Adding Support for Dynamics Patterns to Static
Business Process Management Systems

René Worzberger, Nicolas Ehses, and Thomas Heer

Department of Computer Science 3 - Software Engineering
RWTH Aachen, Germany
{woerzberger,ehses,heer}@i3.informatik.rwth-aachen.de

Abstract. Many companies use business process management systems
(BPMS) for modeling and execution support of their business processes.
Many processes are highly dynamic and require changes even during
execution. Common commercial BPMS fail to support such processes
appropriately since they work in a rather static manner, i.e. they demand
that the structure of a process is fixed before execution.

Our research group cooperates with an industry partner who uses a
static BPMS. This paper describes an approach that posteriorly extends
this static BPMS inasmuch as dynamic changes of processes during ex-
ecution are supported. The benefit of this approach is that our partner
in industry gains support of dynamic processes but still use the existing
BPMS and save investments related to it.

1 Introduction

The organization of most modern companies is aligned to their business pro-
cesses. Business process management systems (BPMS) provide means to define,
control and monitor business processes, which are often called workflows in this
context.

Common BPMS distinguish between build time and run time with regard
to processes. During build time workflow definitions are specified, which model
a certain process type, e.g. “adjustment of a claim” in an insurance company.
At run time, for each actual process case a workflow instance is created and
executed according to a certain workflow definition.

Although companies strive for automation of their business processes, most
processes are at least partly conducted by humans. These processes are often
dynamic, i.e. the structure of such processes evolves during process execution.
Most commercial BPMS support rapid adaptions of workflow definitions but
prohibit dynamic changes in workflow instances, like adding missing activities.
Thus, they cannot optimally support dynamic processes. This problem gave rise
to a new research field [I23].

Within the collaborative research center IMPROVE [4] our research group
has realized the prototype AHEAD [5], which aims at the management of highly
dynamic development processes and interdigitates build time and run time. In
an ongoing research project we transfer our concepts to industry in cooperation

C. Pautasso and F. Tanter (Eds.): SC 2008, LNCS 4954, pp. 84[91] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adding Support for Dynamics Patterns to Static BPMS 85

with our partner AMB Generali Informatik Services (AMB-Informatik). Our
partner is the information technology service provider for the Generali Group,
which is a combine of insurance companies.

AMB-Informatik uses the WebSphere BPMS consisting of the workflow defini-
tion tool WebSphere Integration Developer (WID) and the run time environment
WebSphere Process Server (WPS E as solution basis for their customers. Web-
Sphere BPMS is rather oriented towards highly automated and predictable pro-
cesses. The support for dynamic processes is not in its focus. However, these dy-
namic processes occur and must also be handled by insurance companies. Thus,
we transfer the concepts of the prototype AHEAD by extending WebSphere
BPMS. Thereby, we gain support for dynamic processes while investments of
our partner in the WebSphere-based infrastructure can be saved.

The paper is structured as follows: Section 2l clarifies terms related to flexibility
and dynamics of BPMS. Dynamics can be categorized according to patterns,
which are described in Section Bl Section [] explains our approach with regard to
the patterns and the extended WebSphere BPMS. Connections to other research
approaches are illustrated in Section Bl Section [concludes this paper with an
outlook on future work.

2 Flexibility and Dynamics of Workflows

Most workflow definition languages provide construct types like decision or iter-
ation to define at build time execution sequences of activities, which are valid at
run time. These construct types allow for some build time flexibility, that is, one
workflow definition specifies a (possibly infinite) set of valid execution sequences.
The workflow definition depicted in Figure , a simple review process, allows
for two execution sequences: one with Add Corrections and one without.

Check

S x>
Layout Spelling (Correction: Layout Spelling Correction:

(a) Workflow definition (b) Definition with additional Check Style

Fig. 1. Example for run time dynamics

According to our industry partner, for a non-trivial process type it is neither
possible due to limited anticipatability nor desired because of lower maintain-
ability to build a workflow definition that covers all reasonable execution se-
quences. For instance, it might turn out during execution of Check Spelling that
the particular document is written in a bad style. Then, there is a need for an
additional activity Check Style before Add Corrections in the respective workflow
instance. In this case, it would be appropriate to dynamically change the running

! All WebSphere trademarks are in possession of IBM Corp. (http://www.ibm.com).

