
Feedback Handling in Dynamic Task Nets

Carl-Arndt Krapp and Bernhard Westfech tel

Lehrstuhl f�ur Informatik III, RWTH Aachen, D-52056 Aachen

[krapp|bernhard]@i3.informatik.rwth-aachen.de

Abstract

While a software process is being exe cute d,many

errors and problems occur which require to r econsider

previously exe cute dprocess steps. In order to han-

dle fe edback in a process management system, several

requir ementsne ed to be addr essed: adaptability, hu-

man intervention, impact analysis, change prop aga-

tion, r estor ation of the work context, and traceability.

F eedback management in DYNAMITE meets these r e-

quir ements. D YNAMITEis based on dynamic task

nets and speci�c ally supports fe edback thr ough feedback

relations, task versions, and customized semantics of

data ows. A methodolo gy for feedback handling is

also r epr esente d.

1 Introduction

It has been recognized by many researc hers that
softw are processes are highly dynamic.How ev er, cur-
ren t models and tools address process dynamics only
to a limited extent. In particular, this applies to man-
agement of feedback. While a softw are process is being
executed, many errors and problems occur which re-
quire to reconsider previously executed process steps.
F or example, a module test may rev eal errors in the
implementation, or a designer may detect inconsisten-
cies in the requirements de�nition.

While feedback is mentioned in virtually every text-
book on softw are engineering, it is by no means obvi-
ous or trivial how to support it in a process manage-
ment system. T o this end, an underlying formal model
is needed which meets the following requirements:
Adaptability. In routine processes, feedback may be
planned. On the other hand, in less w ell-structured
processes, feedback may occur unexpectedly and ran-
domly, calling for exible and reactiv e (instead of
proactive) support.
Human in terven tion. In many cases, handling of
feedback requires human judgment and can at best
be automated partially. F or example, in case of se-
vere errors, large parts of a process may ha veto be
suspended while minor errors only a�ect a small set
of process steps. Usually, the process engine cannot
tell these cases apart.
Analyses. Sophisticated analyses have to be o�ered
to assess the impacts of feedback, the current status of
processing feedback, etc.. These analyses concern the

past (terminated steps to be iterated), the present (ac-
tive steps to be suspended), and the future (planned
steps to be postponed).
Change propagation. Flexible commands must be
pro vided to propagate changes induced by feedback
timely (to avoid wasted work on obsolete inputs), pre-
cisely (to exactly determine actually a�ected steps),
and incrementally (to process changes rather than to
restart from scratch).
Restoration of the work context. In many cases,
iteration of a process step is performed by re�ning
its previous results. T o support incremental improve-
ments, the old w orkcon text(inputs, outputs, avail-
able tools, etc.) has to be restored.
T raceability. Handling of feedback has to be
recorded and packaged in an experience base. By an-
alyzing historical data concerning feedback, problem
spots in the softw are process may be identi�ed.

2 F eedback Handling:

Mechanisms and Methodology

In DYNAMITE [1, 3], a soft w are process is repre-
sen ted by a dynamic task net (Figure 1). Development
activities are modeled by tasks (bo xes) which are re-
lated by contr oland data ow relations. A dynamic
task net resembles a PERT chart and, additionally,
o�ers execution semantics. A task can be subdivided
in to sev eral subtasks (not shown in the �gure). There-
fore sev eral lev els of abstractions can be provided.

The example in Figure 1 sho ws a cutout of a
task net for constructing a multi-pass compiler. The
cutout only covers a subset of its data structures
(GraphCode for the in termediate code and BinFile

for the compiled code) and a subset of its passes
(SemAna for semantic analysis and CodeGen for code
generation). After an initial coarse design, module in-
terfaces are de�ned (Interface), module bodies are
implemented (Implement) and �nally tested (Test).
T asks for de�ning interfaces and testing modules are
performed in bottom-up order; implementation tasks
may proceed in parallel. Even tasks connected by
con trol o w relations (e.g.,ImplementGraphCode and
TestGraphCode) may be executed in parallel (simul-
taneous engineering).

In order to model feedback situations, where the
o w of con trol is redirected to earlier stages of the

Procedings of the 1997 International Conference on Automated Software Engineering (ASE'97) (formerly: KBSE)
0-8186-7961-1/97 $10.00 © 1997 IEEE

Design

Interface
CodeGen

Interface
GraphCode

GraphCode

Interface

Interface

CodeGen

a

Interface

Implement

Implement

Implement

Test

Test

Test

GraphCode GraphCode

CodeGen CodeGen

SemAna SemAna SemAna

waiting

done

done

done

suspended

suspended suspended

suspended suspended

waiting

done

active active

active feedback
active feedback

Design

a

Interface
BinFile

Implement
BinFile

Test
BinFile

waiting

waiting
suspended

Figure 1: Dynamic task net

overall process, a special feedback r elationis used. In
our example, the test task for the GraphCode module
observes that performance requirements are not met,
resulting in feedback to the corresponding implemen-
tation task. Since the implementation task could not
solv e the problem, another feedback relation is intro-
duced back to the design task. The consequences of
feedback introduction like suspension or restart of de-
pendent tasks are under manager's control. Here, we
assume that the in terface of GraphCode needs to be
modi�ed. Accordingly, all dependent tasks are sus-
pended (not including those tasks which are only con-
cerned with the module BinFile).

