet available and will be considered later.

Although the simulation results are still preliminary, the
manager of the reaction design decides to call for an ini-
tial evaluation to accelerate the design process. In this way,
feedback may be provided early, potentially triggering re-
work of the separation design. However, this violates the
conservative policy fixed in the process definition. Since
inconsistencies are allowed, the evaluation task may be ac-
tivated, but the sequential control flows are marked as be-
haviorally inconsistent.
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Fig. 9. Package versions

At this stage, it is decided to clean up the process defi-
nition so that it includes the process improvements which
have already been practiced at the instance level. Since the
old definition may not be modified for the sake of trace-
ability, a new version is created instead. Among others, the
class diagram presented in Figure 5 is revised (see Figure 8,
where the changes are emphasized in bold face). A task
class Estimation is inserted and embedded into its context.
This implies that subsequent tasks have to be augmented
with a new input parameter. To this end, new versions of
these task classes (and their enclosing packages) have to
be created as well. Finally, the enactment behavior of the
control flow association from Simulation to Evaluation is
relaxed to allow for simultaneous activation.

Figure 9 illustrates the evolution on the definition level
by a package diagram. A task package serves as a con-
tainer for interface and realization packages. The interface
package for the subprocess design is not affected. For the
realization, a new package version is derived from the old
one. In addition, a new task package for the estimation is
created.

The process evolution roundtrip is closed by propagat-
ing the changes at the definition level to the instance level.
In our example, this will result in a task net as previously
shown in Figure 7, which, however, uses the new definition
and does not contain inconsistencies any more. In general,
migration has to be performed interactively: It is not always
possible to determine the target type of migration uniquely,
migration may require structural changes which may not
be performed automatically (e.g., insertion of new obligate

tasks), the user has to control the scope of migration, etc.
In our example, it appears at first glance as if all migra-

tion steps could be performed automatically after a new
type version has assigned SeparationDesign. Unfortu-
nately, this is not the case. Since we want to avoid user-
programmed migrations, the AutoMigrate command of-
fered by AHEAD reasons at a generic level. All tasks
whose types were already contained in the old definition
can be migrated automatically to the new type version. In
our example, this rule applies to the design task and the
simulation tasks. However, the estimation task cannot be
migrated automatically. Since it was introduced as an un-
typed task, its target type cannot be determined uniquely.
This argument also applies to its input and output parame-
ters as well as parameters of related tasks. After all objects
have been migrated, the relationships can be migrated au-
tomatically. This is possible even for untyped relationships
(such as the control flow between the estimation task and
the design task) provided that there is only one matching
relationship for each pair of object types.

IV. REALIZATION

Figure 10 displays the architecture of AHEAD. The tools
provided for different kinds of users are shown on the right-
hand side. “Process modeler”, “process manager”, and “de-
veloper” denote roles rather than persons: A single person
may play multiple logical roles, and a single role may be
played by multiple persons. The right-hand side shows in-
ternal components of the AHEAD system which are not vis-
ible at the user interface. Furthermore, the horizontal line
separates definition and instance level.

The process modeler uses a commercial CASE tool —
Rational Rose — to create and modify process definitions in
the UML. Rational Rose is adapted with the help of stereo-
types which link the UML diagrams to the process meta
model. A class diagram is represented as shown in Fig-
ure 5. An analyzer checks process model definitions for
consistency with the process meta model. The analyzer
is coupled with a transformation tool which translates the
UML model into an internal representation hidden from the
process modeler [26].

Internally, AHEAD is based on a formal specification as
a programmed graph rewriting system. To this end, we use
the specification language PROGRES as well as its devel-
opment environment, which offers a graphical editor, an
analyzer, an interpreter and a code generator [28]. Both
the process meta model and process model definitions are
specified in PROGRES. The former was created once by the
tool builders of AHEAD; the latter ones are generated au-
tomatically by the transformation tool. That is, the process
modeler shown in Figure 10 is not aware of the PROGRES
specification which is employed internally.

The overall specification, consisting of both the process
meta model and the process model definition, is translated
by the PROGRES compiler into C code. The generated
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Fig. 10. Architecture of the AHEAD system

code constitutes the application logic of the instance-level
tools. The application logic library operates on the manage-
ment data which are stored in a graph-based DBMS. The
user interface of the management tools is implemented with
UPGRADE, a framework for building graph-based interac-
tive tools [2].

The management tool assists a process manager in plan-
ning, analyzing, monitoring, and controlling a development
process. A screenshot from the management tool is shown
in Figure 11; it corresponds to the task net of Figure 3. The
management tool is coupled with tools provided to devel-
opers which are used to display agendas of assigned tasks
and to operate on these tasks in workspaces from which
domain-specific tools may be activated in order to work on
design documents.

Finally, the inference tool closes the loop by assisting in
the inference of process definitions from process instances.
The inference tool analyzes process instances and proposes
definitions of task and relationship types. These definitions
are stored in a knowledge base which may be loaded into
Rational Rose. In this way, bottom-up evolution is sup-
ported. For a more detailed description of the inference
tool, the reader is referred to [27].