86 R. Worzberger, N. Ehses, and T. Heer

workflow instance (run time dynamics) such that the instance would conform to
the hypothetical workflow definition of Figure

3 Dynamics Patterns

In most cases, the necessity to modify a workflow instance is recognized by
workflow participants of the respective workflow instance and should therefore
be conducted by them.

A workflow modeler normally needs the full set of constructs types at build
time to cover all reasonable execution sequences he is able to envisage. In con-
trast, at run time a workflow participant just uses a small subset of the available
construct types. That is because he does not consider workflow modeling as his
primary task but rather wants to satisfy current or oncoming exigencies for a
single workflow instance by a dynamic modification. Furthermore, we think that
most dynamic modifications follow certain patterns, which we exemplify in the
following by a simplified process type of a medical practice (cf. Fig. R(a)).

AN AN AN AN

referral to a
specialist
" gather
Gather patient data Qnatient data)

l

(a) Workfl. def. (b) Adding (c) Removing (d) Realization (e) Iteration

gather
patient data

invoice

treatment

invoice

referral

normal

diagnosis

invoice

Fig. 2. Examples for dynamics patterns

Dynamic Adding. During the enactment of diagnosis in a certain workflow in-
stance the doctor might recall a research project concerning the effectiveness of
certain treatments. Since the patient is willing to partake, the doctor has to assure
that the evaluation of the treatment will be executed after the treatment itself. The
best way to do this is to dynamically add an additional activity evaluate treatment
between the existing activities treatment and invoice (cf. Fig. .

Dynamic Removing. In the process of the medical practice it is possible that
there are no findings resulting from diagnosis because the patient just suffers
from a slight indisposition. Consequently, the doctor dynamically removes the
activity treatment from the respective workflow instance (cf. Fig. .

Adding Support for Dynamics Patterns to Static BPMS 87

Dynamic Realization. In a hierarchically defined workflow, where activities are
actually realized via sub-workflows, the best realization can often not be iden-
tified before run time. E.g., the doctor might dynamically realize diagnosis by
normal diagnosis conducted by himself or by a referral to a specialist (cf. Fig. [2(d)).
This decision is specific to each particular workflow instance.

Dynamic Iteration. In the medical process, errors might occur in each activity.
For instance, a severe mistake is a wrong finding resulting from a faulty diagnosis.
Such an error might be recognized during execution of treatment. Then, the
affected activities of the workflow instance, namely, diagnosis and its successor
activity treatment have to be dynamically re-iterated, i.e., they are carried out
again such that the data they produce can be corrected (cf. Fig. .

4 Approach: Simulate Dynamics on a Static BPMS

In this section we describe our approach to provide support for the dynamics
patterns described in Section [Bl The distinctive feature of this approach is that
our prototype is not implemented from scratch. Instead, we rather add another
layer on top of an existing BPMS by which we simulate a dynamic BPMS (cf.
Fig.). The fact that the underlying BPMS is static is hidden from both the
workflow modeler at build time and from the workflow participant at run time.
Although we have implemented a prototype on top of the concrete system Web-
Sphere BPMS in order to verify our approach, we think that it can be easily
adapted to other BPMS.

4.1 Approach Overview

At build time a WS-BPEL transformer augments workflow definitions modeled
in the language WS-BPEI via WID by additional WS-BPEL activities (e.g.
<invoke>, <switch>, <while>) yielding an augmented workflow definition Xa.
The transformer requires no user interaction. Hence, the additional dynamics
layer is opaque to the workflow modeler.

The run time counterpart of the WS-BPEL transformer is the dynamics com-
ponent. This component is accessed through two interfaces that serve different
purposes: (1) The dynamics component stores instance specific run time infor-
mation, e.g. actual variable values and routing informations for sub-workflow
calls. This run time information is accessed by the WPS through the WPS inter-
face. WPS uses this information for those WS-BPEL activities that have been
added at build time by the WS-BPEL transformer. (2) Likewise the WS-BPEL
transformer hides the dynamic aspect at build time, the dynamics component
hides the additional WS-BPEL activities from a workflow participant at run
time. Instead, it provides a participant interface which is used by a participant
GUI to render a graphical view of dynamic workflow instances. Furthermore, the