During feedback handling, traceability of the over-
all process can be lost very easily. Due to the trace-
abilit y requirement we ha ve introduced the concept of
task versions. If an already terminated task has to
be restarted again, a new task version is established
which can be pro videdwith the same w orkcon text
(same inputs, same outputs, same actor, etc.) as the
original task (shown behind the new version) or which
may be embedded into the task net di�erently.

By means of the presented concepts, a manager can
handle arbitrary feedback according to his needs with-
out loosing traceability. Analyses on dynamic task
nets are o�ered which support him in �nding poten-
tially a�ected tasks.

We now consider how feedback is handled method-
ologically. The following steps can be identi�ed:
T argetdetermination. After occurrence of an er-
ror, the �rst step is to determine the target task of
the feedback. This can be either done by the actor of
the source task himself or by the process manager who
usually has a better overview of the overall process.
Source behavior. After feedback in troduction the
behavior of the source task has to be determined. Sev-
eral alternatives are possible: The source task may
stay active, or it may be suspended or aborted.
Consequences to source successors. Successors
of the source task may be a�ected, as w ell. Analy-
sis on the net supports the manager in deciding upon
appropriate reactions. All tasks reachable by control
o w relations can be highlighted. The manager may
no w decide to suspenda subset of these tasks in or-
der to avoid wasted work. T asks which are likely not
a�ected may continue their work.
T arget behavior. If the target task has already ter-

minated, a new task version is introduced. In case it
is still activ e, which can be possible if parallel exe-
cution of tasks is allow ed, appropriate reactions have
to be performed. Either the responsible actor is only
informed about the feedback, or (s)he is forced to pro-
cess the feedback immediately.
Consequences to target successors. T arget suc-
cessors are potentially a�ected. Again, analysis on
the task net helps to identify these tasks. Similar to
source successors, the manager can perform appropri-
ate reactions individually for each task.
F eedback propagation. After all consequences
ha vebeen estimated and appropriate reactions ha ve
been performed, feedback can be propagated trying to
accelerate the wave of changes through the net. Note
that a feedback relation is called active un til it is ter-
minated (see below). In Figure 1, this was visualized
by a ag attached to the feedback relation.
F eedback termination. Active feedback relations
inuence the behavior of some tasks. Thus it is es-
sen tial to determine the point when a feedback can
be considered as closed. Again, di�erent policies can
be used depending on the kind and sev erity of the
feedback: (1) F eedback can terminate if the o wof
con trol reac hes the feedback's source task again. (2)
F eedback can terminate if the feedback's target task
terminated successfully. (3) The manager determines
explicitly when feedback can be terminated.

3 Conclusion

In this paper, w eha vepresented the main ideas
of our approach to feedback handling at an infor-
mal level. A detailed presentation and comprehensive
comparison to related work is given in [3] and [4]. We
ha ve formalized dynamic task nets by means of pro-
grammed graph rewriting. This formal speci�cation
serv es as the basis for rapid prototyping of a process
management system [2].

References

[1] P . Heimann, G. Joeris, C.-A. Krapp, and B. Westfech-

tel. D YNAMITE: Dynamic task nets for softw are pro-

cess management. In Pr oc.ICSE 18, pages 331{341,

Berlin, Mar. 1996.

[2] P . Heimann, C.-A. Krapp, and B. Westfechtel. An

environment for managing softw are dev elopment pro-

cesses. In Pr oc. SEE `97, pages 101{109, Cottbus, Ger-

many, Apr. 1997.

[3] P . Heimann, C.-A. Krapp, B. Westfechtel, and G. Jo-

eris. Graph-based softw are process management.

International Journal of Software Engineering and

Knowledge Engineering, 7(4), Dec. 1997. T o appear.

[4] C.-A. Krapp and B. Westfechtel. F eedbac khan-

dling in dynamic task nets. T echnical Re-

port AIB 97-9, RWTH Aac hen, Germany, 1997.

ftp://ftp.informatik.rwth-aachen.de/

pub/reports/index.html

Procedings of the 1997 International Conference on Automated Software Engineering (ASE'97) (formerly: KBSE)
0-8186-7961-1/97 $10.00 © 1997 IEEE