To conclude this section, let us summarize how process
evolution is supported by AHEAD. The sample process pre-
sented in the previous section assumes that a type-level pro-
cess definition has already been created. For a while, the de-
sign process proceeds according to the definition. Planning
and execution are interleaved seamlessly, the task net is ex-

tended gradually (instance evolution). Then, the manager
detects the need for a deviation. Consistency enforcement
is switched off in the task net for the separation design, and
the estimation task is inserted. These steps are performed
with the help of the management tool. Execution contin-
ues even in the presence of inconsistencies until it is de-
cided to improve the process definition. To this end, the
process modeler creates new package versions in Rational
Rose. This results in an extension of the process definition,
i.e., the old parts are still present. The extended definition
is transformed into the PROGRES specification, which in
turn is compiled into C code. Now the process manager
may migrate the task net to the improved definition.

V. RELATED WORK

Previous papers on the AHEAD system have presented
instance-level evolution [9], [24] and UML modeling of
development processes [26], [14]. This paper is based
on the Ph.D. thesis of the second author [27], which in-
troduces the wide spectrum approach, round-trip process
evolution, and toleration of inconsistencies. We have not
described these contributions in other publications. Al-
together, the AHEAD system now provides comprehen-
sive mechanisms for managing evolving development pro-
cesses. These mechanisms are combined synergetically in
an integrated framework which provides an added value go-
ing beyond the sum of its individual parts.

Workflow management systems, as presented by the
work of the Workflow Management Coalition [19], have



9

Fig. 11. Screenshot from the management tool

been developed to support repetitive processes occurring
e.g. in banks, insurance companies, administrations, etc. A
workflow is defined once, and this definition is used for ex-
ecuting a high number of processes. The WfMC does not
deal with evolution, neither on the definition nor on the in-
stance level.

The need for a wide spectrum approach to process man-
agement was recognized as a research challenge in [29].
It is explicitly addressed in GroupProcess [11], a project
that has been launched recently, but does not seem to have
produced technical results yet. In addition, this matter is
addressed in some workflow management systems which
originally focused on highly structured processes. For ex-
ample, in Mobile [10] and FLOW.NET [16] the process
modeler may define the control flow as restrictively as de-
sired and may even introduce new control flow types. In ad-
dition, many commercial systems allow for deviations such
as skipping, redoing or delegation of activities. Finally, ex-
ception handling [8] may be used to deal with errors and
special cases. However, the main focus still lies on highly
or medium-structured processes. In contrast, our approach
covers the whole spectrum, including also ad hoc processes.

There are only a few other approaches to process man-
agement which are capable of dealing with inconsistencies.
[7] and [21] both deal with inconsistencies between process
definitions and process instances. In PROSYT [7], users
may deviate from the process definition by enforcing op-
erations violating preconditions and state invariants. How-
ever, all of these approaches do not deal with definition-
level evolution, i.e., it is not addressed how inconsistencies
can be resolved by migrating to an improved definition.

A key and unique feature of our approach consists in its
support for round-trip process evolution. To realize this ap-
proach, we have to work both bottom-up and top-down: we
learn from actual performance (bottom-up) and propagate

changes to process definitions top-down. In contrast, most
other approaches are confined to top-down evolution. For
example, in [10], [12], [15], [17], the process definition has
to be created beforehand, while we allow for executing par-
tially known process definitions.

Modifications to process definitions may be performed in
place, as in [30], [5]. However, it seems more appropriate to
create a new version of the definition in order to provide for
traceability. Version control is applied at different levels of
granularity such as class versioning [15], [17] and schema
versioning [4]. Our approach is similar to class versioning
(interface and realization packages for individual task types
are submitted to version control).

Different migration strategies may be applied in order
to propagate changes at the definition level to the instance
level. A fairly comprehensive discussion of such strategies
is given in [4]. We believe that the underlying base mecha-
nisms must be as flexible as possible. For example, in [10],
[15], [17], both structural and behavioral consistency must
be maintained during migration. This is not required in our
approach, which even tolerates persistent inconsistencies.

Finally, there are a few approaches which are confined to
instance-level evolution (e.g., [1], [25]). A specific process
instance is modified, taking the current execution state into
account. However, there is no way to constrain the evolu-
tion (apart from constraints which are built into the underly-
ing process meta model). In contrast, in AHEAD instances
are evolved under the control of the process definition. In-
consistencies can be permitted selectively, if required.

VI. CONCLUSION

We have presented a management system for evolving
development processes which provides an integrated set of
tools for round-trip process evolution. We have applied our
approach to development processes in different engineer-
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ing disciplines, namely software, mechanical, and chemi-
cal engineering. In this paper, we have focused on chemi-
cal engineering, which is studied in the IMPROVE project.
Our recent work on process evolution has been driven by
the study of design processes in chemical engineering to
a large extent. We have applied the AHEAD system suc-
cessfully to the reference scenario studied in the IMPROVE
project, which was elaborated in cooperation with indus-
trial partners. Future work will address further evaluation of
the mechanisms for evolution support. While these mech-
anisms seem to be powerful and general enough, we still
have to reduce the complexity of the user interface and have
to provide for methods of use.
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[28] A. Schürr, A. Winter, and A. Zündorf. Graph grammar engineering
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