2 http://www.oasis-open.org/committees/wshpel /

88 R. Worzberger, N. Ehses, and T. Heer

dynamics layer

new: OK
AT
Bt
A
augmented dynamic views change
workflow deploy- on workflows operations
definition ment participant interface
Xa dynamics component
DAI bindings
— noop |||, DR
Xa.1.DAI2) —»| Y.1 9
(Xa.1.DAI3)) —» noop
WS-BPEL transformer oRD (Ya.1DA) —> noop oD
l 299 DRD- I Iadd DAIsI l 99 DIos I assignments —> noop assignments
WPS interface
T A
lookup of dynamic creation of
augmented variable workflow instances
assignments
=
original
workflow
definition)
X
kflow d f d e
workflow definition editor
WebSphere Integration _reply)) -
augmented workflow augmented workflow
Developer (WID) . .
instance Xa.1 instance Ya.1
existing systems workflow runtime environment
WebSphere BPMS WebSphere Process Server (WPS)

build time run time

Fig. 3. System overview and example for Dynamic Adding support

participant interface of the dynamics component offers operations that can be in-
voked by a workflow participant via the participant GUI to perform a dynamic
change in the graphical view.

4.2 Realization of Dynamic Adding

The approach is aligned to the dynamics patterns explained in Section[3 In order
to keep our explanation brief, we just exemplify our approach with Dynamic
Adding in a rather small workflow.

Build Time. Enabling a workflow definition to support Dynamic Adding (s.
Sec. B) requires the addition of <invoke> activities which we call Dynamic

Adding Support for Dynamics Patterns to Static BPMS 89

Adding Invocations (DAI) in the following. DAITs serve as placeholders for pos-
sible additional activities. Since Dynamic Adding might take place in arbitrary
positions, the WS-BPEL transformer inserts a DAI before and after each activity.
The left hand side of Figure [J exemplifies the transformation of a simple
workflow X definition, which just consists of the sequential <invoke> activities A
and B, depicted as rounded rectangles. The transformation yields an augmented
workflow definition Xa3 with three more <invoke> activities DAIL to DAI3.

Run Time. A Dynamic Adding edit operation is initiated by a workflow partic-
ipant via his participant GUI (1). He specifies which activity is to be inserted at
which position in the control flow. In this case, during the execution of activity
A, the participant inserts a new activity C right after the existing activity A
and before B. The participant GUI notifies the dynamics component about this
edit operation (2). Consequently, the dynamics component replaces the default
noop—bindinﬂ of DAI2 in workflow instance Xa.l by a sub-workflow call to a
workflow instance Ya.l (3). When the control flow reaches DAI2, this activity
calls the dynamics component (4) which creates a new workflow instance Ya.l
(5). After Ya.l is completed, the control flow returns to Xa.l, which proceeds
with activity B.

The other dynamics patterns can similarly be realized (in combination with
each other), e.g. by means of so called Dynamic Removing Decisions (DRD)
and Dynamic Iteration Decisions (DID). Both require additional transformation
steps in the WS-BPEL transformer and additional run time data in the dynamics
component (cf. Fig. B). Dynamic Realization Invocations (DRI) are similar to
DAIs but refer to activities, which are already part of the original workflow
definition like A or B in Figure Bl

5 Related Work

Flexibility and Dynamics. Our distinction between build time flexibility and run
time dynamics is clearly aligned with the common distinction between build time
and run time in workflow management systems. A similar distinction between
“a-priori flexibility” versus “a-posteriori flexibility” and “offline changes” versus
“online changes” is made by Joeris [6] and Bandinelli et al. [7], respectively.

Dynamic WfMS. There are several workflow and process management systems,
which support run time dynamics to some extend. A comparison of some aca-
demic prototypes like ADEPT [§] or WIDE [9] and commercial systems is given
by Weber et al. [I0]. There is no approach known to us that posteriorly ex-
tends an existing workflow management system with a given workflow definition
language by support for run time dynamics.

3 In the figure we use a restricted subset of the notation for UML activity diagrams
since there is no official graphical notation for WS-BPEL.
4 “Noop” stands for “no operation”.

90 R. Worzberger, N. Ehses, and T. Heer

Patterns. Aalst et al. [T1] introduced a classification for workflow languages based
on patterns which concentrates on build time flexibility. Voorhoeve [12] et al. make
an implicit classification for run time dynamics with regard to preservation of cer-
tain consistency properties of petri nets. Weber et al. [10] also range run time dy-
namics but not with regard to a concrete technical implementation basis.

6 Conclusion

Summary. In this paper we described how support for run time dynamics, e.g.
dynamic modifications of workflows, can be realized by an additional dynamics
layer based on a static workflow management system. Our approach is motivated
by requirements of our industrial partners at AMB-Informatik who want to sup-
port dynamic processes but also keep the existing static WebSphere BPMS. We
classified dynamic changes according to dynamics patterns. In our twofold ar-
chitecture, consisting of a WS-BPEL transformer for build time and a dynamics
component for run time, there is dedicated support for each dynamics pattern.

State of Implementation. Presently, we are implementing the dynamics layer
and the graphical participant GUI only using common and publicly available
technologies. The WS-BPEL transformer is realized with XSL Transformations
whereas the dynamics component is written in plain Java. The graphical partic-
ipant GUT is implemented using the Graphical Editing Framework (GEF) of the
Eclipse Foundation. Though the implementation is still in an early phase, first
results already substantiated the suitability of our approach.

Current Limitations and Future Work. In the original workflow definition X in
Figure Bl we only used a small subset of all WS-BPEL construct types. Actu-
ally, occurrences of complex construct types like decisions and iterations but not
yet compensation and fault handlers. We will also deal with problems arising
from the concurrency and distribution of workflows. Here, we can continue work
that has been done in a preceding project of our group [13]. Generalization of
the approach is another important goal beginning with the adaption of other
WS-BPEL-based workflow management systems and proceeding with workflow
management system of other kinds. Optimizations will be applied particularly to
the WS-BPEL transformer in order to reduce the size of the augmented workflow
definitions. Besides the work presented in this paper there are other related parts
in our cooperation with our partner AMB-Informatik again carrying on preced-
ing work. Dynamic changes made by workflow participants have to be checked
against certain constraints in order to guarantee technical consistency, e.g. data
dependencies between activities. Furthermore, professional constraints have to
be enforced, e.g. non-deletability of strictly mandatory activities. Both will be
supported by a consistency checker. We will also build a tool that provides a
condensed view of completed workflow instances with dynamic changes to the
workflow modeler. By using this tool, the modeler can identify similar dynamic
changes among the workflow instances and copy them to the workflow definition
where appropriate.

Adding Support for Dynamics Patterns to Static BPMS 91

References

10.

11.

12.

13.

. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.

In: COOCS, pp. 10-21. ACM Press, New York (1995)

. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification

of issues and solutions. International Journal of Computer Systems Science and
Engineering 15(5), 267-276 (2000)

. Bernstein, A., Dellarocas, C., Klein, M.: Towards adaptive workflow systems:

CSCW-98 workshop report. SIGGROUP Bull. 20(2), pp. 54-56 (1999)

. Nagl, M., Marquardt, W. (eds.): Collaborative and Distributed Chemical Engi-

neering Design Processes / From Understanding to Substantial Support. Springer,
Heidelberg (2008)

. Westfechtel, B.: Ein graphbasiertes Managementsystem fiir dynamische Ent-

wicklungsprozesse. Informatik Forschung und Entwicklung 16(3), 125-144 (2001)

. Joeris, G.: Flexibles und adaptives Workflowmanagement fiir verteilte und dy-

namische Prozesse. PhD thesis, University of Bremen (2000)

. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Policies and Mechanisms to Support

Process Evolution in PSEEs. In: Proceedings of the 3rd International Conference
on the Software Process, pp. 9-20. IEEE Computer Society Press, Los Alamitos
(1994)

. Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic Changes of Workflows

Without Losing Control. Journal of Intelligent Information Systems 10(2), 93129
(1998)

. Casati, F.: Models, Semantics, and Formal Methods for the Design of Workflows

and their Exceptions. PhD thesis, Politecnico di Milano (1998)

Weber, B., Rinderle, S.B., Reichert, M.U.: Change patterns and change support
features in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 574-588. Springer, Heidelberg (2007)
Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distrib. Parallel Databases 14(1), 5-51 (2003)

Voorhoeve, M., Van der Aalst, W.: Ad-hoc Workflow: Problems and Solutions. In:
Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, p. 36. Springer, Heidelberg (1997)
Heller, M., Worzberger, R.: A Management System Supporting Interorganiza-
tional Cooperative Development Processes in Chemical Engineering. Journal of
Integrated Design and Process Science: Transactions of the SDPS 10(2), 57-78
(2007)

	Adding Support for Dynamics Patterns to Static Business Process Management Systems
	Introduction
	Flexibility and Dynamics of Workflows
	Dynamics Patterns
	Approach: Simulate Dynamics on a Static BPMS
	Approach Overview
	Realization of Dynamic Adding

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

